
Stream-based State-Machine Replication
(Extended Version)

Laura Lawniczak and Tobias Distler
Friedrich-Alexander University Erlangen-Nürnberg (FAU)

Email: {lawniczak,distler}@cs.fau.de

Abstract—Developing state-machine replication protocols for
practical use is a complex and labor-intensive process because of
the myriad of essential tasks (e.g., deployment, communication,
recovery) that need to be taken into account in an implementa-
tion. In this paper, we show how this problem can be addressed
with stream-based replication, a novel approach that implements
a replication protocol as application on top of a data-stream
processing framework. With such framework already handling
most essential tasks and furthermore providing means for de-
bugging and monitoring, this technique has the key benefit of
significantly minimizing overhead for both programmers as well
as system operators. Our first stream-based protocol TARA toler-
ates crashes and comprises full-fledged mechanisms for request
handling, checkpointing, and view changes. Still, TARA’s proto-
type implementation, which is based on Twitter’s Heron frame-
work, consists of fewer than 1,500 lines of application-level code.

Index Terms—State-machine replication, fault tolerance, con-
sensus, scalability, data-stream processing

I. INTRODUCTION

State-machine replication protocols such as Paxos [1] or
Raft [2] represent corner stones of many dependable ser-
vices in production by enabling a system to tolerate crashes
of participating processes. Unfortunately, implementing and
operating these protocols usually is a difficult and time-
consuming undertaking; not only due to the protocols’ inherent
complexity [3], [4], but especially because there is a multitude
of tasks that need to be taken care of in practice. Among other
things, replicas for example must be installed and started on
different servers, network connections have to be set up and
maintained between nodes, exchanged messages need to be
serialized and delivered to their intended receivers, and failed
processes should be detected and recovered. All previously
mentioned tasks have in common that they typically are not
part of the replication-protocol logic and therefore further add
to the complexity of the overall implementation. Nevertheless,
since the tasks are essential for the execution of a replication
protocol, they must be handled in some form or the other,
for example by integrating external libraries (if possible) or
by implementing them manually. Apart from complicating
protocol development in general, this particularly makes it
difficult to quickly create prototypes for testing new ideas.

In this paper, we present an approach that addresses these
problems by implementing a state-machine replication proto-
col as application on top of a stream processing framework
(e.g., Heron [5], Storm [6], or Flink [7]). Our choice of stream
processing frameworks as underlying platform is motivated by
several reasons: (1) With stream processing applications being
widely used to analyze data, the frameworks are often already
available and operational in many data centers. (2) Taking care

of tasks such as distributed deployment, communication, or the
automated recovery of crashed application nodes, the frame-
works provide many features that for replication protocols so
far had to be specifically integrated. (3) Stream processing
frameworks typically offer built-in support for scalability,
which with our approach can be leveraged to improve the
performance of replication protocols. (4) The frameworks
are usually equipped with a logging infrastructure, means to
collect runtime metrics (e.g., throughput), as well as graphical
user interfaces, which each greatly facilitate the development
and management of replication-protocol implementations.

Stream processing applications are designed as sets of pro-
cessing nodes through which data tuples flow along the edges
of directed acyclic graphs. This data-oriented perspective
stands in sharp contrast with the replica-oriented perspective
commonly used to specify state-machine replication protocols,
where a small number of replicas repeatedly exchange mes-
sages in multiple phases [2], [4]. To show how to bridge this
gap we present TARA, a stream-based replication protocol that
has been specifically tailored to run in conjunction with stream
processing frameworks. In order to be broadly applicable,
TARA requires no modifications to the underlying platform and
makes only weak assumptions about the services a framework
provides with regard to deployment and communication. In
particular, there is no need for the framework to implement
consensus or replication-based fault tolerance at lower layers.

We implemented TARA based on Heron, a stream processing
framework developed by Twitter for use in production. Thanks
to leveraging Heron, TARA’s code base for request handling,
checkpoint-based garbage collection, and view changes is
about two thirds smaller than the implementation of the same
tasks in the widely used replication library BFT-SMaRt [8].

In summary, this paper makes the following contributions:
(1) It proposes an approach that facilitates the development
and operation of replication protocols by implementing them
as applications on top of stream processing frameworks. (2) It
presents the design and implementation of TARA, the first
stream-based replication protocol. (3) It uses TARA as an
example to illustrate how stream-based protocols can leverage
the underlying framework to achieve parallelism. (4) It evalu-
ates TARA in the context of a coordination-service application.

The remainder is structured as follows: Section II introduces
background on replication protocols and stream processing
frameworks. Section III describes TARA with Section IV
adding a parallelized version and Section V offering imple-
mentation details. After that, Section VI evaluates TARA. Fi-
nally, Sections VII and VIII discuss related work and conclude.

1

ar
X

iv
:2

10
6.

13
01

9v
1

 [
cs

.D
C

]
 2

4
Ju

n
20

21

II. BACKGROUND AND PROBLEM STATEMENT

This section provides background on replication protocols
and stream processing frameworks and discusses the benefits
and difficulties of integrating the former into the latter.

A. Replication Protocols

State-machine replication protocols [1], [2] tolerate server
crashes by modeling a system as a collection of replicas that
each maintain an instance of the application state. To keep
their state copies consistent, the replicas repeatedly execute a
consensus protocol to agree on a common sequence in which
to process newly incoming client requests. As illustrated in
Figure 1, many protocols for this purpose assign replicas with
different roles. A leader replica proposes a specific sequence
number for a request, whereas its follower replicas are respon-
sible for committing the sequence-number assignment.

In addition to consensus, replication protocols typically
comprise further mechanisms that are essential for the well-
functioning of a replicated system. Among other things, this
specifically includes sub-protocols for checkpointing and view
changes. While periodic checkpoints allow replicas to garbage
collect consensus messages, a view-change mechanism en-
ables a system to elect a new leader in case the old one is no
longer able to fulfill its duties (e.g., due to having crashed).

B. Stream Processing Frameworks

Stream processing frameworks such as Heron [5], Storm [6],
or Flink [7] are widely used in production, especially for
scenarios in which new data (e.g., recently posted tweets [5])
needs to be quickly analyzed once it becomes available.
As shown in Figure 2, stream processing applications are
implemented as a set of nodes that are organized in a directed
acyclic graph through which information flows from one or
more source nodes to one or more sink nodes. Each node in
the graph (if needed) maintains its own state and represents a
different stage in the processing pipeline. Typical tasks include
the aggregation or filtering of inputs, the analysis of data, and
the combination of the outputs of multiple predecessor nodes.

Between nodes, information is forwarded in the form of
data tuples (i.e., collections of key-value pairs) that only flow
in one direction: from upstream nodes to downstream nodes.
Communication with the outside world is usually handled via
message queues (see Figure 2), for example provided by sys-
tems such as Kafka [9] or Kestrel [10]. If necessary, as it is the
case for iterative computations [7], these queues can also be
used to reinsert processed data into the application by relying
on the same queue as both output queue and input queue.

Leader
Replica

L

Follower
Replica
F1

Follower
Replica
F2

L

F1

F2

Propose CommitClients

Fig. 1. Basic architecture of replicated systems

Source 1 Source 2 Source 3

Processor 1 Processor 2

Processor 3

Sink 1 Sink 2

Input Queues

Output Queues

Instances

Fig. 2. Basic architecture of stream processing applications

From a system operator’s perspective, a stream processing
framework offers several benefits with regard to executing
applications. In the context of this paper, especially three
aspects are of major importance: (1) Deployment & Com-
munication. Provided with a logical graph of an application,
the framework takes care of essential deployment tasks such
as selecting servers, starting processing nodes, and setting up
network connections. During execution, the framework then is
responsible for serializing data tuples and routing them to their
intended receiver nodes. In addition, frameworks commonly
also comprise mechanisms for retransmitting tuples to tolerate
network problems and for applying flow control to prevent
nodes from being overwhelmed. (2) Scalability. To improve
performance by introducing parallelism, the framework allows
to partition the workload and execute multiple instances of a
node, as illustrated by the black boxes in Figure 2. This way,
a stream processing application is able to exploit multiple
cores and servers even within the same processing stage.
(3) Automated Recovery. Once an application is running, the
framework continuously monitors the system for faults. In case
it detects that a node instance has crashed, the framework
automatically starts a new instance (possibly on a different
server) and updates the routing configuration to ensure that
the new instance is supplied with data.

