
Self-stabilizing Multivalued Consensus
in Asynchronous Crash-prone Systems

(preliminary version)

Oskar Lundström Michel Raynal Elad M. Schiller

April 8, 2021

The problem of multivalued consensus is fundamental in the area of fault-tolerant
distributed computing since it abstracts a very broad set of agreement problems in
which processes have to uniformly decide on a specific value v ∈ V , where |V | ≥ 2.
Existing solutions (that tolerate process failures) reduce the multivalued consensus
problem to the one of binary consensus, e.g., Mostéfaoui-Raynal-Tronel and Zhang-
Chen.

Our study aims at the design of an even more reliable solution. We do so through
the lenses of self-stabilization—a very strong notion of fault-tolerance. In addition
to node and communication failures, self-stabilizing algorithms can recover after the
occurrence of arbitrary transient-faults; these faults represent any violation of the
assumptions according to which the system was designed to operate (as long as the
algorithm code stays intact).

This work proposes the first (to the best of our knowledge) self-stabilizing algo-
rithm for multivalued consensus for asynchronous message-passing systems prone
to process failures and arbitrary transient-faults. Our solution is also the first (to
the best of our knowledge) to support wait-freedom. Moreover, using piggybacking
techniques, our solution can invoke n binary consensus objects concurrently. Thus,
the proposed self-stabilizing solution can terminate using fewer binary consensus ob-
jects than earlier non-self-stabilizing solutions by Mostéfaoui, Raynal, and Tronel,
which uses an unbounded number of binary consensus objects, or Zhang and Chen,
which is not wait-free.

1 Introduction

We propose, to the best of our knowledge, the first self-stabilizing, non-blocking, and memory-
bounded implementation of multivalued consensus objects for asynchronous message-passing
systems whose nodes may crash.

1.1 Background and motivation

Fault-tolerant distributed applications span over many domains in the area of banking, trans-
ports, tourism, production, commerce, to name a few. The implementations of these appli-
cations use message-passing systems and require fault-tolerance. The task of designing and
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verifying these systems is known to be very hard, because the joint presence of failures and
asynchrony creates uncertainties about the application state (from the process’s point of view).
E.g., Fischer, Lynch, and Paterson [23] demonstrated that, in any asynchronous message-passing
system, it takes no more than one process crash to prevent the system from achieving consensus
deterministically.

Our focal application is the emulation of finite-state machines. For the sake of consistency
maintenance, all emulating processes need to apply identical sequences of state transitions. This
can be done by dividing the problem into two: (i) propagation of user input to all emulating
processes, and (ii) letting each emulating process execute identical sequences of state transitions.
Uniform reliable broadcast [26, 41] can solve Problem (i). This work focuses on Problem (ii)
since it is the core problem. I.e., all processes need to agree on a common value according to
which all emulating processes execute their state transitions. The consensus problem generalizes
problem (ii) and requires each process to propose a value, and all non-crashed processes to reach
a common decision that one of them had proposed. There is a rich literature on fault-tolerant
consensus. This work advances the state of the art by offering a greater set of failures that can
be tolerated.

1.2 Problem definition and scope

The definition of the consensus problem appears in Definition 1.1. This work studies the mul-
tivalued version of the problem in which there are at least two values that can be proposed.
Note that there is another version of the problem in which this set includes exactly two values,
and referred to as binary consensus. Existing solutions for the multivalued consensus (as well
as the proposed one) often use binary consensus algorithms. We present the relation among the
problems mentioned above in Figure 1.

Definition 1.1 (Consensus) Every process pi has to propose a value vi ∈ V via an invocation
of the proposei(vi) operation, where V is a finite set of values. Let Alg be an algorithm that
solves consensus. Alg has to satisfy safety ( i.e., validity, integrity, and agreement) and liveness
( i.e., termination).

• Validity. Suppose that v is decided. Then some process had invoked propose(v).

• Termination. All non-faulty processes decide.

• Agreement. No two processes decide different values.

• Integrity. No process decides more than once.

1.3 Fault Model

We consider an asynchronous message-passing system that has no guarantees on communication
delays (except that they are finite) and the algorithm cannot explicitly access the local clock.
Our fault model includes (i) crashes of less than half of the processes, and (ii) communication
failures, such as packet omission, duplication, and reordering.

In addition to the failures captured in our model, we also aim to recover from arbitrary
transient-faults, i.e., any temporary violation of assumptions according to which the system
and network were designed to operate, e.g., the corruption of control variables, such as the
program counter, packet payload, and indices, e.g., sequence numbers, which are responsible
for the correct operation of the studied system, as well as operational assumptions, such as that
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at least a majority of nodes never fail. Since the occurrence of these failures can be arbitrarily
combined, it follows that these transient-faults can alter the system state in unpredictable ways.
In particular, when modeling the system, we assume that these violations bring the system to
an arbitrary state from which a self-stabilizing algorithm should recover the system after the
occurrence of the last transient-fault. The system is guaranteed to satisfy the task requirements,
e.g., Definition 1.1, after this recovery period. Our design criteria also support wait-freedom,
which requires all operations to terminate within a bounded number of algorithm steps. Wait-
freedom is important since it assures starvation-freedom even in the presence of failures since
all operations terminate (as long as the process that invoked them does not crash).

1.4 Related Work

The celebrated Paxos algorithm [28] circumvents the impossibility by Fischer, Lynch, and Pa-
terson [23], from now on FLP, by assuming that failed computers can be detected by unreliable
failure detectors [10]. Paxos has inspired many veins of research, e.g., [44] and references therein.
We, however, follow the family of abstractions by Raynal [41] due to its clear presentation that
is easy to grasp. Also, the studied algorithm does not consider failure detectors. Instead, it
assumes the availability of binary consensus objects, which uses the weakest failure detector,
see Raynal [41].

1.4.1 Non-self-stabilizing solutions

Mostéfaoui, Raynal, and Tronel [36], from now on MRT, reduce multivalued consensus to bi-
nary consensus via a crash-tolerant block-free algorithm. MRT uses an unbounded number of
invocations of binary consensus objects and at most one uniform reliable broadcast (URB) per
process. Zhang and Chen [46] proposed an algorithm for multivalued consensus that uses only
x instances, where x is the number of bits it takes to represent any value in V ; the domain of
proposable values.

Our self-stabilizing solution is wait-free since termination is achieved within at most n in-
vocations of binary consensus objects and at most one uniform reliable broadcast [32] (URB)
operation per process, where n is the number of processes in the system. However, each such
URB invocation needs to be repeated until the consensus object is deactivated by the invoking
algorithm. This is due to a well-known impossibility [14, Chapter 2.3], which says that self-
stabilizing systems cannot terminate and stop sending messages. Note that it is easy to trade
the broadcast repetition rate with the speed of recovery from transient-faults.

Afek et al. [1] showed that binary and multivalued versions of the k-simultaneous consensus
task are wait-free equivalent. Here, the k-simultaneous consensus is required to let each process
to participate at the same time in k independent consensus instances until it decides in any one
of them.

Our study focuses on deterministic solutions and does not consider probabilistic approaches,
such as [4, 22, 31]. It is worth mentioning that Byzantine fault-tolerant multivalued consensus
algorithms [11,12,35,43] have applications to Blockchain [34]. Our fault model does not include
Byzantine failures, instead, we consider arbitrary transient-faults.

1.4.2 Self-stabilizing solutions

We follow the design criteria of self-stabilization, which Dijkstra [13] proposed. A detailed
pretension of self-stabilization was provided by Dolev [14] and Altisen et al. [3]. Consensus
was sparsely studied in the context of self-stabilization. Blanchard et al. [7] presented the first
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uniform reliable broadcast

binary consensus 

multivalued consensus (Algorithm 2) 

total-order delivery (Algorithm 3) 

automata emulation (Algorithm 4) 

distributed applications

Figure 1: The studied problems of binary consensus (in bold font) and their context

solution in the context of self-stabilization. They presented a practically-self-stabilizing version
of Paxos [28], which was the first (non-self-stabilizing) solution to the area of fault-tolerant
message-passing systems. The studied solution is part of a more advanced and efficient protocol
suite (Figure 1). We note that practically-self-stabilizing systems, as defined by Alon et al. [2]
and clarified by Salem and Schiller [42], do not satisfy Dijkstra’s requirements, i.e., practically-
self-stabilizing systems do not guarantee recovery within a finite time after the occurrence of
transient-faults. We base our self-stabilizing multivalued consensus on the self-stabilizing binary
consensus by Lundström, Raynal, and Schiller [33], which is the first self-stabilizing solution to
the binary consensus problem that recovers within a bounded time.

We propose, to the best of our knowledge, the first self-stabilizing solution for the multivalued
version of the problem. As an application, we offer, to the best of our knowledge, the first self-
stabilizing algorithm for (uniform reliable broadcast with) total order delivery. It is based
on the self-stabilizing uniform reliable broadcast with FIFO delivery by Lundström, Raynal,
and Schiller [32]. Our solution can facilitate the self-stabilizing emulation of state-machine
replication. Dolev et al. [15] proposed the first practically-self-stabilizing emulation of state-
machine replication, which has a similar task to one in Figure 1. However, Dolev et al.’s solution
does not guarantee recovery within a finite time since it does not follow Dijkstra’s criterion.
Moreover, it is based on virtual synchrony by Birman and Joseph [6], where the one in Figure 1
considers censuses.

