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Abstract—The ability of Machine Learning (ML) algorithms
to learn and work with incomplete knowledge has motivated
many system manufacturers to include such algorithms in their
products. However, some of these systems can be described as
Safety-Critical Systems (SCS) since their failure may cause injury
or even death to humans. Therefore, the performance of ML
algorithms with respect to the safety requirements of such sys-
tems must be evaluated before they are used in their operational
environment. Although there exist several measures that can be
used for evaluating the performance of ML algorithms, most
of these measures focus mainly on some properties of interest
in the domains where they were developed. For example, Recall,
Precision and F-Factor are, usually, used in Information Retrieval
(IR) domain, and they mainly focus on correct predictions with
less emphasis on incorrect predictions, which are very important
in SCS. Accordingly, such measures need to be tuned to fit the
needs for evaluating the safe performance of ML algorithms. This
position paper presents the authors’ view on the inadequacy of
existing measures, and it proposes a new set of measures to be
used for the evaluation of the safe performance of ML algorithms.
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I. INTRODUCTION

Recently, we are witnessing an increasing adoption of

Machine Learning (ML) algorithms in many automated sys-

tems covering almost all the main domains of our lives [1].

Their ability to learn and work with novel input/incomplete

knowledge [2], and their generalization capabilities make them

highly desirable solutions for complex problems [3]. This

has motivated many system manufacturers to incorporate ML

algorithms in their products for performing complex tasks such

as pattern recognition, image recognition, and even control [3].

However, some of these systems can be classified as safety-

critical systems, where their failure may cause death or injury

to humans. Accordingly, the safe performance of such ML

algorithms1 must be evaluated/assessed before they are used

in their operational environment.

Generally speaking, an ML algorithm builds a mathematical

model of sample data (e.g., training data set), in order to make

predictions or decisions without being explicitly programmed

to perform such task [4]. This is usually done relying on a clas-

sifier that assigns prediction scores to each observation, which

1Their performance with respect to the safety requirements of the incorpo-
rating system

indicates the certainty of the classifier that such observation

belongs to one of the possible classes [5]. In the case of binary

classifiers, observations belong to one of only two possible

classes (e.g., positive or negative) [4], and the classification

decision is usually taken based on the score of observation

with respect to the classification threshold (e.g., cut-off point).

More specifically, observations with scores higher than the

threshold are predicted to belong to the positive class and

observations with scores lower than the threshold are predicted

to belong to the negative class.

In this context, predictions can be classified into four groups

based on the real known class of the observation and the pre-

dicted one: True Positive (TP)/True Negatives (TP) cases refer

to the Predicted Positives/Negatives that were correct, while

False Positive (FP)/False Negatives (FN) cases refer to the

Predicted Positives/Negatives that were incorrect. These four

groups are organized in four cells in the binary contingency

table that is shown in Figure 1, where green colored cells

contain correct predictions, and incorrect predictions are con-

tained in red color cells. Figure 2 shows a sample distribution

of the count of observations against the predicted probability,

where we can identify the four main areas corresponding to

the four groups of the contingency table.

Taking these groups into consideration, several measures for

evaluating the performance of ML algorithms have been used

in the literature (e.g., Recall, Precision, F-Factor). However,

most of these measures focus mainly on some properties

of interest in the domains where they were developed. For

instance, Recall, Precision and F-Factor have been used regu-

larly to evaluate the performance of Information Retrieval (IR)

algorithms, and they mainly focus on the number of correct

positive predictions (e.g., TP cases), i.e., they have less or even

no emphasis toward incorrect predictions (FN and FP cases)2.

FN and FP cases can be of great importance in safety-critical

systems. For example, a self-driving vehicle, that is supposed

to detect pedestrians, cyclists, etc. and prevent crashing into

them, failed to identify a pedestrian (FN), which results in

hitting the woman that later died at a hospital [6]. While

a FP (i.e., false alarm) in such ML-based detection system

may result in automatically applying the breaks of the vehicle

to prevent crashing into what the algorithm identifies as a

2More detailed discussion about these metrics in the following section
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Fig. 1. The binary contingency table

pedestrian, a cyclist, etc. Although FP is not as critical as

hitting a pedestrian (FN), it is still a situation should be

avoided since it might lead to life-threatening accidents. To

this end, existing measures need to be tuned to fit the needs

for evaluating the safe performance of ML algorithms.

The rest of the paper is organized as follows; Section II

presents some performance measures for ML algorithms, and

we discuss the problem statement and research challenges in

Section III. In Section IV, we present and discuss possible

solutions. Finally, we conclude the paper in Section V.