C. Problem Statement

Creating a replication-protocol implementation that is ready
for use in practice is a difficult and time-consuming task
since many deployment, scalability, and recovery aspects need
to be considered that are usually not part of the theoretical
protocol specification [3]. The current version of the widely
used replication library BFT-SMaRt [8], for example, is the
result of almost a decade of development, and even at this
point it still does not support features such as the automated
recovery of replicas. Our goal in this paper is to simplify the
implementation of (existing and future) replication protocols
by designing them as stream processing applications and
thereby offloading most of the deployment and management
tasks to the underlying framework. To be able to do so, we
do not simply have to solve an engineering problem, but
instead find a way to model replication protocols in the form
of directed acyclic graphs, as required by stream processing
frameworks. This is complicated by the fact that sub-protocols
for consensus, garbage collection, and view changes are typ-

2

ically based on multiple phases of message exchange among
the same group of replicas (see Section II-A) and heavily
draw on the existing circular dependencies. As detailed in the
following section, our solution to this problem is to abandon
the replica-oriented perspective commonly applied in existing
protocol specifications and move to a data-oriented perspective
that primarily concentrates on how information needs to flow
through the system. That is, instead of relying on a few large
replicas with complex states, we model a replication protocol
as a graph of small processing nodes with comparably simple
states that each perform a different task.

III. TARA

This section presents TARA, a replication protocol that
has been tailored to run as an application on top of stream
processing frameworks. In addition to the basic architecture,
the section provides details on how TARA handles requests,
garbage-collects consensus information, and performs view
changes. In the following, we focus on giving an intuition
of TARA’s core concepts. For the full protocol specification
please refer to the appendix of this paper.

A. Overview

As illustrated in Figure 3, to meet the requirements of a
stream processing application, the core of the TARA replication
protocol is structured as a directed acyclic graph in which
information is forwarded as streams of data tuples. Based on
their responsibilities, the nodes in the graph can be divided
into three main categories: request handling (yellow, see
Section III-C), garbage collection (red, see Section III-D), and
view change (blue, see Section III-E). The replicated service
application is integrated with the executor stage.

For crash tolerance, each TARA stage consists of multiple
node instances, which in the following we refer to as replicas.
Replicas belonging to the same stage are placed on separate
servers, whereas replicas of different stages may be co-located.
The number of replicas required per stage in Figure 3 is
symbolized by the number of black boxes. Two boxes indicate
that a stage comprises f+1 replicas to tolerate up to f replica
crashes within the stage; three boxes represent 2f+1 replicas.

The numbers in Figure 3 mark TARA’s main workflow
which consists of 1 receiving client commands that arrive
through request input queues, 2 ordering these commands
using a consensus algorithm, 3 executing the commands
in the service application, and 4 placing the corresponding
results in reply output queues. Clients with access to the
queues are able to directly submit their commands to them
and collect the results right away. All other clients typically
communicate with TARA through front-end components that
represent server-side proxies and act on the clients’ behalf.
If a result to a submitted command does not arrive within a
configured amount of time (e.g., due to the contacted front end
having crashed), a client retries the operation by sending the
command to another front end. As detailed in Section III-C,
we designed TARA to deal with command retransmissions by
enabling executor replicas to detect and filter out duplicates.

Front End Front End Front End Front End. . .

Clients

GC Source Request
Source

View
Source

Record
Source

Proposer

Committer

Executor

Controller

GC Sink Reply Sink View Sink Record Sink

Replicas

Service
Application

Commands

Front End Front End Front End Front End. . .

Results

Clients

1

2

3

4

Fig. 3. Overview of the TARA replication protocol, comprising nodes for
request handling (yellow), garbage collection (red), and view changes (blue).

In contrast to request handling, TARA’s mechanisms for
garbage collection and view changes do not require external
inputs, which is why their output queues are directly connected
with their respective input queues to reinsert the emitted tuples
back into the protocol (see Figure 3). Independent of their
specific type, all queues in TARA are associated with a ded-
icated source or sink replica and therefore themselves do not
have to provide any fault-tolerance guarantees. Specifically, we
assume that a queue can crash as the result of a failure of its
associated replica, and vice versa. Apart from using advanced
queues such as Kafka [9], this assumption for example makes
it also possible to implement a queue as a simple Web service
that is integrated with its replica, as done in our prototype.

B. System Model

TARA makes only weak assumptions about the underlying
stream processing framework and thus is compatible with a
variety of existing systems (e.g., [5], [6], [7]). Specifically, it is
not necessary for the framework to already provide consensus-
based fault tolerance at a lower layer. At system startup, the
framework needs to deploy all TARA replicas and ensure that
the replicas of neighboring stages know each other. Once the
system is running, the primary task of the framework is to
handle the communication between replicas by routing the
emitted tuples to their designated receivers. TARA allows the
exchange of tuples to be performed using an asynchronous
network but due to the FLP impossibility [11] needs a partially
synchronous environment to guarantee eventual progress, as
it is the case for other replication protocols [1], [2], [8].

3

TARA clients and replicas (where necessary) are equipped with
retransmission mechanisms that are responsible for ensuring
eventual delivery even if the framework itself does not offer
reliable transmission of tuples. However, as discussed in
Section V, TARA can exploit built-in features to improve
efficiency in case a framework provides stronger semantics.

TARA tolerates up to f simultaneous replica crashes in each
protocol stage. If the underlying framework comprises means
to automatically recover replicas and their states after a failure,
the protocol is able to reintegrate them and thereby self-heal.

C. Request Handling

TARA relies on a Paxos-style consensus algorithm to ensure
that its executors process client commands in the same order
and thereby remain consistent. The algorithm is view based
and comprises three phases. First, a proposer replica assigns
monotonically increasing sequence numbers to newly incom-
ing requests. In a second step, the requests are replicated to a
set of committers that store and confirm the sequence-number
assignments. Finally, executors apply the commands in the
determined order and forward their results. For this algorithm
to be safe, only one of the proposer replicas at a time may
make new proposals. The active proposer p is determined by
the current view v (e.g., p = v%(f + 1)) and therefore loses
its role as the result of a view change (see Section III-E).

Consensus Process. To invoke an operation op at the
service application replicated by TARA, a client c creates
a 〈COMMAND, c, t, op〉 and then (either directly or via a
front end) inserts the command into a request input queue;
t is a logical or physical timestamp selected to be greater
than all timestamps of previous commands issued by this
client. In combination, client ID c and timestamp t enable
TARA to uniquely identify a command (e.g., to filter out
duplicates, see below). When request-source replica r removes
the command cmd from its input queue, the replica wraps it
in a 〈REQUEST, r, q, cmd〉 tuple and sends the request to the
proposer stage; q is a monotonically increasing request number
that enables TARA to track the request-handling progress.

Whenever the active proposer p of the current view v
receives a request req, it assigns a new sequence number s
to the request and multicasts a 〈PROPOSE, p, s, v, req〉 tuple
to all committers. A committer k only accepts the proposal
if it is also currently in view v. In such case, the committer
locally stores the sequence-number assignment for the request
and attests this step in a 〈COMMIT, k, s, v, req〉 tuple to all
executors. An executor accepts a request as soon as it has ob-
tained f + 1 commits from different committers for the same
sequence number, provided that the commits have all been is-
sued for the view the executor is currently in. At this point, the
request is committed and the consensus process complete.

Command Execution. Executors perform duplicate detection
to prevent the same command from being processed more than
once. For this purpose, they maintain a vector ~Texec in which
for each client they store the highest executed command times-
tamp. Furthermore, executors comprise a cache with the latest

results to be able to respond to duplicate commands without
having to reexecute them. Relying on these data structures, an
executor processes committed requests in the order of their
sequence numbers by performing the following steps. First,
the executor extracts the client command from the committed
request. Next, it compares the command’s timestamp tcmd to
the client’s locally stored timestamp texec. If tcmd ≤ texec,
the executor retrieves the result from the cache. Otherwise,
the executor updates texec, invokes the command’s operation,
and caches the computed result. Finally, the executor sends the
result (via reply sinks and possibly front end) to the client.

D. Garbage Collection

To prevent replicas from running out of memory, each pro-
tocol stage in TARA only maintains state for a limited amount
of consensus instances, represented by a fixed-size window of
sequence numbers whose lower bound is defined by a stability
threshold sstable. If its window is full, a replica temporarily
suspends its participation in the consensus process until it
learns that sstable has increased. Raising the stability thresh-
old is the main responsibility of TARA’s garbage-collection
mechanism and triggered by periodic executor checkpoints of
the application state. The rationale behind this approach is
that once the effects of an executed command are reflected
by a checkpoint, there is no longer a need to store consensus
information about the command. As a result, replicas in such
case are allowed to move their windows forward and garbage-
collect information from all previous consensus instances.

Creating Checkpoints. Executors in TARA periodically create
a checkpoint before processing a command with consensus
sequence number s%CP = 0; CP is a configurable system-
wide constant that represents the checkpoint interval. A check-
point includes all essential information that is necessary to
recreate the executor’s state at this sequence number, which
includes a snapshot of the service application, the vector ~Texec

that is used for duplicate detection (see Section III-C), as
well as the result cache. Once the checkpoint is complete, the
executor stores it at a predefined location. Stream processing
frameworks such as Heron [5] for these purposes typically
offer nodes access to local and remote file systems, and even
cloud-based storage services. Having stored the checkpoint,
the executor e in a last step sends sequence number s in a
〈CHECKPOINT, e, s〉 tuple to TARA’s garbage-collection sinks
from where the tuple is forwarded to the garbage-collection
sources via message queues (see Figure 3).