Georgiou, Lundström, and Schiller studied the trade-off between non-blocking and wait-free
solutions for self-stabilizing atomic snapshot objects [24]. We study a similar trade-off for a
different problem.

More generally, in the context of self-stabilization there are algorithms for group communi-
cations [19–21], consensus in shared-memory systems [18], wireless communications [27, 29, 30,
37–40], software defined networks [8, 9], virtual infrastructure for mobile nodes [16, 17, 45], to
name a few.

1.5 Our contribution

We present a fundamental module for dependable distributed systems: a self-stabilizing wait-free
algorithm for multivalued consensus for asynchronous message-passing systems that are prone
to crash failures. To the best of our knowledge, we are the first to provide a wait-free solution for
multivalued consensus that tolerates a broad fault model i.e., crashes, communication failures,
e.g., packet omission, duplication, and reordering as well as arbitrary transient-faults using a
bounded amount of resources. The latter models any violation of the assumptions according to
which the system was designed to operate (as long as the algorithm code stays intact).
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Our wait-free solution achieves (multivalued) consensus within n invocations of binary con-
sensus instances that can run either sequentially or concurrently, where n is the number of
processes. Besides, our concurrent version can piggyback the binary consensus messages and
terminate within the time that it takes to complete one uniform reliable broadcast (URB) and
one binary consensus. This is also the time it takes the system to recover after the occurrence
of the last transient-fault.

As an application, this technical report offers a total order extension to the self-stabilizing
FIFO URB service by Lundström, Raynal, and Schiller [32]. That self-stabilizing solution uses
three multivalued consensus objects and stabilizes within a constant time. The technical report
also explains how to enhance this solution to a self-stabilizing emulator of a replicated state
machine.

1.6 Organization

We state our system settings in Section 3. The task specifications and solution organization
appear in Section 2. Section 4 includes a brief overview of the studied algorithm by Mostéfaoui,
Raynal, and Tronel [36] that has led to the proposed solution. Our self-stabilizing algorithm
for consensus multivalued object is proposed in Section 5. The correctness proof appears in
Section 6. We present an application to the proposed algorithm in Section 7, which is a self-
stabilizing total order uniform reliable broadcast. We conclude in Section 8 and explain how to
extend the proposed application to serve as an emulator for state-machine replication.

2 Task Specifications and Solution Organization

The proposed solution is tailored for the protocol suite presented in Figure 1. Thus, before we
specify how all these tasks are organized into one solution, we list the external building blocks
and define the studied tasks.

2.1 External Building-Blocks: Uniform Reliable Broadcast

2.1.1 Binary consensus objects

TbinCon denotes the task of binary and multivalued consensus, which Definition 1.1 specifies.
We assume the availability of self-stabilizing binary consensus objects, such as the one by
Lundström, Raynal, and Schiller [33]. As in Definition 1.1, the proposed and decided values
have to be from the V domain (of proposable values). For clarity sake, we distinguish the
invocation of binary and multivalued consensus. That is, for a given binary consensus object
BC, the operation BC.binPropose(v) invokes the binary consensus on v ∈ V = {True,False}.
(Traditionally, the result of binary consensus is either 0 or 1, but we rename them.)

2.1.2 First-in first-out uniform reliable broadcast (FIFO-URB)

The task TURB of Uniform reliable broadcast (URB) [26] considers an operation for URB
broadcasting of message m and an event of URB delivery of message m. The requirements
include URB-validity, i.e., there is no spontaneous creation or alteration of URB messages,
URB-integrity, i.e., there is no duplication of URB messages, as well as URB-termination, i.e.,
if the broadcasting node is non-faulty, or if at least one receiver URB-delivers a message, then all
non-failing nodes URB-deliver that message. Note that the URB-termination property considers
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both faulty and non-faulty receivers. This is the reason why this type of reliable broadcast is
named uniform.

The task of FIFO-URB, denoted by TTO-URB, requires, in addition to the above URB require-
ments, i.e., URB-validity, URB-integrity, and URB-termination, that all messages that come
from the same sender are delivered in the same order in which their sender has sent them; but
there are no constraints regarding messages that arrive from different senders.

The proposed solution assumes the availability of a self-stabilizing uniform reliable broadcast
(URB) [32]. We also assume that the operation for URB broadcasting message m returns a
transmission descriptor, txDes, which is the unique message identifier. Moreover, the predicate
hasTerminated(txDes) holds whenever the sender knows that all non-failing nodes in the system
have delivered m. The implementation of hasTerminated(txDes) can just test that all trusted
receivers have acknowledged the arrival of the message with identifier txDes. The solution in [32]
can facilitate the implementation of hasTerminated() since the self-stabilizing algorithm in [32]
considers such messages as ’obsolete’ messages and lets the garbage collector remove them.

2.2 Task specifications

We specify the studied tasks.

2.2.1 Total order URB (TO-URB)

The task of total order URB, denoted by TTO-URB, requires the total order delivery require-
ment, in addition to URB-validity, URB-integrity, and URB-termination. The total order de-
livery requirement says that if a node calls toDeliver(m) and later toDeliver(m′), then no node
toDeliver(m′) before toDeliver(m).

2.2.2 Binary and multivalued consensus objects

TmulCon denotes the task of multivalued consensus, which Definition 1.1 specifies. As in Defini-
tion 1.1, the proposed and decided values have to be from the V domain (of proposable values),
where |V | > 2. The operation propose(v) invokes the multivalued consensus on v ∈ V .

2.3 Solution organization

We consider multivalued consensus objects that use an array, BC[], of n binary consensus
objects, such as the one by [41, Chapter 17], where n = |P| is the number of nodes in the
system. The proposed algorithm considers a single multivalued consensus object, denoted by
O.

The proposed application, which is a TO-URB solution, considers an array, CS[], of M
multivalued consensus objects, where M ∈ Z+ is a predefined constant. Our solution for
TO-URB uses M = 3 (Section 7). Each object is uniquely identified using a single sequence
number. The proposed algorithm assumes that the multivalued consensus object O is stored at
CS[s mod M ]. Whenever an operation is invoked or a message is sent, the sequence number s
is attached as a procedure parameter, and respectively, a message field (although the code of
the proposed algorithm does not show this). We note that in case the proposed application runs
out of sequence numbers, a global restart mechanism can be invoked, such as the one in [24,
Section 5]. The function test(s) is used to assert consistency of the sequence number s. The
function returns False whenever inconsistency is detected. Our TO-URB solution exemplifies
an implementation of test(). We assume that all underlying algorithms invoke test(s) whenever
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the object CS[s mod M ] or CS[s mod M ].BC[k] : pk ∈ P is accessed, an operation is invoked,
or a message (that is associated with s) arrives (although the code of the proposed algorithm
does not show this). (The term underlying algorithm refers to both the proposed algorithm for
multivalued consensus as well as the one for binary consensus.) If object CS[s mod M ] is found
to be inconsistent, it is simply deactivated by assigning ⊥ to CS[s mod M ]. Also, inconsistent
operation invocations and arriving messages are simply ignored.

Definition 1.1 considers the propose(v) operation, but it does not specify how the decided
value is retrieved. We clarify that it can be either via the returned value of the propose(v) (or
binPropose(v)) operation (as in algorithm [25]) or via the returned value of the result() operation
(as in the proposed solution). But, if pi ∈ P is yet to have access to the decided value, resulti()
returns ⊥. Otherwise, the decided value is returned. Specifically, for the case of propose(v), the
parameter s should be used when calling resulti(s) and for the case of binPropose(v), also the
parameter k : pk ∈ P should be used when calling resulti(s, k).

We clarify that, in the absence of transient-faults, resulti(s) and resulti(s, k) always return
either ⊥ or the decided value. Thus, we solve the problem specified by Definition 1.1. The stud-
ied algorithm [25] was not designed to deal with transient-faults. As we explain in Section 4.2,
transient-faults can cause the studied algorithm to violate Definition 1.1’s requirements without
providing any indication to the invoking algorithm. After the occurrence of a transient-fault,
the proposed solution allows resulti(s) to provide such indication to the invoking algorithm via
the return of the transient error symbol Ψ. Section 5.2.2 brings the details and Algorithm 4
exemplifies the indication handling.

3 System settings

We consider an asynchronous message-passing system that has no guarantees on the commu-
nication delay. Moreover, there is no notion of global (or universal) clocks and the algorithm
cannot explicitly access the local clock (or timeout mechanisms). The system consists of a set,
P = {p0, . . . , pn−1}, of n crash-prone nodes (or processors) with unique identifiers. Due to an
impossibility [14, Chapter 3.2], we assume that any pair of nodes pi, pj ∈ P have access to a bidi-
rectional communication channel, channel j,i, that, at any time, has at most channelCapacity ∈ N
packets on transit from pj to pi.