II. PERFORMANCE METRICS FOR ML ALGORITHMS

Several measures for evaluating the performance of ML

algorithms have been used in the literature. For instance, Preci-

sion, Recall and F-Factor have been used regularly to measure

the performance of Information Retrieval (IR) algorithms,

where Recall (True Positive Rate (TPR)) is the proportion of

True Positive (TP) cases that are correctly Predicted Positive

(equation 1). While Precision (also called Confidence in Data

Mining) denotes the proportion of Predicted Positive cases to

the Real Positives (equ.2). F1-score (also called F1-measure)

is intended to combine Precision and Recall measures into a

single measure of search “effectiveness” (equ.3). On the other

hand, Sensitivity (called Recall (equ.1) in IR) and Specificity

(equ.4) are commonly used in the Behavioral Sciences, and

they measure the proportion of real Positive/Negatives that are

correctly identified (TPR/ True Negative Rate (TNR)). Finally,

the Receiver Operating Characteristics (ROC) graph have been

first developed and used in signal detection theory and now

it is commonly used in Medical Sciences for evaluating the

tradeoff between hit rates (TPR) and false alarm rates (FPR)

rates of classifiers [7]. Taking a closer look at these measures,

we can conclude that most of them mainly focus on TP and

some on TN cases, i.e., they do not focus on FP nor FN cases.

Therefore, they need to be tuned to fit the needs for evaluating

the safe performance of ML algorithms.

Recall = Sensitivity = TPR =
TP

TP+ FN
(1)

Precision = Confidence =
TP

TP+ FP
(2)

F1-score =
2× Precision× Recall

Precision+ Recall
(3)

Specificity = TNR =
TN

TN+ FP
(4)
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Fig. 2. A distribution of observations’ count against the predicted probability

III. PROBLEM STATEMENT AND RESEARCH CHALLENGES

Consider for example an ML-based system for pedestrian

detection, the ML algorithm is said to safely perform when

its predictions are correct (TP and TN), i.e., the algorithm

correctly identifies a pedestrian as a pedestrian (TP), and

it correctly identifies a non-pedestrian as a non-pedestrian

(TN). While the ML algorithm may perform unsafely when

its predictions are wrong (FN and FP), i.e., the algorithm

incorrectly identifies a pedestrian as a non-pedestrian (FN) that

may result in catastrophic incident, and it incorrectly identifies

a non-pedestrian as a pedestrian (FP) that may result in non

significant, marginal, critical, or even catastrophic incident.

To this end, how can we evaluate the safe performance of

an ML algorithm taking into consideration the safety-critical

settings that such ML algorithm may perform in? In order to

answer this question, we need to tackle the following Research

Challenges (RCs):

RC1: How can we identify when the performance of an ML

algorithm is guaranteed to be correct? As previously

mentioned, algorithms make a classification decision

relying on the score of the observation with respect to

the classification threshold. Based on the distribution

of observation predictions that is shown in Figure 2,

the performance of an ML algorithm is guaranteed

to be correct when its predictions are correct (TP

and TN). It can be seen as the union of areas under

the green and red lines excluding the area resulting

from their intersection, where both FP and FN cases

co-locate. Although adjusting the decision threshold

to account for misclassification has been used in

several works (e.g., [5]), we cannot rely on such

solution since adjusting the threshold to decrease

FN cases, will increase the FP cases and vice versa.

Thus, we need new techniques to identify when the

performance of an ML algorithm is guaranteed to be

correct.

RC2: How the performance of an ML algorithm can be

safely interpreted in safety-critical settings, where

the algorithm may perform? After clearly identify-

ing when the performance of an ML algorithm is



guaranteed to be correct, we need to understand how

the results of the overall performance can be safely

interpreted by a safety-critical system that relies on

such results to make safety-critical decisions.

RC3: Which measures can be used to evaluate the safe

performance of ML algorithms? As previously dis-

cussed, existing measures need to be tuned to fit

the needs for evaluating the safe performance of

ML algorithms. Therefore, we need to develop new

measures specifically designed to be used for the

evaluation of the safe performance of ML algorithms.

IV. TOWARDS A METHOD FOR THE EVALUATION OF THE

SAFE PERFORMANCE OF ML ALGORITHMS

In this section, we present and discuss a set of measures

that can be used for the evaluation of the safe performance

of ML algorithms. In particular, we try to tackle each of the

research challenges raised in the previous section:

RC1: How can we identify when the performance of an

ML algorithm is guaranteed to be correct? As previ-

ously mentioned, this problem cannot be solved by

adjusting the threshold. However, it can be solved

following a commonly used safety principle, namely

safety reserves [8], which can be used to define safety

margins where the predictions of the algorithm are

guaranteed to be correct. In particular, instead of

adjusting the threshold, we define two thresholds

namely, Safe TP threshold and Safe TN threshold,

where the first specifies a threshold that any ob-

servation with scores higher than it, is sufficiently

guaranteed to be TP, and the last specifies a threshold

that any observation with scores lower than it, is

sufficiently guaranteed to be TN. In this context,

observations with scores higher than the Safe TP

threshold or lower than the Safe TN threshold are

sufficiently guaranteed to be correct. Accordingly,

observations with scores higher than Safe TN thresh-

old and lower than Safe TP threshold cannot be guar-

anteed to be correct. We refer to such observations

as No Prediction (NP). We differentiate between NP

Positive (NP-P) and NP Negative (NP-N) that refer

to positive and negative cases, which cannot be used

to make safety-critical decisions. Note that a signif-

icantly few numbers of wrong predictions (e.g., FP

and FN) might occur because the thresholds should

be defined with respect to the Tolerable Hazard Rate

(THR) concept [9]. THR is used to guarantee that

wrong predictions, which may result from relying

on the defined thresholds, will not exceed a pre-

defined level of risk. THR is commonly used in

safety standards (e.g., IEC 61508 [9], CENELEC

- EN 50129 [10]) as the probabilistic indicator for

identifying the related Safety Integrity Level (SIL)3

that is a measurement of performance required for

3Four SILs are defined (SIL1-4), where SIL 4 is the most dependable
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Fig. 3. A distribution of observations’ count against the predicted probability
with safe TP and TN thresholds