Updating the Stability Threshold. Garbage-collection source
replicas maintain a vector ~Scp that for each executor contains
the highest checkpoint sequence number learned from check-
point notifications. They select the stability threshold sstable
to be the f+1 highest element in ~Scp as this guarantees that at
least one copy of the corresponding checkpoint remains avail-
able, even if up to f copies are no longer accessible (e.g., due
to storage-server crashes). Whenever the stability threshold
increases, a source replica g emits a 〈STABLE, g, sstable〉 tuple
that is sent to all proposer, committer, and executor replicas.

4

Non-source replicas select the stability threshold as the f+1
highest value provided by different sources, which ensures
that other replicas will eventually learn the same threshold,
even if up to f sources crash in the meantime. Each time
the stability threshold increases, a replica adjusts its local
consensus window accordingly and discards all information
pertaining to lower sequence numbers. If an executor is
lagging behind, for example as a result of asynchrony in
the network, a window shift may cause the executor to skip
sequence numbers. In order to catch up, the executor in such
case first loads another executor’s checkpoint for the stability
threshold before continuing to process further commands.

E. View Change

TARA’s view-change mechanism enables the protocol to
switch to another proposer in case the previously active
proposer crashes. Decisions about whether a view change is
needed or not are made by a set of controller replicas that
continuously monitor the progress of the consensus process.
If the consensus gets stuck, the controllers announce a new
view, which is then installed by the replicas of other stages.

Triggering a View Change. The crash of the active proposer
temporarily results in no new requests being proposed for
ordering. Controllers in TARA are responsible for detecting
such a scenario and for this purpose constantly compare (1) the
number of incoming commands known to request sources with
(2) the number of commands whose consensus process report
the executors as complete. To provide the controllers with
the necessary information, each request source r periodically
emits a 〈TARGET, r, q〉 tuple to all controllers, which includes
the highest request number q the source has assigned to any
request (see Section III-C). In a similar way, each executor e
periodically reports the consensus progress by emitting an
〈ACTUAL, e, ~q〉 tuple; ~q is a vector that for each request
source contains the highest agreed request number. Relying
on request numbers in the described way has the key benefit
of enabling controllers to determine whether a request source
has outstanding commands that so far have not been executed.

A controller triggers a view change if the number of com-
pleted requests does not increase on at least f+1 executors for
a configurable amount of time, even though the corresponding
source has reported the existence of new commands. In such
case, the controller x increments a local view counter and
announces the new view v in a 〈VIEW, x, v〉 tuple. From this
point on, the system-wide publication of the new view via view
sinks and sources follows the same principle as the distribution
of the stability threshold, which was detailed in Section III-D.

Entering a New View. To ensure that the outcomes of already
completed consensus instances remain stable across a view
change, the newly appointed active proposer must learn about
the requests that might have committed in previous views,
and therefore possibly were processed by at least one executor.
TARA solves this problem by requiring committers to maintain
a record d = (s, v, req) for each sequence number s in their
window; the record contains the most recent view v for which

a committer has received a proposal as well as the associated
request req. Whenever a committer k learns about a higher
view, it combines all of its records in a set D and emits a
〈RECORD, k,D〉 tuple to TARA’s record sinks. The sinks rely
on their output queues to forward the tuples to the record
sources and finally to the active proposer of the new view.

Having been notified about a new view, the new proposer
waits until it has obtained f + 1 record tuples from different
committers. This guarantees that if a request had previously
passed the consensus process (which requires confirmations
from f+1 committers, see Section III-C), at least one of the re-
ceived record tuples must contain the sequence-number assign-
ment for the request. For each sequence number included in
record tuples, the new proposer selects the associated request
with the highest view as new proposal. After this procedure
is complete, the proposer is allowed to suggest new requests
for all sequence numbers not covered by the record tuples.

IV. PARALLELIZING TARA

This section discusses how to increase scalability in TARA
by applying the concept of consensus-oriented paralleliza-
tion [12]. The main idea of this approach is to (1) first
distribute the responsibility for performing consensus across
multiple partitions and then (2) afterwards deterministically
merge the outcomes of different partitions into a single
sequence of commands. Thanks to the underlying stream
processing framework handling tasks such as deployment
and communication, the integration of partitioning into TARA
requires only minor modifications at the protocol level.

As shown in Figure 4, each partition comprises its own sets
of proposer and committer replicas in order to be able to run
the agreement process independently of other partitions. Since
proposers are partition local, so are the view-change stages re-
sponsible for switching to another proposer replica in case the
old one crashes. In contrast, to minimize overhead we enable
all partitions to share the same garbage-collection replicas.

To ensure that all executors process requests in a consis-
tent manner, they use a round-robin algorithm to compute a
deterministic execution sequence number sexec = si ∗ P + i,
si ∈ N, i ∈= {0, ..., P −1}, with si being the partition-local
sequence number assigned to a command by a partition i and
P denoting the number of partitions. Once a command has
been processed in the application, an executor forwards the
result to the reply sinks of the corresponding partition.

GC Source Request Source View Source Record Source

Proposer

Committer

Executor

Controller

GC Sink Reply Sink View Sink Record Sink

Partitions

Fig. 4. Use of partitions to parallelize consensus in TARA.

5

V. IMPLEMENTATION

Our TARA prototype implementation1 is based on Heron [5],
a stream processing framework that, for example, is currently
used in production at Twitter. TARA offers similar client
and application interfaces as existing replication libraries. A
client or front end can asynchronously submit a request to
any request source and will receive a result over the same
channel. Since requests and results are represented as simple
byte strings, both can have an arbitrary size and structure.

As typical for Heron, each TARA node (see Figure 3) runs
in an independent process with its own Java virtual machine.
This strongly improves the fault isolation in the system, as the
failure of one node does not affect others, even when they run
on the same server. It additionally allows for easy debugging,
because each node can be accessed and analyzed individually.

In general, TARA makes it possible to distribute its nodes
across a large number of servers. However, for better compara-
bility with traditional replication libraries we co-locate replicas
of different stages (e.g., a proposer, a committer, an executor)
on the same server. Furthermore, for improved efficiency we
integrate the reply sinks with their corresponding executors.

As discussed in Section III-B, the TARA protocol where
necessary specifies its own retransmission mechanisms in
order to ensure progress in the presence of an unreliable
network. Implementing TARA on top of Heron, we are able to
outsource some of the retransmission logic to the underlying
framework by exploiting Heron’s built-in support for at-least-
once delivery of tuples that originate in source nodes.

VI. EVALUATION

This section evaluates our prototype implementation of
TARA, while relying on the widely used replication library
BFT-SMaRt [8] as baseline. As the name suggests, BFT-
SMaRt was originally designed to tolerate Byzantine faults,
however for a fair comparison with TARA we only evaluate
the library in its later added configuration for crash tolerance.

A. Development Effort

In order to get an impression of how our approach simplifies
the development of replication protocols, we analyze the size
of TARA’s code base compared with BFT-SMaRt (version 1.2).
Methodology. To ensure meaningful results, we only consider
functionality that is present in both implementations. For BFT-
SMaRt, this for example means that we exclude all code that
is solely required and executed if the system is configured to
tolerate Byzantine faults. Specifically, our analysis focuses on
the core parts of the two protocols, namely the mechanisms
for request handling, garbage collection, and view change.

Both the BFT-SMaRt and TARA implementation are written
in Java and use a similar coding style, which allows us to
perform the analysis based on the number of code lines spent
on a specific functionality. Of course, examining code-line
counts does not necessarily reveal all the complexity that
might be contained in an implementation, however it gives us

1The prototype is publicly available under https://gitlab.cs.fau.de/i4refit/tara

the big picture of what is necessary to develop a replication
infrastructure. Since we are interested in the effort it takes a
programmer to implement a protocol, we exclude code lines
that are trivial (e.g., due to only comprising a closing bracket),
usually automatically inserted by a programmer’s development
environment (e.g., import statements), or have no impact on
the running system (e.g., empty lines and comments).
Results. Table I presents the findings of our analysis. Apart
from the main mechanisms, we also report numbers for two
additional categories: data structures that cannot necessarily be
attributed to one specific mechanism, and code parts handling
general infrastructure tasks such as system startup or the
communication between replicas. Overall, the results show that
thanks to leveraging Heron as underlying platform, TARA’s
implementation is only about a third of the size of BFT-SMaRt.