In the interleaving model [14], the node’s program is a sequence of (atomic) steps. Each step
starts with an internal computation and finishes with a single communication operation, i.e.,
a message send or receive. The state, si, of node pi ∈ P includes all of pi’s variables and
channel j,i. The term system state (or configuration) refers to the tuple c = (s1, s2, · · · , sn). We
define an execution (or run) R = c[0], a[0], c[1], a[1], . . . as an alternating sequence of system
states c[x] and (atomic) steps a[x], such that each c[x + 1], except for the starting one, c[0],
is obtained from c[x] by the execution of step a[x] that some processor takes. The set of legal
executions (LE) refers to all the executions in which the requirements of the task T hold.

3.1 The fault model and self-stabilization

Failures are environment steps rather than algorithm steps.

3.1.1 Benign failures

When the occurrence of a failure cannot cause the system execution to lose legality, i.e., to leave
LE, we refer to that failure as a benign one. The system is prone to crash failures, in which
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nodes stop taking steps forever. We assume that at most t < n/2 node may crash. We denote by
Correct the set of indices of processors that never crash. We consider solutions that are oriented
towards asynchronous message-passing systems and thus they are oblivious to the time in which
the packets arrive and depart. Also, the communication channels are prone to packet failures,
such as omission, duplication, reordering. However, if pi sends a message infinitely often to pj ,
node pj receives that message infinitely often. We refer to the latter as the fair communication
assumption. We assume that any message can reside in a communication channel only for a
finite period (before it is delivered or lost). The length of that period is unbounded since we
assume no bound on transmission delays. In other words, our communication model formally
excludes messages that it takes an infinite time to deliver or loss them; but to say that it takes
an infinite time to deliver a given message means that this message is lost.

3.1.2 Arbitrary transient-faults

We consider any violation of the assumptions according to which the system was designed to
operate. We refer to these violations and deviations as arbitrary transient-faults and assume
that they can corrupt the system state arbitrarily (while keeping the program code intact).
The occurrence of an arbitrary transient-fault is rare. Thus, our model assumes that the last
arbitrary transient-fault occurs before the system execution starts [14]. Also, it leaves the
system to start in an arbitrary state.

3.1.3 Dijkstra’s self-stabilization criterion

An algorithm is self-stabilizing with respect to the task of LE, when every (unbounded) execu-
tion R of the algorithm reaches within a finite period a suffix Rlegal ∈ LE that is legal. That
is, Dijkstra [13] requires that ∀R : ∃R′ : R = R′ ◦ Rlegal ∧ Rlegal ∈ LE ∧ |R′| ∈ Z+, where
the operator ◦ denotes that R = R′ ◦ R′′ concatenates R′ with R′′. The complexity measure
of self-stabilizing systems, called stabilization time, is the time it takes the system to recover
after the occurrence of the last transient-fault, i.e., |R′|. The studied and proposed solutions
allow nodes to interact and share information via binary consensus objects and uniform reliable
broadcast (URB). Thus, we measure the stabilization time as the number of accesses to these
primitives plus the number of URB accesses.

4 Background: Non-self-stabilizing Non-blocking Multivalued
Consensus

We review in sections 4.1 and 4.2 a non-self-stabilizing non-blocking algorithm for multivalued
consensus by Mostéfaoui, Raynal, and Tronel [36], which uses an unbounded number of binary
consensus objects.

4.1 Algorithm 1: non-self-stabilizing multivalued consensus

The non-self-stabilizing solution in Algorithm 1 is the basis for its self-stabilizing variation in
Algorithm 2. For the sake of a simple presentation, the line numbers of Algorithm 2 continues
the ones of Algorithm 1. The operation propose(v) (line 5) invokes an instance of a multivalued
consensus object. Algorithm 1 uses a uniform reliable broadcast (URB) [41] for letting any
pi ∈ P disseminate its proposed value vi (line 7). Each pj ∈ P that delivers this proposal, stores
this value in proposalj [i]. Also, pk ∈ P can concurrently broadcast its proposal, vk, which pj
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Algorithm 1: Non-self-stabilizing non-blocking multivalued consensus using an un-
bounded number of binary consensus instances; code for pi

1 local variables:
2 proposals[0, ., n-1] ; /* array of the received proposals */

3 k ; /* the round counter */

4 BC[0, ., n-1] ; /* binary consensus objects (unbounded list) */

5 operation propose(v) begin
6 (proposals,BC)← ([⊥, . . . ,⊥], [⊥, . . . ,⊥]);
7 urbBroadcast PROPOSAL(v);
8 while (k ← 0;True; k ← k + 1) do
9 if BC[k].binPropose((proposals[k mod n] 6= ⊥)) then

10 wait(proposals[k mod n] 6= ⊥);
11 return (proposals[k mod n]);

12 upon urbDelivered PROPOSAL(v) from pj do {proposals[j]← v;}

stores in proposalj [k]. Therefore, Algorithm 1 needs to decide which entry in proposalj [] the
propose(v) operation should return. This decision is coordinated via an unbounded global array
BC[0], BC[1], . . ., of binary consensus objects.

Algorithm 1 starts by URB-broadcasting pi’s proposed value, vi (line 7). This broadcast
assures that all correct nodes receive identical sets of messages (Section 2.1.2). Also, the set
of delivered messages must include every message URB-broadcast by any correct node. The
arrival of PROPOSAL(v) from pj , informs pi about pj ’s proposal, and thus, pi stores vj in
proposalsi[j] (line 12).

Following the proposal broadcast, Algorithm 1 proceeds in asynchronous rounds. The variable
k stores the round counter (lines 3 and 8). Once pi decides, it leaves the loop by returning the
value of proposalsi[xi] (line 11), where xi = ki mod n. In other words, xi ∈ {0, . . . , n−1} is the
identifier of the node that has broadcast the proposal stored in proposalsi[xi].

As mentioned, the selection of xi is facilitated via the unbounded array, BC[], of binary
consensus objects. Since all correct nodes eventually receive the same set of broadcasts, pi
proposes proposalsi[x] 6= ⊥ to the ki-th object, BC[ki] (line 9). I.e., pi proposes True on the
ki-th round if, and only if, it received pxi ’s proposal.

Algorithm 1 continues to the next round whenever BC[ki] decides False. Otherwise, pi decides
the value, proposalsi[xi], proposed by pxi . Due to asynchrony, pi might need to wait until pxi ’s
broadcast was URB-delivers (line 10). However, if any node proposed to decide vxi , it must
be the case that proposalsi[xi] was delivered to the node that has proposed True at BC[ki].
Therefore, eventually, pi is guaranteed to URB-deliver vxi and stores it at proposalsi[xi]. For
this reason, Algorithm 1 does not block forever in line 10 and the decided value is eventually
returned in line 11.

4.2 Executing Algorithm 1 in the presence of transient-faults

Before describing Algorithm 2, we review the main challenges that one faces when transferring
Algorithm 1 to an algorithm that can recover after the concurrence of transient-faults.
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(a) Upon propose(v), uniform reliable broadcast 〈v〉.
(b) By URB-termination, eventually, there is pj ∈ P and round k′, such that pj ’s message
arrived at all non-faulty processors, i.e., ∀` ∈ Correct =⇒ proposals`[j] 6= ⊥.
(c) For k ∈ {0, 1, 2, . . .}, pi invokes BC[k].binPropose(proposals[k mod n] 6= ⊥).
(d) By BC-termination and stage (b), eventually, the kmin-th binary consensus objects is
the first to decide True while all x-th objects decide False, where x ∈ {0, 1, 2, kmin−1}.
(e) Due to URB-termination, eventually, proposals[kmin mod n] includes a non-⊥ value.
(f) Then, return proposals[kmin mod n] as the decided value.

Figure 2: High-level stages in the execution of Algorithm 1; code for pi

4.2.1 Use of an unbounded number of binary objects

Self-stabilizing systems can only use a bounded amount of memory [14]. This is because, in
practice, computer systems can use only a finite amount of memory. However, a single transient-
fault can set every counter (or data-structure) to its maximum value (respectively, exhaust the
memory capacity of the data-structure).

4.2.2 Corrupted round number counter

In the context of self-stabilization, one cannot simply rely on counter k (line 3) to count the
number of asynchronous rounds. This is because a single transient-fault can set the value of k
to zero. It can also alter the state of every BC[k]k∈{0,...,z}∧z∈Z+ , such that a call to propose()
returns False, where z can be practically infinite, say z = 264 − 1. In this case, the system will
have to iterate for 264 times before a fresh binary consensus object is reached.

4.2.3 Corrupted program counter

A transient-fault can set the program counter of every pj ∈ P to skip over the broadcast in
line 7 and to point to line 8. If this happens, then validity or termination can be violated.
Therefore, there is a need to repeat the transmission of vi in order to make sure that at least
one proposal is known to all correct processors.

4.2.4 A corrupted array of binary objects

Transient faults can corrupt binary objects in the array BC[]. Specifically, since the array BC[]
should include only a bounded number of binary consensus objects, a transient-fault can change
the state of all objects in BC[] to encode ‘decide False’. In this case, Algorithm 1 cannot finish
the multivalued consensus.