safety-related functions. For example, the acceptable

range of THR for a safety-related function/system

classified as SIL4 should be within 10−9
< THR

< 10−8). The Safe TP and TN thresholds, a sample

distribution of TP, TN, NP-P, NP-N, FN, and FP are

shown in Figure 3.

RC2: How the performance of an ML algorithm can be

safely interpreted in safety-critical settings, where

the algorithm may perform? After providing criteria

for differentiating the guaranteed correct predictions

(TP and TN) and No Predictions (NP-P and NP-

N) cases of an ML algorithm4, we can discuss how

such predictions can be safely interpreted in safety-

critical settings. In particular, TP cases are mapped to

“Yes” decisions with respect to the phenomena under

observation. Considering the ML-based algorithm for

pedestrian detection, a TP case can be interpreted as

identifying a pedestrian as a pedestrian (Yes, it is a

pedestrian). TN cases are mapped to “No” decisions

with respect to the phenomena under observation.

Considering the same example, a TN case can be

interpreted as identifying a non-pedestrian as a non-

pedestrian (No, it is not a pedestrian). Finally, NP

(NP-P and NP-N) cases can be interpreted as “I

do not Know”, which prevents taking any deci-

sions since we cannot rely on such cases to make

a safety-critical decision. More specifically, a fail-

aware mechanism is adopted to deal with NP cases.

To this end, the system either make a safe decision

based on TP or TN, or it fail-aware and make no

decision when it is not guaranteed that such decision

will be safe. The mapping between TP, TN, and NP

on one hand and “Yes”, “No” and “I do not Know”

on the other hand is also shown in Figure 3.

RC3: Which measures can be used to evaluate the safe

performance of ML algorithms? At this point, the

4FP and FN are insignificant to be considered



predictions of an ML algorithm can be mainly clas-

sified into the following groups: TP, TN, NP-P, NP-

N, FP, and FN, which are organized into a new

contingency table (shown in Figure 4). In particular,

predictions that use to be classified as TP are now

classified either as TP or NP-P, and predictions that

use to be classified as TN are now classified either

as TN or NP-N. FP and FN predictions still exist

in the table but their numbers are insignificant to

be considered. Therefore, the four main groups of

predictions (e.g., TP, TN, NP-P and NP-N) can be

used to design the following measures for evaluating

the safe performance of ML algorithms:

1. TP rate (TPr) is the percentage of TP that are guaranteed

to be correct to the total number of real positives.

TPr =
TP

P
(5)

2. TN rate (TNr) is the percentage of TN that are guar-

anteed to be correct to the total number of real

negatives.

TNr =
TN

N
(6)

3. Prediction rate (Pr) is the percentage of TP and TN that

are guaranteed to be correct to the total number of

observations (real positives and real negatives).

Pr =
TP + TN

P +N
(7)

4. TP Lost rate (TPLr) is the percentage of No Prediction

Positives (NP-P) to the total number of real positives.

TPLr =
P − TP

P
=

NP-P

P
(8)

5. TN Lost rate (TNLr) is the percentage of No Prediction

Negatives (NP-N) to the total number of real nega-

tives.

TNLr =
N − TN

N
=

NP-N

N
(9)

6. No Prediction rate (NPr) is the percentage of No Predic-

tion cases to the total number of observations.

NPr =
NP-P + NP-N

P +N
= 1− Pr (10)

7. NP-P percentage (NP-Pp) is the percentage of NP-P to

the total number of NP cases (NP-P and NP-N).

NP-Pp =
NP-P

NP-P + NP-N
(11)

8. NP-N percentage (NP-Np) is the percentage of NP-N to

the total number of NP cases.

NP-Np =
NP-N

NP-P + NP-N
(12)

Note that measures 11 and 12 can be very useful when the

costs of NP-P and NP-N are not equal.

Real P

Predicted P TP

TN

Real N

Predicted N

FP

FN

NP-NNo Prediction NP-P

Fig. 4. Contingency table for the safe performance of ML algorithms

V. CONCLUSION

We have argued that existing measures need to be tuned to

fit the needs for evaluating the safe performance of ML algo-

rithms. Our argument has been structured based on analyzing

existing measures and the special needs for evaluating the safe

performance of ML algorithms. We formulated this problem

as several research challenges. Then, we have discussed a

proposed solution for each of these challenges proposing a

new set of measures that can be used for the evaluation of

the safe performance of ML algorithms. We are planning to

demonstrate the applicability and usefulness of the proposed

measures by applying them to several data sets concerning ML

algorithms that are incorporated in safety-critical systems.
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