Specifically, our analysis enables us to make three key
observations: (1) Attributing code parts to one of the five
categories was not always straightforward in case of BFT-
SMaRt as the implementation often intertwines multiple mech-
anisms within the same class, occasionally even within the
same method. In contrast, TARA’s design cleanly separates
the different mechanisms by implementing them in dedicated
nodes (as illustrated in Figure 3). For nodes that need to
participate in more than one mechanism (e.g., executors),
this separation is still visible within the node implementa-
tion in the form of different handlers for different types of
incoming tuples (e.g., commit tuples or garbage-collection
tuples). Altogether, TARA’s architecture makes it not only
easier to analyze the code, but also significantly simplifies
development, maintenance, and debugging. (2) A considerable
amount of protocol-level code in BFT-SMaRt is spent on the
synchronization of workflows that are implemented in different
threads. TARA, on the other hand, leaves most of the con-
currency handling to the underlying Heron and consequently
minimizes the need for programmers to deal with synchro-
nization themselves, a task that is notoriously error-prone.
(3) BFT-SMaRt itself comprises means for typical infrastruc-
ture duties such as establishing network connections, dispatch-
ing received messages, and handling communication failures,
all of which are examples of functionality that in TARA is
provided by Heron. Therefore, most code lines in TARA dedi-
cated to infrastructure are used to configure the Heron platform
and specify the node graph representing the protocol. As a
consequence, in the infrastructure category TARA allows a
code-size reduction of about 67% compared with BFT-SMaRt.

TABLE I
CODE-BASE COMPARISON BETWEEN BFT-SMART AND TARA

BFT-SMaRt TARA Difference
Request Handling 905 LoC 274 LoC – 70%
Garbage Collection 551 LoC 185 LoC – 66%
View Change 867 LoC 297 LoC – 66%
Data Structures 756 LoC 421 LoC – 44%
Infrastructure 918 LoC 299 LoC – 67%
Total (LoC: Lines of Code) 3,997 LoC 1,476 LoC – 63%

6

https://gitlab.cs.fau.de/i4refit/tara

0 5 10 15
0

20

40

60

80

100

BFT-SMaRt

TARA

Throughput [1,000 reqs/s]

La
te

nc
y

[m
s]

Fig. 5. Throughput versus latency
results for non-batched consensus.

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

BFT-SMaRt

TARA

Throughput [1,000 reqs/s]

La
te

nc
y

[m
s]

Fig. 6. Throughput versus latency for
batched consensus (batch size: 5).

B. Performance
To evaluate the performance of TARA in comparison with

BFT-SMaRt, we conduct experiments with a coordination
service [13] which we integrate with both systems. For the
replicas we use a cluster of three servers (Intel Xeon CPU
E3-1275, 3.6 GHz, 16 GB RAM); the clients are hosted by up
to five additional machines. We configure the clients to submit
requests in a closed loop, meaning that each client waits with
the transmission of a new request until it has received the
result to its previous one. The performance results reported in
the following represent the average of three runs each.
Non-batched Consensus. In our first experiment, we con-
figure BFT-SMaRt and TARA to order one client request per
consensus instance, since this setting is a stress test for the
request-handling mechanism and hence ideal for assessing the
efficiency of the replication protocol. As shown in Figure 5,
when we increase the workload BFT-SMaRt quickly reaches
saturation at a throughput of about 4,300 requests per sec-
ond. This behavior is caused by the fact that BFT-SMaRt’s
consensus sub-protocol strictly sequentializes the agreement
process by executing at most one consensus instance at a time.
Consequently, once the system reaches a point at which there
is always a consensus instance active, it is no longer able to
further increase throughput. This bottleneck in turn causes the
latency to increase considerably, as also visible in Figure 5.

Compared with BFT-SMaRt TARA starts with a higher
latency, which is mainly a result of the inter-process communi-
cation overhead in Heron. However, in contrast to BFT-SMaRt,
TARA is able to keep response times low at higher throughputs
due to processing consensus instances in a pipelined manner.
That is, as long as there are free slots in the sequence-
number window (see Section III-D), the proposer in TARA can
submit new proposals without the need to wait for the previous
consensus instances to complete. This pipelining allows TARA
to handle up to 13,000 requests per second in this setting,
which is about three times the throughput of BFT-SMaRt.
Batched Consensus. To reduce the agreement overhead per
request, replication protocols commonly offer the possibility to
order a batch of multiple requests within the same consensus
instance [8]. For our second experiment, we implement this
technique in TARA by enabling request sources to combine
incoming client commands and forward them as a single batch
request. Figure 6 presents the results of this experiment with
a maximum batch size of 5 in comparison with BFT-SMaRt.

0

1

2

1 2 3 4
Number of partitions

Th
ro

ug
hp

ut
[1

,0
00

re
qs

/s
]

Fig. 7. TARA throughput for
different numbers of partitions.

0 30 60 90 120 150 180
0

1

2

3

4

Time [s]

Th
ro

ug
hp

ut
[1

,0
00

re
qs

/s
]

TARA
BFT-SMaRt

Fig. 8. Impact of proposer failures on the
throughput of BFT-SMaRt and TARA.

In essence, the performance numbers show the same picture
as in the non-batched consensus case, only at higher absolute
throughput of close to 40,000 requests per second. This clearly
shows that TARA can benefit from batching.

Besides batching, other common protocol-level optimiza-
tions such as read optimization or tentative execution could be
integrated into TARA as well. On the other hand, optimizations
relying on a monolithic system layout (e.g., fast paths between
steps on the same replica) are not applicable to TARA as each
step by design resides in its own node.

C. Partitions

Parallelizing consensus, as done by the partitioned variant
of TARA (see Section IV), is especially relevant in use-
case scenarios in which the agreement process constitutes
the performance bottleneck of the system [14], for example
due to the nodes involved being resource constrained. In our
third experiment, we create such a setting by individually
throttling the proposer so that overall throughput is now at
about 800 requests per second. As shown in Figure 7, in
such a setting the use of multiple partitions enables TARA
to scale by parallelizing consensus across a larger number
of (also resource-constrained) nodes. Notice that BFT-SMaRt
does not support partitioned consensus, which is why for this
experiment we only report measurement results for TARA.

D. Fault Tolerance

In our fourth experiment, we expose the two systems
to leader failures in order to evaluate their view-change
mechanisms. As shown in Figure 8, when we deliberately
crash the current leader replica (i.e., the active proposer node
in TARA) after 60 seconds of uninterrupted service, both
systems trigger a view change to assign the leader role to
a different replica. While without leader, during the view
change no new requests can be agreed on and consequently
the throughput temporarily drops to zero before eventually
returning to a higher level. When we repeat the procedure
with the newly elected leader 120 seconds into the experiment,
BFT-SMaRt becomes unavailable since a single remaining
replica is insufficient to safely make progress. In contrast,
TARA is able to continue request processing even after the
second proposer crash, because Heron in the meantime has
automatically restarted the first proposer replica after having
detected its failure. This example scenario illustrates a key
benefit of implementing replication protocols on top of stream

7

processing frameworks such as Heron: TARA can leverage
Heron’s support for automated recovery, a feature that is
commonly not part of traditional replication libraries.

VII. RELATED WORK

Replication protocols are notoriously difficult to implement,
which is why several previous works have aimed at easing their
development. For this reason, for example, a large body of sec-
ondary literature exists whose main purpose is to give advice
on how to implement replication protocols such as Paxos based
on their specification (e.g., [3], [4], [15]). Ongaro et al. [2]
even went one step further by designing a replication protocol
from scratch and targeting understandability as most important
property. In this paper, we have shown stream-based replica-
tion to be an approach that effectively minimizes the number
of problems a programmer needs to worry about when imple-
menting a replication protocol. Still, the resulting system is
able to match (or in some cases even exceed) the efficiency of
traditional replication libraries, as confirmed by our evaluation.

Replication is an essential concept when it comes to pro-
viding fault tolerance in stream processing systems [16],
[17], [18], [19], however notice that previous works in this
area had a fundamentally different focus than TARA. While
other researchers aimed at providing replication-based fault
tolerance to stream processing applications, TARA itself is
a stream processing application that offers fault tolerance to
arbitrary network-based services. That is, instead of integrating
replication mechanisms into the framework and tailoring them
to the specific characteristics of stream processing applica-
tions [16], [17], [18], [19], TARA implements state-machine
replication on top of such a framework in a generic manner.

With stream processing systems playing an important role in
production, over the years significant efforts have been made to
improve different aspects of these frameworks. Among other
things, this includes approaches to optimize the deployment
of processing nodes on the machines available [20], tech-
niques to minimize energy consumption based on the current
workload [21], and mechanisms to retain high quality-of-
service levels even in the presence of load spikes [22], [23].
Since TARA itself is a stream processing application, it is
able to benefit from many existing (and potentially future)
improvements to underlying stream processing frameworks.
For example, apart from the fact that replicas of the same stage
must not be executed on the same server, TARA imposes no re-
strictions on the mapping of processing nodes to machines, and
consequently can profit from optimized placement algorithms.

VIII. CONCLUSION

In this paper we presented stream-based state-machine repli-
cation, an approach that leverages stream processing frame-
works to significantly simplify the development, deployment,
and operation of general-purpose replication protocols. The
analysis of our first stream-based protocol TARA shows that
our method reduces code size by about two thirds compared
with the BFT-SMaRt library. Even though the additional layer
of the stream processing engine leads to an increase in latency,

TARA is still able to sustain throughputs of tens of thousands
of requests per second. Additionally, the automated recovery
mechanism of the stream processing engine allows TARA to
automatically restart and reintegrate failed leaders without any
necessary manual actions.