5 The Proposed Solution: Self-stabilizing Wait-free Multivalued
Consensus

This section presents a new self-stabilizing algorithm for multivalued consensus that is wait-
free and uses n binary consensus objects and n self-stabilizing uniform reliable broadcasts
(URBs) [32]. The correctness proof appears in Section 6.
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(a) Upon propose(v), uniform reliable broadcast 〈v〉.
(b) Wait until hasTerminated() says that 〈v〉 arrived at all non-faulty processors.

(c) For k ∈ {0, . . . , n−1} , pi invokes BC[k].binPropose(proposals[k mod n] 6= ⊥).

(d) By BC-termination and stage (b), eventually, the kmin-th binary consensus objects is
the first to decide True while all x-th objects decide False, where x ∈ {0, 1, 2, kmin−1}.
(e) Due to URB-termination, eventually, proposals[kmin mod n] includes a non-⊥ value.
(f) Then, return proposals[kmin mod n] as the decided value.

Figure 3: A bounded alternative to Figure 2; code for pi

5.1 The algorithm idea

We sketch the key notions that are needed for Algorithm 2 by addressing the challenges raised
in Section 4.2.

5.1.1 Using a bounded number of binary objects

We explain how Algorithm 2 can use only at most n binary consensus objects. Figure 2 is a
high-level description of Algorithm 2’s execution and Figure 3 shows how this process can be
revised. The key differences between figures 2 and 3 appear in the boxed text of Figure 3.
Specifically, Figure 3 waits until pi’s broadcast has terminated in line (b). At that point in
time, pi knows that all non-faulty processors have received its message. Only then does pi
allow itself to propose values via the array of binary objects. This means that no processor
starts proposing any binary value before there is at least one index k ∈ {0, . . . , n−1} for which
proposalsj [k] 6= ⊥, where pj is any node that has not failed. This means that, regardless of
who is going to invoke the k-th binary consensus object, only the value True can be proposed.
For this reason, there is no need to use more than n binary consensus values until at least one
of them decides True, cf. line (c) in Figure 3.

5.1.2 Dealing with corrupted round number counter

Using the object values in BC[], Algorithm 2 calculates k(), which returns the current round
number. This way, a transient-fault cannot create inconsistencies between k()’s value and BC[].

In detail, for an active multivalued consensus object O, i.e., O 6= ⊥, we say that the binary
consensus object O.BC[k] is active when O.BC[k] 6= ⊥. Algorithm 2 calculates k() (line 19) by
counting the number of active binary consensus objects that have terminated and the decided
value is False. We restrict this counting to consider only the entries BC[k], such that k = 0 or
∀k′ < k : BC[k′] is an active binary consensus objects that have terminated and the decided
False. This is defined by the set K = ({k ∈ S(n-1) : O.BC[k] 6= ⊥ ∧O.BC[k].result(k) = False}),
where S(x) = {0, . . . , x} is the set of all integers between zero and x. This way, the value of k()
is simply max({{−1} ∪ {x ∈ S(n−1) : (S(x) ∩ K) = S(x)}). Note that the value of −1 is used
to indicate that there are no active binary objects in BC[] that have terminated with a decided
value of False, i.e., K = ∅.
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5.1.3 Dealing with a corrupted program counter

As explained in Section 4.2.3, there is a need to repeat the transmission of vi in order to make
sure that at least one proposal is known to all correct processors. Specifically, after proposei(vi)’s
invocation, pi ∈ P need to store vi and broadcasts vi repeatedly due to a well-known impossi-
bility [14, Chapter 2.3]. Note that there is an easy way to trade the broadcast repetition rate
with the recovery speed from transient-faults. Also, once the first broadcast has terminated, all
correct processors pi ∈ P are ready to decide by proposing binProposei(k, proposalsi[k] 6= ⊥)
for any pk ∈ P, see steps (b) and (c) in Figure 3.

5.1.4 Dealing with a corrupted array of binary objects

Algorithm 2 uses only n binary consensus objects. Due to the challenge in Section 4.2.4, we
explain how to deal with the case in which a transient-fault changes the state of all objects in
BC[] to encode ‘decide False’. In this case, the algorithm cannot satisfy the requirements of the
multivalued consensus task (Definition 1.1). Therefore, our solution identifies such situations
and informs the invoking algorithm via the return of the transient error symbol Ψ.

5.2 Algorithm description

5.2.1 The propose(v) operation and variables

The operation propose(v) activates a multivalued object by initializing its fields (line 20). These
are the proposed value, v, the array, proposals[], of received proposals, where proposals[j]
stores the value received from pj ∈ P. Moreover, BC[] is the array of binary consensus objects,
where the active object BC[j] determines whether the value in proposals[j] should be the
decided value. Also, txDes is the transmission descriptor (initialized with ⊥), and oneTerm is
a boolean that indicates that at least one transmission has completed, which is initialized with
False. Note that only v has its (immutable) value initialized in line 20 to its final value. The
other fields are initialized to ⊥ or an array of ⊥ values; their values can change later on.

5.2.2 The result() operation

Algorithm 2 allows retrieving the decided value via result() (line 21). As long as the multivalued
consensus object is not active (line 22), or there is no decision yet (line 24), the operation returns
⊥. As explained in Section 5.1.3, Algorithm 2 might enter an error state. In this case, result()
returns Ψ (lines 23 and 25). The only case that is left (the else clause of line 25) is when there is
a binary consensus object O.BC[k] and a matching O.proposals[k] 6= ⊥, where k = k(). Here,
due to the definition of k() (line 19), for any k′ ∈ {0, . . . , k-1} the decided value of O.BC[k′] is
False and O.BC[k] decides True. Thus, resulti() returns the value of O.proposals[k].

5.2.3 The do-forever loop

As explained above, Algorithm 2 has to make sure that the proposed value, v, arrives at all
processors and records in oneTerm the fact that at least once transmission has arrived. To that
end, in line 27, pi tests the predicate (txDes 6= ⊥∧ hasTerminated(txDes)) and makes sure that
the transmission descriptor, txDes, refers to an active broadcast, i.e., txDes stores a descriptor
that has not terminated (cf. hasTerminated()’s definition in Section 2.1.2). In detail, whenever
x.txDes 6= ⊥ holds, hasTerminatedi(txDes) holds eventually (URB-termination). Thus, the if-
statement condition in line 27 holds eventually and pi URB-broadcast PROPOSAL(v) (line 29)
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Algorithm 2: Self-stabilizing non-blocking multivalued consensus; pi’s code

13 variables: /* initialization is optional in the context of

self-stabilization */

14 v ; /* local decision estimates */

15 proposals[0, ., n-1] ; /* array of arriving proposals */

16 BC[0, ., n-1] ; /* array of n binary consensus objects */

17 txDes ; /* URB transmission descriptor for decision sharing */

18 oneTerm ; /* true once at least one broadcast termination occured */

19 macro k() = max({{-1} ∪ {x ∈ S(n-1) : (S(x) ∩ K) = S(x)}): where S(x) =
{0, . . . , x} and K = ({k ∈ S(n-1) : O.BC[k] 6= ⊥ ∧O.BC[k].result(k) = False}) ;
/* k() is the max consecutive BC[] entry index with the decision False */

20 operation propose(v) do {if v 6= ⊥ ∧O = ⊥ then
O.(v, proposals,BC, txDes, oneTerm)← (v, [⊥, . . . ,⊥], [⊥, . . . ,⊥],⊥,False)};

21 operation result() begin
22 if O = ⊥ then return ⊥;
23 else if O.v = ⊥ ∨ k ≥ n− 1 then return Ψ where k = k();
24 else if BC[k + 1] = ⊥ ∨BC[k + 1].result(k + 1) 6= True then return ⊥;
25 else if x = ⊥ then return Ψ else return x where x = O.proposals[k + 1];

26 do forever foreach O 6= ⊥ with O’s fields v, proposals, BC, and txDes do
27 if (v 6= ⊥ ∧ (txDes = ⊥ ∨ hasTerminated(txDes)) then
28 oneTerm← oneTerm ∨ (txDes 6= ⊥ ∧ hasTerminated(txDes));
29 txDes ← urbBroadcast PROPOSAL(v)

/* use either lines 30 to 31 or lines 32 to 33 */

30 if oneTerm ∧ k < n-1 ∧BC[k+1]=⊥ ∧ (k=-1 ∨BC[k].result(k) 6= ⊥) then
31 binPropose(k+1, proposals[k+1] 6= ⊥) where k = k()

32 if oneTerm ∧ ∃` : BC[`] = ⊥ then /* invoke BC objects concurrently */

33 for each k ∈ {0, . . . , n−1} : BC[k] = ⊥ do binPropose(k, proposals[k+1] 6= ⊥)

34 upon PROPOSAL(vJ ) urbDelivered from pj begin
35 if vJ 6= ⊥ then
36 if O 6= ⊥ ∧O.proposals[j] = ⊥ then O.proposals[j]← vJ ;
37 else if O = ⊥ then (O.(v, proposals,BC, txDes),

O.proposals[j])←((sJ , vJ , [⊥, . . . ,⊥], [⊥, . . . ,⊥],⊥), vJ );

after checking that v 6= ⊥ (line 27). Note that pi records the fact that at least one transmission
was completed by assigning True to oneTerm (line 28).