Acknowledgments: This work was partially supported by the German
Research Council (DFG) under grant no. DI 2097/1-2 (“REFIT”).

REFERENCES

[1] L. Lamport, “The part-time parliament,” ACM Trans. on Computer
Systems, vol. 16, no. 2, pp. 133–169, 1998.

[2] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in Proc. of USENIX ATC ’14, 2014, pp. 305–320.

[3] T. D. Chandra, R. Griesemer, and J. Redstone, “Paxos made live: An
engineering perspective,” in Proc. of PODC ’07, 2007, pp. 398–407.

[4] J. Kirsch and Y. Amir, “Paxos for system builders: An overview,” in
Proc. of LADIS ’08, 2008, pp. 14–18.

[5] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal,
J. M. Patel, K. Ramasamy, and S. Taneja, “Twitter Heron: Stream
processing at scale,” in Proc. of SIGMOD ’15, 2015, pp. 239–250.

[6] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulka-
rni, J. Jackson, K. Gade, M. Fu, J. Donham, N. Bhagat, S. Mittal, and
D. Ryaboy, “Storm @Twitter,” in Proc. of SIGMOD ’14, 2014, pp. 147–
156.

[7] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache Flink: Stream and batch processing in a single
engine,” Bulletin of the IEEE Computer Society Technical Committee on
Data Engineering, vol. 36, no. 4, 2015.

[8] A. Bessani, J. Sousa, and E. E. P. Alchieri, “State machine replication
for the masses with BFT-SMaRt,” in Proc. of DSN ’14, 2014.

[9] J. Kreps, N. Narkhede, and J. Rao, “Kafka: A distributed messaging
system for log processing,” in Proc. of NetDB ’11, 2011, pp. 1–7.

[10] “Kestrel,” https://github.com/twitter-archive/kestrel.
[11] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of

distributed consensus with one faulty process,” Journal of the ACM,
vol. 32, no. 2, pp. 374–382, 1985.

[12] J. Behl, T. Distler, and R. Kapitza, “Scalable BFT for multi-cores: Actor-
based decomposition and consensus-oriented parallelization,” in Proc. of
HotDep ’14, 2014, pp. 49–54.

[13] T. Distler, C. Cachin, and R. Kapitza, “Resource-efficient Byzantine fault
tolerance,” IEEE Trans. on Computers, vol. 65, no. 9, pp. 2807–2819,
2016.

[14] J. Behl, T. Distler, and R. Kapitza, “Consensus-oriented parallelization:
How to earn your first million,” in Proc. of Middleware ’15, 2015, pp.
173–184.

[15] T. Distler, “Byzantine fault-tolerant state-machine replication from a
systems perspective,” ACM Computing Surveys, vol. 54, no. 1, 2021.

[16] M. Balazinska, H. Balakrishnan, S. Madden, and M. Stonebraker, “Fault-
tolerance in the Borealis distributed stream processing system,” in Proc.
of SIGMOD ’05, 2005, pp. 13–24.

[17] A. Martin, T. Knauth, S. Creutz, D. Becker, S. Weigert, C. Fetzer,
and A. Brito, “Low-overhead fault tolerance for high-throughput data
processing systems,” in Proc. of SRDS ’11, 2011, pp. 689–699.

[18] X. Liu, A. Harwood, S. Karunasekera, B. Rubinstein, and R. Buyya,
“E-Storm: Replication-based state management in distributed stream
processing systems,” in Proc. of ICPP ’17, 2017, pp. 571–580.

[19] A. Martin, A. Brito, and C. Fetzer, “Low cost synchronization for
actively replicated data streams,” in Proc. of LADC ’19, 2019.

[20] L. Aniello, R. Baldoni, and L. Querzoni, “Adaptive online scheduling
in Storm,” in Proc. of DEBS ’13, 2013, p. 207–218.

[21] C. Eibel, C. Gulden, W. Schröder-Preikschat, and T. Distler, “Strome:
Energy-aware data-stream processing,” in Proc. of DAIS ’18, 2018, pp.
40–57.

[22] N. Tatbul, U. Çetintemel, and S. Zdonik, “Staying FIT: Efficient load
shedding techniques for distributed stream processing,” in Proc. of
VLDB ’07, 2007, pp. 159–170.

[23] N. Rivetti, Y. Busnel, and L. Querzoni, “Load-aware shedding in stream
processing systems,” in Trans. on Large-Scale Data-and Knowledge-
Centered Systems XLVI, 2020, pp. 121–153.

8

https://github.com/twitter-archive/kestrel

APPENDIX A
TARA PROTOCOL SPECIFICATION

This specification describes TARA, a crash-fault tolerant
state-machine replication protocol designed to run on top of
a stream processing framework such as Apache Heron. The
specification includes all components that are part of the
stream processing workflow of TARA, it does not encompass
components outside of the core system such as clients and
incoming/outgoing queues.

The specification first introduces all required data structures,
grouped by their designated task in the system. Afterwards, the
protocol nodes of TARA are specified. They can be split into
three groups: sources, sinks and processing nodes.

Sources represent the start of the stream processing work-
flow and generate tuples based on an input queue that is
fed by an outside source (i.e., clients/frontends or queues
from the corresponding sinks). Sinks, on the other hand,
represent the end of the stream processing workflow. Reply
sinks pass responses to the client whereas the other sinks are
responsible for feeding garbage collection information back
to their corresponding sources (e.g., by using a shared queue).
As all sinks work in the same fashion, they are not specified
individually but are all represented by a common SINK class.
All nodes in between a source and a sink are processing nodes:
They receive tuples from preceding nodes, process those, and
forward the resulting tuples to subsequent nodes.

The nodes in TARA have the following tasks:

Request Source: Receives requests from clients (or fron-
tends) and passes them into the consensus
algorithm.

GC Source: Forwards garbage collection information to
processing nodes.

View Source: Forwards information about the current
view to processing nodes.

Record Source: Forwards records to processing nodes when
a view change was issued.

Proposer: In each view, one acts as the current leader
and assigns a sequence number to each
issued request.

Committer: Acknowledges and forwards the sequence
number/request-tuples proposed by the cur-
rent proposer.

Executer: Executes requests after enough committers
acknowledged them and previous requests
have been executed.

Controller: Monitors whether the current proposer is
active and issues a view change if not.

Request Sink: Sends responses back to clients (or fron-
tends).

GC Sink: Feeds the current garbage collection infor-
mation back to the GC sources.

View Sink: Feeds information on the current view back
to the view sources.

Record Sink: Feeds records to the record sources when
a view change was issued.

TABLE II
NUMBER OF NODES REQUIRED TO TOLERATE UP TO f FAULTS

Node Type # of Nodes
Request Source f + 1

GC Source 2f + 1

View Source 2f + 1

Record Source 2f + 1

Proposer f + 1

Committer 2f + 1

Executor 2f + 1

Controller f + 1

Request Sink f + 1

GC Sink 2f + 1

View Sink 2f + 1

Record Sink 2f + 1

To tolerate up to f crash faults, the system must contain the
number of nodes as shown in Table II.

Furthermore, the specification makes some assumptions on
the interaction of TARA with the stream processing framework
underneath: For sources, the produce()-function specifies
how the next tuple of a source is generated. It is assumed
that the stream processing framework offers an interface
that lets sources emit tuples on a regular basis, as is done
by the nextTuple()-method of the ISpout interface in
Heron. For sinks and processing nodes, the stream processing
framework must offer a way to receive tuples from preceding
nodes. In the specification, it is assumed these are passed to the
process()-methods that each processing node/sink owns.
Additionally, sources and processing nodes assume the stream
processing framework offers an emit()-method to pass a
tuple to a specified group of subsequent nodes. Loops of the
form “For each TYPE t in [a, b]” define the start index a as
inclusive and the end index b as exclusive.

9

Data Structures

Helper Functions

1 /* If−then−else */
2 ANY ite(BOOLEAN v; ANY a, ANY b) {
3 If (v == true) return a;
4 return b;
5 }

Basic Data Structures

1 interface SET<V> {
2 /* Operations */
3 void add(V value);
4 }

5 interface MAP<K, V> {
6 /* State */
7 SET<K> keys;
8 SET<V> values;
9

10 /* Operations */
11 VOID put(K k, V v); /* Key accessed via [] operator */
12 V get(K k); /* Accessed via [] operator */
13 }

Window

1 class WINDOW<V> {
2 /* State */
3 NUMBER capacity;
4 NUMBER min;
5 NUMBER max;
6 NUMBER pos;
7 V[] values;
8
9 /* Constructor */

10 WINDOW(NUMBER min, NUMBER max) {
11 capacity := max − min;
12 min := min;
13 max := max;
14 pos := min;
15 values := V[capacity];
16 }
17
18 /* Operation */
19 VOID put(NUMBER index, V value) { /* Index accessed via [] operator */
20 /* Check state and input */
21 If (pos == max) return;
22 If (pos != index) return;
23
24 /* Update state */
25 values[index − min] := value;
26 pos := index + 1;
27 }
28
29 V get(NUMBER index) { /* Index accessed via [] operator */
30 If (index < min) return nil;
31 If (index >= pos) return nil;
32 return values[index − min];
33 }
34
35 /* Operations */
36 VOID fill(NUMBER to) {
37 If (to <= pos) return;
38 If (to > max) return;
39 pos = to;
40 }
41
42 VOID move(NUMBER min) {
43 /* Only move forward */
44 If (min <= min) return;
45
46 /* Determine state */
47 V[] vs := V[capacity];
48 For each NUMBER index in

[min, min + capacity]: vs[index − min] := this[index];
49
50 /* Update state */
51 min := min;
52 max := min + capacity;
53 pos := max(pos, min);
54 values := vs;
55 }
56
57 VOID clear(NUMBER from) {
58 NUMBER start := max(from, min);
59 For each NUMBER index in [start, pos]: values[index − min] := nil;
60 pos := start;
61 }
62
63 VOID reset() {
64 clear(min);
65 }
66
67 BOOLEAN appendable(NUMBER index) {
68 If (pos == max) return false;
69 return (pos == index);
70 }
71
72 VOID append(V value) {
73 put(pos, value);
74 }
75 }

76 typedef WINDOWS<I is an ID, V>: MAP<I, WINDOW<V>>

Comparison

1 class NUMBEROPINIONS<I is an ID> extends MAP<I, NUMBER> {
2 /* Constructor */
3 NUMBEROPINIONS() {
4 For each I id: this[id] := 0;
5 }
6
7 /* Operation */
8 NUMBER highest(NUMBER threshold) {
9 NUMBER[] ranking := values sorted in descending order;

10 return ranking[threshold − 1];
11 }
12 }

13 class PROGRESSOPINIONS<I is an ID, P is a MAP<D is an ID, NUMBER>>
extends MAP<I, P> {

14 /* Constructor */
15 PROGRESSOPINIONS() {
16 For each I key {
17 this[key] := MAP();
18 For each D id: this[key][id] := 0;
19 }
20 }
21
22 /* Operation */
23 P highest(NUMBER threshold) {
24 P result := MAP();
25 For each D id {
26 NUMBEROPINIONS opinions := NUMBEROPINIONS<I>();
27 For each I key: opinions[key] := this[key][id];
28 result[id] := opinions.highest(threshold);
29 }
30 return result;
31 }
32 }

33 class WINDOWOPINIONS<I is an ID, V> extends MAP<I, WINDOW<V>> {
34 /* Constructor */
35 WINDOWOPINIONS(NUMBER min, NUMBER max) {
36 For each I id: this[id] := WINDOW(min, max);
37 }
38
39 /* Operations */
40 VOID fill(NUMBER to) {
41 For each I id: this[id].fill(to);
42 }
43
44 VOID move(NUMBER min) {
45 For each I id: this[id].move(min);
46 }
47
48 VOID sync(WINDOW<NUMBER, *> window) {
49 For each I id: this[id].sync(window);
50 }
51
52 VOID sync(N min) {
53 For each I id {
54 this[id].move(min);
55 this[id].clear(min);
56 }
57 }
58
59 NUMBER available(N index) {
60 NUMBER count := 0;
61 For each I id {
62 If (index < this[id].pos) count++;
63 }
64 return count;
65 }
66 }

Observer

1 class OBSERVER<I is an ID> {
2 /* State */
3 NUMBEROPINIONS<I> thresholds;
4 NUMBER current;
5
6 /* Initialization */
7 OBSERVER() {
8 thresholds := NUMBEROPINIONS();
9 current := 0;

10 }
11
12 BOOLEAN update(I index, NUMBER threshold) {
13 /* Check input */
14 If (threshold <= current) return false;
15 If (threshold <= thresholds[index]) return false;
16
17 /* Store input */
18 thresholds[index] := threshold;
19
20 /* Update state */
21 NUMBER old := current;
22 current := thresholds.highest(F+1);
23 return (current != old);
24 }
25 }

Protocol Data Structures

1 class PAYLOAD {
2 /* State */
3 CLIENTID xid;
4 COMMANDNR xnr;
5 ANY payload;
6
7 /* Constructor */
8 PAYLOAD(CLIENTID xid, COMMANDNR xnr, ANY payload) {
9 xid := xid;

10 xnr := xnr;
11 payload := payload;
12 }
13 }

14 class REQUEST {
15 /* State */
16 REQUESTSOURCEID source;
17 REQUESTNR rnr;
18 COMMAND command;
19
20 /* Constructor */
21 REQUEST(REQUESTSOURCEID source, REQUESTNR rnr,

COMMAND command) {
22 source := source;
23 rnr := rnr;
24 command := command;
25 }
26 }

27 class SNAPSHOT {
28 /* State */
29 STATE state;
30 MAP<CLIENTID, COMMANDNR> filter;
31 MAP<CLIENTID, RESULT> results;
32
33 /* Constructor */
34 SNAPSHOT(STATE state, MAP<CLIENTID, COMMANDNR> filter,

MAP<CLIENTID, RESULT> results) {
35 state := state;
36 filter := filter;
37 results := results;
38 }
39 }

40 class RECORD {
41 /* State */
42 VIEWNR view;
43 REQUEST request;
44
45 /* Initialization */
46 RECORD(VIEWNR view, REQUEST request) {
47 view := view;
48 request := request;
49 }
50 }

51 typedef COMMAND: PAYLOAD;
52 typedef RESULT: PAYLOAD;
53 typedef PROGRESS: MAP<REQUESTSOURCEID, REQUESTNR>;

Tuples

1 class TUPLE {
2 /* State */
3 NODEID creator;
4
5 /* Initialization */
6 TUPLE(NODEID i) {
7 creator := i;
8 }
9 }

10 class REQUESTTUPLE extends TUPLE {
11 /* State */
12 REQUEST request;
13
14 /* Initialization */
15 REQUESTTUPLE(NODEID i, REQUEST r) : TUPLE(i) {
16 request := r;
17 }
18 }

19 class CONSENSUSTUPLE extends TUPLE {
20 /* State */
21 PARTITION partition;
22 SEQNR snr;
23 VIEWNR view;
24 REQUEST request;
25
26 /* Initialization */
27 CONSENSUSTUPLE(NODEID i, PARTITION p, SEQNR s, VIEWNR v,

REQUEST r) : TUPLE(i) {
28 partition := p;
29 snr := s;
30 view := v;
31 request := r;
32 }
33 }

34 class RESULTTUPLE extends TUPLE {
35 /* State */
36 RESULT result;
37
38 /* Initialization */
39 RESULTTUPLE(EXECUTORID i, RESULT r) : TUPLE(i) {
40 result := r;
41 }
42 }

43 class GCTUPLE extends TUPLE {
44 /* State */
45 CHECKPOINTNR cnr;
46 SET<EXECUTORID> executors;
47
48 /* Initialization */
49 GCTUPLE(NODEID i, CHECKPOINTNR c, SET<EXECUTORID> es) :

TUPLE(i) {
50 cnr := c;
51 executors := es;
52 }
53
54 /* Operation */
55 SEQNR snr() {
56 return (cnr * CP INTERVAL) / #PARTITIONS;
57 }
58 }

59 class PROGRESSTUPLE extends TUPLE {
60 /* State */
61 PROGRESS progress;
62
63 /* Initialization */
64 PROGRESSTUPLE(NODEID i, REQUESTNR r) : TUPLE(i) {
65 progresses := PROGRESS();
66 progresses[i] := r;
67 }
68
69 PROGRESSTUPLE(NODEID i, PROGRESS p) : TUPLE(i) {
70 progress := p;
71 }
72 }

73 class VIEWTUPLE extends TUPLE {
74 /* State */
75 PARTITION partition;
76 VIEWNR view;
77
78 /* Initialization */
79 VIEWTUPLE(NODEID i, PARTITION p, VIEWNR v) : TUPLE(i) {
80 partition := p;
81 view := v;
82 }
83 }

84 class RECORDTUPLE extends TUPLE {
85 /* State */
86 PARTITION partition;
87 VIEWNR view;
88 WINDOW<RECORD> records;
89
90 /* Initialization */
91 RECORDTUPLE(NODEID i, PARTITION p, VIEWNR v,

WINDOW<RECORD> rs) : TUPLE(i) {
92 partition := p;
93 view := v;
94 records := rs;
95 }
96 }

Protocol Nodes

Nodes

1 class NODE {
2 /* State */
3 NODEID id;
4
5 /* Initialization */
6 TUPLE(NODEID i) {
7 id := i;
8 }
9 }

10 class SOURCE extends NODE {
11 /* Initialization */
12 SOURCE(NODEID i) : TUPLE(i) {}
13 }