Upon the URB-delivery of pi’s PROPOSAL(vJ ) at pj ∈ P, processor pj considers the fol-
lowing two cases. If O is an active object, pj merely checks whether O.proposals[i] needs to be
updated with vJ (line 36). Otherwise, O is initialized with vJ as the proposed value (line 37)
similarly to line 20.

Going back to the sender side, Algorithm 2 uses either lines 30 to 31, which sequentially access
the array, BC[], of binary consensus objects, or lines 32 to 33, which simply access all binary
objects concurrently. In both methods, processor pi makes sure that at least one broadcast was
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completed, i.e., oneTerm = True (lines 28, 30 and 32). When following the sequential method
(lines 30 to 31), the aim is to invoke binary consensus by calling binPropose(k+1, proposals[k+1] 6=
⊥) (line 31), where k = ki(). This can only happen when the (k+1)-th object in BC[] is not
active, i.e., BC[k+1] = ⊥ and BC[k+1] is either the first in BC[], i.e., k = -1 or BC[k] has
terminated, i.e., BC[k].resulti(k) 6= ⊥ (line 30).

The advantage of the sequential access method over the concurrent one is that it is more
conservative with respect to the number of consensus objects that are being used since once the
decision is True, there is no need to use more objects. The concurrent access method, marked in
the boxed lines, encourages to piggyback of the messages related to binary concurrent objects.
This is most relevant when every message (of binary consensus) can carry the data-loads of
n proposals. In this case, the concurrent access method is both simpler and faster than the
sequential one.

6 Correctness of Algorithm 2

Theorems 6.1 and 6.6 show that Algorithm 2 implements a self-stabilizing multivalued consen-
sus. Definition 6.1 is used by Theorem 6.1. As explained in Section 2.3, for the sake of a simple
presentation, we make the following assumptions. Let R be an Algorithm 2’s execution, pi ∈ P,
and Oi a multivalued consensus object.

Definition 6.1 (Consistent multivalued consensus object) Let R be an Algorithm 2’s ex-
ecution and Oi a multivalued consensus object, where pi ∈ P. Suppose either (i) Oi = ⊥
is inactive or that (ii) Oi 6= ⊥ is active, Oi.v 6= ⊥ ∧ (k < n − 1) ∧ ((BC[k+1] = ⊥ ∨
BC[k+1].result(k+1) = ⊥ ∨ (BC[k+1].result(k+1) = True ∧ Oi.proposals[k+1] 6= ⊥))), where
k = ki(). In either case, we say that Oi is consistent in c.

Theorem 6.1 shows recovery from arbitrary transient-faults.

Theorem 6.1 (Convergence) Let R be an Algorithm 2’s execution. Suppose that there exists
a correct processor pj ∈ P : j ∈ Correct, such that throughout R it holds that Oj 6= ⊥ is an active
multivalued consensus object. Moreover, suppose that any correct processor pi ∈ P : i ∈ Correct
calls resulti() infinitely often in R. Within n invocations of binary consensus, (i) the system
reaches a state c ∈ R after which resulti() 6= ⊥ holds. Specifically, (ii) Oi is either consistent
(Definition of 6.1) or eventually reports the occurrence of a transient-fault, i.e., resulti() = Ψ.

Proof of Theorem 6.1 Lemmas 6.2 and 6.5 implies the proof.

Lemma 6.2 Invariant (i) holds, i.e., resulti() 6= ⊥ holds in c.

Proof of Lemma 6.1 Suppose, towards a contradiction, that c does not exist. Specifically,
let R′ be the longest prefix of R that includes no more than n invocations of binary consensus.
The proof of Invariant (i) needs to show that the system reaches a contradiction by showing
that c ∈ R′. To that end, arguments (1) to (3), as well as claims 6.3 to 6.4, show the needed
contradiction.

Argument (1) implies that it is enough to show that the if-statement in line 24 cannot hold
eventually.

Argument (1) The if-statement conditions in lines 22, 23, and 25 do not hold for pj through-
out R. By the theorem assumption that Oj 6= ⊥ is an active multivalued consensus object
throughout R, we know that the if-statement condition in line 22 cannot hold. Moreover, by the
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assumption that c does not exist, we know that the if-statement conditions in lines 23 and 25
do not hold for any (correct) pi throughout R.

Argument (2) The invariant Oj .v 6= ⊥ holds throughout R. Since the if-statement con-
dition in line 23 does not hold, Oj .v 6= ⊥ holds in R’s starting system state. Moreover, only
lines 20, 36, and 37 change the value of Oj .v but this happens only after testing that the assigned
value is not ⊥ (lines 20 and 35).

Argument (3) R has a suffix in which all correct processors pi ∈ P are active. Since
pj is active and Oj .v 6= ⊥ holds throughout R, the if-statement condition in line 27 holds
eventually since either txDes = ⊥ or hasTerminated(txDes) holds eventually due to the URB-
termination property. By line 29, pj broadcasts the 〈v〉 message to all correct processors pi. By
the URB-termination property, pi receives 〈v〉 and by lines 36 to 37, processor pi is active.

Argument (4) ∀i, j ∈ Correct : Oi.proposals[j] 6= ⊥ ∧ Oi.txDes 6= ⊥ ∧ Oi.oneTerm = True
holds eventually. By URB-termination, hasTerminated(Oi.txDes) holds eventually. Once that
happens, the if-statement condition in line 27 holds (due to arguments (2) and (3)) and
Oi.txDes = ⊥ cannot hold (line 29). By Argument (2), Oi.v 6= ⊥. Thus, pi eventually
URB-broadcasts PROPOSAL(Oi.v). Once pi self-delivers this message, line 36 assigns v to
Oi.proposals[i] due to the assumption that Oi 6= ⊥ throughout R. We can now repeat the
reasoning that hasTerminated(Oi.txDes) holds eventually and thus the if-statement condition in
line 27 hold. Thus, Oi.oneTerm = False does not hold eventually (line 28). By Argument (3),
the same holds for pj . Specifically, pj eventually URB-broadcasts PROPOSAL(Oj .v). Once pi
URB-delivers this message from pj , pi’s state can possibly change, even in the case that Oi 6= ⊥,
cf. lines 36 and 37.

Claim 6.3 The if-statement condition in lines 30 and 32 can only hold at most n times for any
pi ∈ P : i ∈ Correct.

Proof of Claim 6.1 The if-statement condition in line 32 can only hold at most once due to
line 33. Thus, the rest of the proof focuses on line 31.

By the proof of Argument (4), eventually, the system reaches a state, c′ ∈ R, in which
Oi.txDes 6= ⊥ ∧ Oi.proposals[j] 6= ⊥ ∧ Oi.oneTerm = True holds. Note that the if-statement
condition in line 30 holds whenever k = −1. Arguments (5) and (6) assumes that k > −1
and consider the cases in which Oi.BC[k+1] 6= ⊥ holds and does not hold, respectively, where
k = k(). Argument (7) shows that the if-statement condition in line 30 can hold at most n
times.

Argument (5) Suppose that k > −1∧Oi.BC[k+1] 6= ⊥ holds. Eventually, either ki() < n−1
does not hold or the if-statement condition in line 30 holds. BC[k+1].resulti(k+1) 6= ⊥ holds
eventually due to the termination property of binary consensus objects.

In case BC[k+1].resulti(k+1) = True, we know that resulti() 6= ⊥ holds due to the definition
of k() (line 19). However, this implies a contradiction with the assumption made at the start
of this lemma’s proof.

In case BC[k+1].resulti(k+1) = False holds, the if-statement condition in line 30 holds in c′

if k+1 < n-1 and Oi.BC[k+1] = ⊥. In case the former predicate holds and the latter does not,
we can repeat the reasoning above for at most n times until either the former does not hold or
both predicates hold. In either case, the proof of the argument is done.

Argument (6) Suppose that k > −1∧Oi.BC[k+1] = ⊥ holds. Eventually, either ki() < n−1
does not hold or the if-statement condition in line 30 holds. The if-statement condition in
line 30 holds if BC[k].resulti(k) 6= ⊥ holds. Since k > −1, the reasoning in the proof of
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Argument (5), which shows that BC[k+1].resulti(k+1) 6= ⊥ holds, can be used for showing that
BC[k].resulti(k) 6== ⊥ holds eventually.

Argument (7) Within n invocations of binProposei(), the if-statement condition in line 30
does not hold. Suppose that the if-statement condition in line 30 holds. In line 31, pi invokes the
operation binProposei(k+1, Oi.proposals[k+1] 6= ⊥) of the (k+1)-th binary consensus object.
This invocation changes pi’s state, such that Oi.BC[k+1] = ⊥ does not hold any longer (because
the binProposei() operation initializes the state of Oi.BC[k+1]). Since BC[] has n entries, there
could be at most n such invocations until the system reaches c′′ ∈ R, after which the if-statement
condition in line 30 cannot hold. 2Claim 6.3

Claim 6.4 Once the if-statement condition in line 30 (or 32) does not hold, also the if-statement
condition in line 24 does not hold.

Proof of Claim 6.1 Since if-statement condition in line 30 does not hold, we know that
BCi[k + 1] = ⊥ does not hold, see Argument (5) of Claim 6.3. In the case of line 32, the same
holds in a straight forward manner. By BC-termination, BC[k + 1].resulti(k + 1) 6= ⊥ holds
eventually. Since ∀px ∈ P : Oi.BC[x] 6= ⊥ ∧ BC[x].resulti(x) = False implies a contradiction
with Argument (1), we know that BCi[k + 1].result(k + 1) 6= True cannot hold. 2Claim 6.4

2Lemma 6.5

Lemma 6.5 Invariant (ii) holds, i.e., Oi is either consistent or resulti() = Ψ.

Proof of Lemma 6.1 Recall that the theorem assumes that Oi is an active object throughout
R. The argument is implied by Definition 6.1 and lines 22 to 25.

In detail, line 22 handles the case in which Oi = ⊥. Suppose that Oi 6= ⊥ is active, which
indicates that an inconsistent was detected. Line 23 handles the case in which Oi.v 6= ⊥ ∧ k <
n−1 does not hold by returning Ψ, where k = ki(), which indicates that an inconsistent was
detected. Line 24 allows the case in which BC[k+1] = ⊥∨BC[k+1].result(k+1) = ⊥ (note that
the case of BC[k+1].result(k+1) = False does not exist due to the definition of k() in line 19).
This case is allowed since it is consistent, see Definition 6.1. Line 25 handles the case in which
(BC[k+1].result(k+1) = True ∧ Oi.proposals[k+1] 6= ⊥) does not holds by returning Ψ, which
indicates that an inconsistent was detected. 2Lemma 6.5 2Theorem 6.1

Definition 6.2 is used by Theorem 6.6.

Definition 6.2 (Complete execution with respect to propose() invocations) Let R be an
execution of Algorithm 2 that starts in c ∈ R. We say that c is completely free of PROPOSAL(-)
messages if (i) the communication channels do not include PROPOSAL(-) messages, and (ii)
for any non-failing pi ∈ P, there is no active multivalued consensus object Oi = ⊥ in c. Let
cs ∈ R be the system state that is: (a) completely free of PROPOSAL(-), and (b) it appears in
R immediately before a step that includes pi’s invocation of propose(-) (lines 20) in which Oi

becomes active (rather than due to the arrival of a PROPOSAL(-) message in lines 35 to 37).
In this case, we say that pi’s invocation is authentic. Suppose that pi sends a PROPOSAL(-)
message after cs. In this case, we say that PROPOSAL(-) is an authentic message transmission.
An arrival of PROPOSAL(-) to pj ∈ P (lines 20) is said to be authentic if it is due to an authen-
tic message transmission. Suppose that pj actives Oj = CSj [s] (line 37) due to an authentic
arrival (rather than an invocation of the propose(-) operation). In this case, we also say that
pj’s invocation is authentic. We complete the definitions of authentic transmissions, arrivals,
and invocations by applying the transitive closures of them. Suppose that any invocation in R
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of proposek(-) : pk ∈ P is authentic as well as the transmission and reception of PROPOSAL(-)
messages from or to pk. In this case, we say that R is authentic.

Theorem 6.6 shows that Algorithm 2 satisfies the task requirements (Section 2.2).

Theorem 6.6 (Closure) Let R be an authentic execution of Algorithm 2. The system demon-
strates in R the construction of a multivalued consensus object.

Proof of Theorem 6.6 Validity holds since only the user input is stored in the field v (line 20),
which is then URB-broadcast (line 29), stored in the relevant entry of proposals (lines 36 to 37),
and returned as the decided value (line 25). Moreover, any value in v can be traced back to an
invocation of propose(v) since R is authentic.

Lemma 6.7 demonstrates termination and agreement.

Lemma 6.7 Let ai ∈ R be the first step in R that includes an invocation, say, by pi ∈ P of
proposei(vi). Suppose that vi 6= ⊥ holds in any system state of R. There exists v /∈ {⊥,Ψ},
such that for every correct pj ∈ P it holds that resultj() returns v within n invocations of binary
consensus.

Proof of Lemma 6.6 Arguments (1) to (7) imply the proof.

Argument (1) Oi.(v, proposals,BC, txDes, oneTerm) = (v, [⊥, . . . ,⊥], [⊥, . . . ,⊥],⊥,False)
holds immediately after ai. We show that the if-statement condition in line 20 holds imme-
diately before ai. Recall the theorem assumption that vi 6= ⊥ holds in R. By the assumption
that R is authentic, we know that Oi = ⊥ holds immediately before ai. Therefore, pi assigns
(vi, [⊥, . . . ,⊥], [⊥, . . . ,⊥],⊥,False) to Oi.(vi, proposalsi, BCi, txDes i, oneTermi) (line 20).

Argument (2) Eventually PROPOSAL(vi) messages are URB broadcast and oneTermi

holds. By URB-termination, hasTerminated(Oi.txDes) does not hold eventually. Since Oi.v 6=
⊥ (by the lemma assumption), the if-statement condition in line 27 holds and pi URB-broadcasts
PROPOSAL(Oi.v). By applying again the same argument, the assignment in line 28 makes sure
that oneTermi = True.

Argument (3) For any px ∈ P : x ∈ Correct, eventually Ox.proposals[i] 6= ⊥ and
Ox.proposals[x] 6= ⊥ hold. By URB-termination, every correct processor, px, eventually
URB-delivers Argument (2)’s PROPOSAL(vi) message. By the assumption that vi 6= ⊥ holds
in any system state of R, the if-statement condition in line 35 holds (even if px has invoked
proposex(vx) before this URB delivery).

In case there was no earlier invocation of proposex(vx), the assignment Ox.v ← vi occurs due
to line 37 (otherwise, a similar assignment occurs due to line 36). Moreover, due to the reasons
that cause pi URB broadcasts in Argument (2), also px URB broadcasts PROPOSAL(v′ 6= ⊥)
messages. Upon the URB delivery of px message to itself, the Ox.proposals[x] ← v′ 6= ⊥
assignment occurs (line 36). (Note that this time, the if-statement condition in line 36 must
hold since Ox 6= ⊥.)

Argument (4) The if-statement condition in lines 30 and 32 hold eventually. Since
oneTermi holds eventually (Argument (2)), the if-statement condition in line 32 holds eventu-
ally. Also, the fact that Ox.proposals[x] 6= ⊥ (Argument (3)) and URB-termination imply that
eventually, in px’s do-forever loop, the if-statement condition in line 30 holds. In detail, since
R is an authentic execution, k = -1 ∧BC[k+1] = ⊥ holds in R’s second state, where k = kx().

Let S(z) = {0, . . . , z}. The proof of Argument (5) shows ∃y ∈ S(n-1), ∀x ∈ Correct , px
invokes binProposex() at most y times and it observes that Ox.BC[k] 6= ⊥ : k ∈ S(y-1).
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Argument (5) The Termination property holds. By line 33, the if-statement condition in
line 32 can hold at most once. The if-statement condition in line 30 cannot hold for more than
n times due to the (k < n-1) clause. Thus, the termination property is implied.

Let r(j) = [x(0), . . . , x(n-1)] : x(k) = BCj [k].result(k) and S = {[⊥, . . . ,⊥], [. . . ,False,⊥,
. . . ,⊥], [. . . ,False,True,⊥, . . . ,⊥], [. . . ,False, True]}. For the case of using lines 30 to 31, the
proof of Argument (6) shows ∀pj ∈ P : r(j) ∈ S, i.e., sequential invocation of binPropose().

Argument (6) For the case of using lines 30 to 31, r(j) ∈ S holds. Due to lines 19 and 30 as
well as the agreement property of binary consensus objects and the fact that R is authentic, we
know that eventually, all non-failing nodes must observe the same results from their consensus
objects. Specifically for the case of lines 30 to 31, it holds that ∀pj ∈ P : r(j) = rs. Also, at
any time, r(j) can only include a finite number (perhaps empty but with no more than n-1) of
False values that are followed by at most one True value and the only ⊥-values (if space is left),
i.e., r(j) ∈ S.

Argument (7) The Agreement property holds.
Since no pj ∈ P invokes binProposej(kj+1, Ox.proposals[kj+1] 6= ⊥) (lines 30 and 32), before

it had assured the safe URB delivery of Ox.txDes’s transmission, we know that eventually, at
least one element of r(j) is True. Thus, by the agreement property of binary consensus, every px
eventually calculates the same value of kj(), such that BC[kj()].resultx(kj() + 1) = True. This
implies the agreement property since resultx() returns Ox.proposals[kj()+1] for any non-failing
px ∈ P (line 25). 2Lemma 6.7

Lemma 6.8 demonstrates the property of integrity.

Lemma 6.8 Suppose that ∃v′ /∈ {⊥,Ψ} : ∃pj ∈ P : ∃c′ ∈ R : resultj() = v′ in c′. @c′′ ∈ R :
resultj() = v′′ in c′′, such that v′ 6= v′′.