14 class PROCESSOR extends NODE {
15 /* Initialization */
16 PROCESSOR(NODEID i) : TUPLE(i) {}
17
18 /* Output */
19 VOID emit(TUPLE t, SET<NODEID> is) {
20 If (t != nil) Send tuple t to the nodes represented by the IDs in is;
21 }
22 }

23 class SINK extends NODE {
24 /* State */
25 QUEUE queue; /* External queue */
26
27 /* Initialization */
28 SINK(NODEID i, QUEUE q) : TUPLE(i) {
29 queue := q;
30 }
31
32 /* Tuple handling */
33 VOID process(TUPLE t) {
34 queue.append(t);
35 }
36 }

Request Source

1 class REQUESTSOURCE extends SOURCE {
2 /* State */
3 PARTITION partition;
4 QUEUE<COMMAND> commands; /* External queue */
5 REQUESTNR next;
6
7 /* Initialization */
8 REQUESTSOURCE(REQUESTSOURCEID i, PARTITION p,

QUEUE<COMMAND> q) : SOURCE(i) {
9 partition := p;

10 commands := q;
11 next := 0;
12 }
13
14 /* Command handling */
15 VOID produce() {
16 /* Create and emit request */
17 COMMAND c := commands.dequeue();
18 REQUEST r := REQUEST(id, next, c);
19 REQUESTTUPLE request := REQUESTTUPLE(id, r);
20 emit(request, PROPOSERS(partition));
21
22 /* Update state */
23 next := next + 1;
24 }
25
26 /* View change */
27 Periodically {
28 PROGRESSTUPLE progress := PROGRESSTUPLE(id, next);
29 emit(progress, CONTROLLERS(partition));
30 }
31 }

GC Source

1 class GCSOURCE extends SOURCE {
2 /* State */
3 QUEUE<GCTUPLE>[] gcs; /* External queues */
4 GCTUPLE output;
5 OBSERVER<EXECUTORID> gc;
6
7 /* Initialization */
8 GCSOURCE(GCSOURCEID i, QUEUE<GCTUPLE>[] qs) : SOURCE(i) {
9 gcs := qs;

10 output := GCTUPLE(id, 0, nil);
11 gc := OBSERVER();
12 }
13
14 /* Garbage collection */
15 VOID produce() {
16 /* Update state */
17 GCTUPLE gt := gcs[id].dequeue();
18 SET<EXECUTORID> es := SET();
19 If (gt.creator is a GCSOURCEID) {
20 If (gt.cnr <= gc.current) return;
21 gc.current := gt.cnr;
22 es := gt.executors;
23 } else if (gt.creator is a GCSINKID) {
24 If (gc.update(gt.creator, gt.cnr) == false) return;
25 For each EXECUTORID e {
26 If (gc.thresholds[e] >= gc.current) es.add(e);
27 }
28 }
29
30 /* Publish new garbage−collection threshold */
31 output := GCTUPLE(id, gc.current, es);
32 emit(output, PROPOSERS());
33 emit(output, COMMITTERS());
34 emit(output, EXECUTORS());
35 }
36
37 Periodically {
38 For each GCSOURCEID i {
39 If (i != id) gcs[i].append(output);
40 }
41 }
42 }

View Source

1 class VIEWSOURCE extends SOURCE {
2 /* State */
3 PARTITION partition;
4 VIEWTUPLE output;
5 QUEUE<VIEWTUPLE>[] views; /* External queues */
6 OBSERVER<CONTROLLERID> view;
7
8 /* Initialization */
9 VIEWSOURCE(VIEWSOURCEID i, PARTITION p,

QUEUE<VIEWTUPLE>[] qs) : SOURCE(i) {
10 partition := p;
11 views := qs;
12 output := VIEWTUPLE(id, partition, 0);
13 view := OBSERVER();
14 }
15
16 /* View change */
17 VOID produce() {
18 /* Update state */
19 VIEWTUPLE vt := views[id].dequeue();
20 If (vt.creator is a VIEWSOURCEID) {
21 If (vt.view <= view.current) return;
22 view.current := vt.view;
23 } else if (vt.creator is a VIEWSINKID) {
24 If (view.update(vt.creator, vt.view) == false) return;
25 }
26
27 /* Publish new view */
28 output := VIEWTUPLE(id, partition, view.current);
29 emit(output, PROPOSERS(partition));
30 emit(output, COMMITTERS(partition));
31 emit(output, CONTROLLERS(partition));
32 emit(output, EXECUTORS());
33 }
34
35 Periodically {
36 For each VIEWSOURCEID i {
37 If (i != id) views[i].append(output);
38 }
39 }
40 }

Record Source

1 class RECORDSOURCE extends SOURCE {
2 /* State */
3 PARTITION partition;
4 QUEUE<RECORDTUPLE> records; /* External queue */
5
6 /* Initialization */
7 RECORDSOURCE(RECORDSOURCEID i, PARTITION p,

QUEUE<RECORDTUPLE> q) : SOURCE(i) {
8 partition := p;
9 records := q;

10 }
11
12 /* View change */
13 VOID produce() {
14 RECORDTUPLE record := records.dequeue();
15 emit(record, PROPOSERS(partition));
16 }
17 }

Proposer

1 class PROPOSER extends PROCESSOR {
2 /* State */
3 PARTITION partition;
4 SEQNR next;
5 WINDOWS<REQUESTSOURCEID, REQUESTNR, REQUEST> requests;
6 WINDOWOPINIONS<COMMITTERID, RECORD> records;
7 SET<COMMITTERID> recorded;
8 OBSERVER<GCSOURCEID> gc;
9 OBSERVER<VIEWSOURCEID> view;

10 MODE mode; /* NORMAL, VIEW CHANGE, or IDLE */
11
12 /* Initialization */
13 PROPOSER(PROPOSERID i, PARTITION p) : PROCESSOR(i) {
14 partition := p;
15 next := 0;
16 requests := WINDOWS();
17 records := WINDOWOPINIONS(0, WINDOW SIZE);
18 recorded := SET();
19 gc := OBSERVER();
20 view := OBSERVER();
21 mode := ite(id == PROPOSER OF VIEW(view.current), NORMAL, IDLE);
22 }
23
24 /* Request handling */
25 VOID process(REQUESTTUPLE rt) {
26 If (requests[rt.creator].appendable(rt.request.rnr) == false) {
27 If (mode == NORMAL) return;
28 /* Make room for new request on idle proposers */
29 requests[r.source].move(r.rnr);
30 }
31 requests[rt.creator].append(rt.request);
32 If (mode == NORMAL) propose();
33 }
34
35 VOID propose() {
36 While (next < (gc.current + WINDOW SIZE)) {
37 /* Determine request */
38 REQUEST r := nil;
39 For each REQUESTSOURCEID rqs in random order {
40 If (requests[rqs].min == requests[rqs].pos) continue;
41 r := requests[rqs][requests[rqs].min];
42 break;
43 }
44 If (r == nil) break;
45
46 /* Publish proposal */
47 CONSENSUSTUPLE proposal :=

CONSENSUSTUPLE(id, partition, next, view.current, r);
48 emit(proposal, COMMITTERS(partition));
49
50 /* Update state */
51 next := next + 1;
52 requests[r.source].move(r.rnr + 1);
53 }
54 }
55
56 /* Garbage collection */
57 VOID process(GCTUPLE gt) {
58 /* Update garbage−collection information */
59 If (gc.update(gt.creator, gt.snr()) == false) return;
60
61 /* Collect garbage */
62 records.move(gc.current);
63 If (mode == NORMAL) propose();
64 }
65
66 /* View change */
67 VOID process(VIEWTUPLE vt) {
68 /* Update view information */
69 If (view.update(vt.creator, vt.view) == false) return;
70
71 /* Trigger view change */
72 next := gc.current;
73 records.clear(next);
74 recorded := SET();
75 mode := ite(id == PROPOSER OF VIEW(view.current), VIEW CHANGE,

IDLE);
76 }
77
78 VOID process(RECORDTUPLE rt) {
79 /* Check records */
80 If (mode != VIEW CHANGE) return;
81 If (rt.view != view.current) return;
82 If (rt.creator ∈ recorded) return;
83
84 /* Store records */
85 next := max(next, rt.records.min);
86 records.move(rt.records.min);
87 For each SEQNR s in [rt.records.min, rt.records.pos]:

records[s] := rt.records[s];

88 recorded.add(rt.creator);
89 gc.current := max(gc.current, rt.records.min);
90
91 /* Return if the record information is not yet complete */
92 If (| recorded | < F+1) return;
93
94 /* Perform view change */
95 For each SEQNR s in [gc.current, gc.current + WINDOW SIZE] {
96 /* Determine proposal */
97 RECORD r := RECORD(−1, nil);
98 For each COMMITTERID cmr {
99 If (s <= records[cmr].pos) continue;