Proof of Lemma 6.6 The proof is by contradiction. Suppose that c′′ ∈ R exists and, without
the loss of generality, c′ appears before c′′ in R. Since R is authentic and c′ ∈ R exists, then
there is a pk ∈ P : k ∈ S(n-1), such that for any pj ∈ P, there is a system state c′j that appears
in R not after c′ in which for any k′ ∈ S(n-1) it holds that BC[k′].resultj(k

′) = False for the case
of k′ < k and BC[k].resultj(k

′) = True for the case of k′ = k. This is due the definition of k()
(line 19). Note that in any system state that follows c′j , the value of k = kj() does not change
due to the integrity of binary consensus objects. Therefore, resultj() must return the value of
Oj .proposal[k] in any system state that follows c′j . Since line 36 does not allow any change in
the value of Oj .proposal[k] between c′ and c′′, it holds that v′ = v′′. Thus, the proof reached a
contradiction and the lemma is true. 2Lemma 6.8 2Theorem 6.6

7 Application: Self-stabilizing Total-order Message Delivery using
Multivalued Consensus

We exemplify the use of Algorithm 2 by implementing the task total order uniform reliable
broadcast (TO-URB), which we specified in Section 2.2.1. We describe our implementation
before bringing the correctness proof.

7.1 Refinement of the system settings

Our self-stabilizing total order message delivery implementation (Algorithm 3) provides the
toBroadcast(m) operation (line 44). It uses a self-stabilizing URB with FIFO-order delivery,
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Algorithm 3: Self-stabilizing TO-URB via consensus; code for pi ∈ P
38 notations: x opr3 y ≡ (x opr y) mod 3 : opr ∈ {-,+};
39 constants and variables: δ ∈ Z+ max number of messages after which is delivery is

enforced; CS[0..2] = [⊥, . . . ,⊥] array of multivalued consensus objects; obsS = 0
highest obsolete sequence number

40 macro S() = {CS[k].seq : CS[k] 6= ⊥}k∈{0,...,2};
41 macro getSeq() do return max({obsS} ∪ S());

42 macro test(s) do return (s ∈ (S() ∪ {getSeq() + 1});
43 macro ∆() do return ((allHaveTerminated() ∧ 0 < `) ∨δ ≤ `) where

(x, y, `) = (minReady(), maxReady(),
∑

pk∈P(y[k]− x[k]));

44 operation toBroadcast(m) do fifoURB(toURB(m));

45 do forever begin
46 if

(∃k ∈ {0, . . . , 2} : CS[k] 6= ⊥∧CS[k].seq mod 3 6= k)∨ (S() 6= ∅∧ (obsS > maxS()∨
maxS()−minS() > 1)) then CS ← [⊥, . . . ,⊥] ;

47 sn← sn+ 1;
48 repeat
49 foreach pj ∈ P do send SYNC(sn) to pj ;
50 until SYNCack(sn, •) received from all pj : j ∈ trusted ;
51 let (allReady ,maxSeq , allSeq) = (entrywise-min{x}(•,x)∈X ,

max{x}(-,x,•)∈X ,∪(-,x,y,-)∈X{x, y}) where X is the set of messages received in

line 50;
52 let (x, y, z) = (obsS , getSeq(),maxSeq);
53 if ¬(x+1=y=z∨x=y= z∨x=y =z-1) then
54 obsS ← max{x, y, z}
55 foreach k ∈ {0, . . . , 2} \ ({x mod 3 : x < y} ∪ {y mod 3} ∪ {z+31 : |allSeq | = 1})

do CS[k]← ⊥;
56 if (|allSeq | = 1 ∧∆()) then
57 CS[maxSeq +3 1].propose(maxSeq + 1, allReady)

58 if obsS + 1 = getSeq() ∧ x 6= ⊥ ∧ x.result() 6= ⊥ where x = CS[(obsS +3 1)] then
59 if x.result() 6= Ψ then
60 foreach m ∈ bulkRead(x.result()) do toDeliver(m)

61 obsS ← obsS + 1

62 upon SYNC(snJ ) arrival from pj do
send SYNCack(snJ , getSeq(), obsS ,maxReady()) to pj ;

such as the one by Lundström, Raynal, and Schiller [32], to broadcast the protocol message,
toURB(msg). As before, the line numbers of Algorithm 3 continues the ones of Algorithm 2.

The proposed solution assumes that the FIFO-URB module has interface functions that
facilitate the aggregation of protocol messages before their delivery. For example, we assume
that the interface function allHaveTerminatedi() returns True whenever there are no active URB
transmissions sent by pi ∈ P. Also, given pi ∈ P, the functions readyMini() and readyMaxi()
return each a vector, ri[0, .., n-1], such that for any pj ∈ P, the entry ri[j] holds the lowest,
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and respectively, highest FIFO-delivery sequence number that is ready to be FIFO-delivered.
These FIFO-delivery sequence numbers are the unique indices that the senders attach to the
URB messages. Also, the function bulkReadi(rmax) returns immediately after system state c a
determinately ordered sequence, sqnci, that includes all the messages between rmin and rmax,
such that rmin = readyMini() in c, as well as rmax, is a vector that is entry-wise greater or equal
to rmin and entry-wise smaller or equal r = readyMaxi() in c.

Algorithm 3 assumes access to a self-stabilizing perfect failure detector, such as the one by
Beauquier and Kekkonen-Moneta [5]. The local set, trusted i, includes the indices of the nodes
that pi’s failure detector trusts. We follow Assumption 7.1 for the sake of a simple presentation.

Assumption 7.1 Any sent message arrives or is lost within O(1) asynchronous cycles. Any
URB message arrives within O(1) asynchronous cycles [32]. Each active multivalued consensus
object decides within O(1) asynchronous cycles [33].

7.2 Algorithm description

The algorithm idea uses the fact that sqnci is deterministically ordered. Namely, if all nodes
pj ∈ P share the same sequence r1, r2, . . . when calling bulkReadj(rx) : x ∈ Z+, the studied
task is reduced to invoking the event of toDeliver(m) for every m ∈ bulkRead(rx). To that
end, Algorithm 3 queries all nodes about the messages that are ready to be delivered (lines 47
to 51), validates the consistency of the control variables (line 46 and lines 54 to 55), agree on
the current value of rx (lines 56 to 57), and delivers the ready messages (lines 58 to 61). We
discuss in detail each part after describing the local constant, variables, and macros; sn the
query number.

7.2.1 Constant, variables, and macros

The constant M defines the number of multivalued consensus objects that Algorithm 3 needs to
use. The proof shows that, at any time during a legal execution, Algorithm 3 uses at most two
active objects at a time and one more object that is always non-active. The array CS[0..2] holds
all the multivalued consensus objects that Algorithm 3 uses. Algorithm 3 uses CS[] cyclically.

Algorithm 3 aims at aggregating URB messages and delivering them only when all trans-
mission activities have terminated. To that end, it uses the allHaveTerminated() function (Sec-
tion 7.1). Since the number of such transmissions is unbounded, there is a need to stop ag-
gregating after some predefined number of transmissions that we call δ. The variable obsS
points to the highest obsolete sequence number; the one that was already delivered locally.
The variable sn stores the number of the next query. As mentioned in Section 2.2, whenever
Algorithm 3 runs out of query numbers, a global restart mechanism is invoked, such as the one
in [24, Section 5]. Thus, it is possible to have bounded query numbers.

The macro S() returns the set of sequence numbers used by the active multivalued consensus
objects. The macro getSeq() returns the locally maximum sequence number. The macro test(s)
returns True whenever the sequence number s is used by an active or is greater by one than
getSeq(). The macro ∆() facilitates the decision about whether to invoke a new consensus. It
returns True if there are non-delivered messages but no on-going transmissions. It also returns
True when the number of ready to be delivered messages exceeds δ (regardless of the presence
of active URB transmissions).
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7.2.2 Querying (lines 47 to 51)

Algorithm 3 uses a simple synchronization query mechanism. Each query instance is associated
with a unique sequence number that is stored in the variable sn and incremented in line 47.
Line 49 broadcasts the synchronization query repeatedly until a reply is received from every
trusted node. The query response (line 62) includes the correspondent’s (local) maximum
sequence number stored by any multivalued consensus object (that the macro getSeq() retrieves),
the maximum obsolete sequence number (that its respective multivalued consensus object is no
longer needed), and the latest value returned from readyMaxi(). Using these responses, line 50
aggregates the query results and store them in minReady , maxSeq , and allSeq . The vector
minReady includes the entry-wise minimum (per sender) FIFO-URB messages that are ready
to be delivered at all nodes. Also, maxSeq is the maximum known sequence number. And, the
set allSeq includes all the collected maximum sequence numbers and obsolete sequence numbers.

7.2.3 Consistency assertion and stale information removal (line 46 and lines 54 to 55)

Line 46 makes sure that CS[k].seq , when taken its reminder from the division by M , equals to
k. It also tests that the local obsolete sequence number, obsS , is not greater than the largest
sequence number. Besides, the gap between the maximum and the minimum sequence number
cannot be greater than one. Line 54 verifies that obsS , getSeq(), and maxSeq follow a consistent
pattern. Line 55 removes stale information by deactivating any obsolete multivalued consensus
object.

7.2.4 Repeated agreement (lines 56 to 57)

The if-statement condition in line 56 tests whether all trusted nodes in the system share the
same sequence number. This happens when all trusted nodes pj ∈ P have obsS j = getSeqj().
Line 56 also checks whether ∆() indicates that it is the time to deliver a batch of messages. If
this is the case, then line 57 proposes to agree on the value of allReady .

7.2.5 Message delivery (lines 58 to 61)

The delivery of the next message batch becomes possible the multivalued consensus object has
terminated (line 58). Before the actual delivery (line 60), there is a need to check that no error
was reported (line 60) due to conditions that appear at line 23 of Algorithm 2. In any case,
obsS is incremented (line 61) so that even if an error occurred, the object is ready for recycling.

7.3 Correctness of Algorithm 3

Theorem 7.2 uses Definition 7.1.

Definition 7.1 (Consistent states and legal executions) Let c be a system state and pi ∈
P be any processor in the system. Suppose that in c, it holds that (i) ∀k ∈ {0, . . . , 2} : CSi[k] =
⊥ ∨ CSi[k].seq mod 3 = k and either S = ∅ ∧ obsS i ∈ Z+ or S 6= ∅ ∧ (obsS i ≤ maxS ∧
maxS − minS ≤ 1), where S = {CSi[k].seq : CSi[k] 6= ⊥}k∈{0,...,2} and getSeqi() returns
seq = max({obsS i} ∪ S). Moreover, (ii.a) sni’s value is greater equal to any snJ field in the
message SYNC(snJ ) in a communication channel from pi as well as SYNCack(snJ , •) message
in a communication channel to pi. And (ii.b) obsS i ≤ getSeqi() ≤ obsS i + 1. In this case, we
say that c is consistent concerning Algorithm 3.
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Suppose that R is an execution of Algorithm 3, such that every c ∈ R is consistent. In
addition, (iii.a) suppose that if toBroadcast() is not invoked during R nor do any FIFO-broadcast
becomes available for delivery, then pred holds throughout R, where pred ≡ ∃z ∈ Z+ : ∀k ∈
Correct : getSeqk() = z∧maxSeqk = z∧obsSk = z∧allSeqk = {z}. Furthermore, (iii.b) suppose
that if toBroadcast() is invoked during R infinitely often, then pred holds infinitely often. In
this case, we say that R is legal.

Theorem 7.2 Within O(1) asynchronous cycles, Algorithm 3’s execution is legal.

Proof of Theorem 7.2 Due to line 46, Definition 7.1’s Invariant (i) holds after pi first complete
iteration of Algorithm 3’s do-forever loop (lines 45 to 61). Lemma 7.3 shows Invariant (ii.a).
Line 54 implies Invariant (ii.b). Lemma 7.5 shows invariant (iii).

Lemma 7.3 Invariant (ii.a) holds.

Proof of Lemma 7.2 Only line 47 modifies sni’s value, i.e., by increasing the value of sni.
The rest of the proof is implied by Assumption 7.1, which says that all messages that appear
in the communication channels in R’s starting system state are either delivered or lost within
O(1) asynchronous cycles. 2Lemma 7.3

We observe from the code of Algorithm 2 that once invariants (i) and (ii) hold, they are not
violated. Thus, the rest of the proof assumes that invariants (i) and (ii) hold in every system
state of R. Lemma 7.4 is needed for the proof of Lemma 7.5.

Lemma 7.4 Every complete iteration of the do-forever loop (lines 45 to 61) allows the collection
of Msni = {(sni, sk, ok, rk)}k∈trustedi

, such that sk = seqk, ok = obsSk, and rk = readyMaxk()
in the system state ck, where cline `

i ∈ R : ` ∈ {47, 50} is the system state when pi executed
line ` with sni and ck appears between cline 47

i and cline 50
i when pk executed line 62 on the

arrival of SYNC(snJ = sni). Moreover, minReady i (line 50) is entry-wise smaller equal to
every readyMaxk() in cline 50

i , maxSeq i is greater equal than every seqk in cline 47
i , and allSeq i

includes the union ∪k∈trustedi
aSk, where aSk = {obsSk, seqk} in ck.

Proof of Lemma 7.2 Since invariants (ii.a) holds, the increment of sni (line 47) creates a
sequence number that is (associated with pi and) greater than all other associated sequence
numbers in the system. With this unique sequence number, the repeat-until loop (lines 49
to 50) gets a fresh collection of Msni = {(sni, sk, ok, rk)}k∈trustedi

. Note that this loop cannot
block due to the end-condition (line 50), which considers only the trusted nodes in the system.
The rest of the proof is implied directly by lines 47, 50, and 62. 2Lemma 7.4

Lemma 7.5 Within O(1) asynchronous cycles, R = R′ ◦ R′′ reaches a suffix, R′′, in which
invariants (iii.a) and (iii.b) hold.

Proof of Lemma 7.2 Argument (1) Invariant (iii.a) holds. By the assumption that no
FIFO-broadcast becomes ready during R, it holds that the if-statement condition in line 56
does not hold during R. By Assumption 7.1, all active multivalued consensus objects have
terminated with O(1) asynchronous cycles. Therefore, within O(1) asynchronous cycles, the
if-statement condition in line 60 cannot hold. Due to Lemma 7.4, maxSeq i is greater equal to
getSeqk() : k ∈ Correct i. Due to the if-statement line 53 and line 55, within O(1) asynchronous
cycles, line 55 deactivates any multivalued consensus object, Oi:pi∈P,x∈{0,...,2} = CSi[x] for
which Oi,x.seq < maxSeq i − 1. By using Assumption 7.1 again, any re-activated multivalued
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Algorithm 4: Self-stabilizing emulation of a replicated state-machine; code for pi ∈ P
Same code as in lines 38 to 44.

52 do forever begin
Same code as in lines 46 to 55.

62 if (|allSeq | = 1 ∧∆()) then
63 CS[maxSeq +3 1].propose(maxSeq + 1, (state = getState(),msg = maxReady()))

64 if obsS + 1 = getSeq() ∧ x 6= ⊥ ∧ x.result() 6= ⊥ where x = CS[(obsS +3 1)] then
65 if x.result() 6= Ψ then
66 setState(x.result().state); foreach m ∈ bulkRead(x.result().msg) do

toDeliver(m) Same code as in lines 61 to 62.

consensus object has to terminate with O(1) asynchronous cycles. Thus, the above implies
that the state of all multivalued consensus objects, active or not, do not change and that
maxSeq i = getSeqk() : k ∈ Correct i.

We show that obsS i = getSeqi() holds within O(1) asynchronous cycles. By Invariant (ii.b),
we know that either obsS i + 1 = getSeqi() or obsS i = getSeqi(). Suppose that obsS i + 1 =
getSeqi() holds. Due to the definition of getSeq() as well as lines 46 and 55, xi 6= ⊥, where
xi = CSi[(obsS i +3 1)] (line 58). By Assumption 7.1, within O(1) asynchronous cycles, the
multivalued consensus object xi terminates. Thus, the if-statement condition in line 58 holds
and line 61 increments obsS i once. Therefore, obsS i = getSeqi() within O(1) asynchronous
cycles.

Since maxSeq i = getSeqk() = obsSk : k ∈ Correct i, then allSeqk = {z}, where z = maxSeq i =
getSeqk() = obsSk : k ∈ Correct i. Thus, pred holds.

Argument (2) Invariant (iii.b) holds. We note that ∆i() holds infinitely often by the
assumption that toBroadcast() is invoked during R infinitely often and the URB-termination
property. We show that the if-statement condition in line 56 holds within O(1) asynchronous
cycles once ∆i() holds. Suppose, towards a contradiction, that |allSeq | = 1 does not hold for
a period longer than O(1) asynchronous cycles. Then, the then-statement in line 57 is not
executed for a period longer than O(1) asynchronous cycles. By the proof of Argument (1),
pred holds within O(1) asynchronous cycles. Thus, the if-statement condition in line 56 holds
within O(1) asynchronous cycles. In other words, Invariant (iii.b) holds. 2Lemma 7.5

2Theorem 7.2

8 Discussion

We showed how a non-self-stabilizing algorithm for multivalued consensus by Mostéfaoui, Ray-
nal, and Tronel [36] can become one that recovers from transient-faults. Interestingly, our so-
lution is both wait-free and incurs a bounded number of binary consensus invocations whereas
earlier work either uses an unbounded number of binary consensus objects [36] or is block-
ing [46]. Therefore, we present a more attractive transformation technique than the studied
algorithm (regardless of the presence or absence of transient-faults).

As an application, we showed a self-stabilizing total-order message delivery. As an enhance-
ment to this application, Algorithm 4 explains how to construct a self-stabilizing emulator for
state-machine replication. Line 63 of Algorithm 4 proposes to agree on both on the automaton
state, which is retrieved by getState(), and the bulk of FIFO-URB messages, as in line 57 of
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Algorithm 3. Line 66 of Algorithm 4 uses setState() for updating the automaton state using
the agreed state.
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[3] Karine Altisen, Stéphane Devismes, Swan Dubois, and Franck Petit. Introduction to Dis-
tributed Self-Stabilizing Algorithms. Synthesis Lectures on Distributed Computing Theory.
Morgan & Claypool Publishers, 2019.

[4] Arta Babaee and Moez Draief. Distributed multivalued consensus. Comput. J., 57(8):1132–
1140, 2014.
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