100 If (records[cmr][s].view > r.view) r := records[cmr][s];
101 }
102 next := s;
103 If (r.view == −1) break;
104 requests[r.request.source].move(r.request.rnr + 1);
105
106 /* Publish proposal */
107 CONSENSUSTUPLE proposal := CONSENSUSTUPLE(id, partition,

next, view.current, r.request);
108 emit(proposal, COMMITTERS(partition));
109 }
110
111 /* Switch mode */
112 mode := NORMAL;
113 propose();
114 }
115 }

Committer

1 class COMMITTER extends PROCESSOR {
2 /* State */
3 PARTITION partition;
4 WINDOW<REQUEST> commits;
5 WINDOW<RECORD> records;
6 OBSERVER<GCSOURCEID> gc;
7 OBSERVER<VIEWSOURCEID> view;
8
9 /* Initialization */

10 COMMITTER(COMMITTERID i, PARTITION p) : PROCESSOR(i) {
11 partition := p;
12 commits := WINDOW(0, WINDOW SIZE);
13 records := WINDOW(0, WINDOW SIZE);
14 gc := OBSERVER();
15 view := OBSERVER();
16 }
17
18 /* Request handling */
19 VOID process(CONSENSUSTUPLE ct) {
20 /* Check proposal */
21 If (ct.view != view.current) return;
22 If (commits.appendable(ct.snr) == false) return;
23
24 /* Update state */
25 commits.append(ct.request);
26
27 /* Publish commit */
28 CONSENSUSTUPLE commit :=

CONSENSUSTUPLE(id, partition, ct.snr, ct.view, ct.request);
29 emit(commit, EXECUTORS());
30 }
31
32 /* Garbage collection */
33 VOID process(GCTUPLE gt) {
34 /* Process tuple */
35 If (gc.update(gt.creator, gt.snr()) == false) return;
36
37 /* Collect garbage */
38 commits.move(gc.current);
39 records.move(gc.current);
40 }
41
42 /* View change */
43 VOID process(VIEWTUPLE vt) {
44 /* Update view information */
45 NUMBER old := view.current;
46 If (view.update(vt.creator, vt.view) == false) return;
47
48 /* Perform view change by updating records */
49 For each SEQNR s in [commits.min, commits.pos] {
50 records[s] := RECORD(old, commits[s]);
51 }
52 commits.reset();
53
54 /* Publish records */
55 RECORDTUPLE record :=

RECORDTUPLE(id, partition, view.current, records);
56 emit(record, RECORD SINKS(partition));
57 }
58 }

Executor

1 class EXECUTOR extends PROCESSOR {
2 /* State */
3 APPLICATION application;
4 EXECUTIONNR next;
5 EXECUTORPARTITION[] partitions;
6 MAP<CLIENTID, COMMANDNR> filter;
7 MAP<CLIENTID, RESULT> results;
8 CHECKPOINTNR checkpoint;
9 OBSERVER<GCSOURCEID> gce;

10
11 /* Initialization */
12 EXECUTOR(EXECUTORID i) : PROCESSOR(i) {
13 application := APPLICATION();
14 next := 0;
15 partitions := EXECUTORPARTITION[#PARTITIONS];
16 filter := MAP();
17 results := MAP();
18 checkpoint := 0;
19 gce := OBSERVER();
20 }
21
22 /* Request handling */
23 VOID process(CONSENSUSTUPLE ct) {
24 /* Process tuple */
25 If (partitions[ct.partition].command(ct) == false) return;
26
27 /* Process commands */
28 While (true) {
29 /* Get command */
30 EXECUTORPARTITION p := partitions[next mod #PARTITIONS];
31 COMMAND x := p.commands[next / #PARTITIONS];
32 If (x == nil) break;
33
34 /* Execute command if necessary */
35 If (filter[x.xid] <= x.xnr) {
36 ANY a := application.execute(x.payload);
37 RESULT r := RESULT(x.xid, x.xnr, a);
38 results[x.xid] := r;
39 filter[x.xid] := x.xnr + 1;
40 }
41 next := next + 1;
42
43 /* Publish result if available */
44 If (results[x.xid].xnr == x.xnr) {
45 RESULTTUPLE result := RESULTTUPLE(id, results[x.xid]);
46 emit(result, RESULT SINKS(partition));
47 }
48
49 /* Create snapshot if necessary */
50 CHECKPOINTNR c := next / CP INTERVAL;
51 If (checkpoint < c) {
52 /* Create and store snapshot */
53 SNAPSHOT snapshot := SNAPSHOT(application.state,filter,results);
54 Store snapshot at SNAPSHOT LOCATION(id, c);
55 checkpoint := c;
56
57 /* Publish new checkpoint */
58 GCTUPLE checkpoint := GCTUPLE(id, c, nil);
59 emit(checkpoint, GC SINKS());
60 }
61 }
62 }
63
64 /* Garbage collection */
65 VOID process(GCTUPLE gt) {
66 /* Process tuple */
67 If (gce.update(gt.creator, gt.cnr * CP INTERVAL) == false) return;
68
69 /* Load snapshot if necessary */
70 CHECKPOINTNR cnr := gce.current / CP INTERVAL;
71 If (next < gce.current) {
72 /* Get snapshot */
73 SNAPSHOT snapshot := nil;
74 For each EXECUTORID e in gt.executors {
75 snapshot := Try to load snapshot from SNAPSHOT LOCATION(e, cnr);
76 If (snapshot != nil) break;
77 }
78 If (snapshot == nil) return;
79
80 /* Update state */
81 application.state := snapshot.state;
82 next := cnr * CP INTERVAL;
83 For each PARTITION p: partitions[p].gc(next / #PARTITIONS);
84 filter := snapshot.filter;
85 results := snapshot.results;
86 checkpoint := cnr;
87 Store snapshot at SNAPSHOT LOCATION(id, cnr);

88 } else {
89 /* Move windows */
90 For each PARTITION p: partitions[p].gc(gce.current / #PARTITIONS);
91 }
92
93 /* Dicard old snapshots */
94 Discard all snapshots with CHECKPOINTNR c < cnr;
95 }
96
97 /* View change */
98 VOID process(VIEWTUPLE vt) {
99 partitions[vt.partition].view(vt);

100 }
101
102 Periodically {
103 For each PARTITION p {
104 PROGRESSTUPLE pt := PROGRESSTUPLE(id, partitions[p].progress);
105 emit(pt, CONTROLLERS(p));
106 }
107 }
108 }

Executor Partition (Auxiliary Class)

1 class EXECUTORPARTITION {
2 /* State */
3 WINDOWOPINIONS<COMMITTERID, REQUEST> commits;
4 WINDOW<COMMAND> commands;
5 PROGRESS progress;
6 OBSERVER<VIEWSOURCEID> view;
7
8 /* Initialization */
9 EXECUTORPARTITION() {

10 commits := WINDOWOPINIONS(0, WINDOW SIZE);
11 commands := WINDOW(0, WINDOW SIZE);
12 progress := PROGRESS();
13 view := OBSERVER();
14 }
15
16 /* Request handling */
17 BOOLEAN command(CONSENSUSTUPLE ct) {
18 /* Check tuple */
19 If (ct.view != view.current) return false;
20 If (commits[ct.creator].appendable(ct.snr) == false) return false;
21
22 /* Update state */
23 commits[ct.creator].append(ct.request);
24 If (commits.available(ct.snr) < F+1) return false;
25
26 /* Consensus process is complete */
27 commits.fill(ct.snr + 1);
28 commands[ct.snr] := ct.request.command;
29 progress[ct.request.source] := ct.request.rnr + 1;
30 return true;
31 }
32
33 /* Garbage collection */
34 VOID gc(SEQNR s) {
35 commits.move(s);
36 commands.move(s);
37 }
38
39 /* View change */
40 VOID view(VIEWTUPLE vt) {
41 /* Update view state */
42 If (view.update(vt.creator, vt.view) == false) return;
43
44 /* Handle view change */
45 commits.sync(commands.pos);
46 }
47 }

Controller

1 class CONTROLLER extends PROCESSOR {
2 /* State */
3 PARTITION partition;
4 MAP<REQUESTSOURCEID, TIMESTAMP> reports;
5 PROGRESSOPINIONS<EXECUTORID, PROGRESS> ordered;
6 PROGRESS target;
7 PROGRESS actual;
8 TIMEOUT timeout;
9 TIMESTAMP deadline;

10 OBSERVER<VIEWSOURCEID> view;
11 MODE mode; /* NORMAL or IDLE */
12
13 /* Initialization */
14 CONTROLLER(CONTROLLERID i, PARTITION p) : PROCESSOR(i) {
15 partition := p;
16 reports := MAP();
17 For each REQUESTSOURCEID rqs in

REQUEST SOURCES(partition): reports[rqs] := now;
18 ordered := PROGRESSOPINIONS();
19 target := PROGRESS();
20 actual := PROGRESS();
21 timeout := CONTROLLER TIMEOUT;
22 deadline := ∞;
23 view := OBSERVER();
24 mode := NORMAL;
25 }
26
27 /* Progress monitoring */
28 VOID process(PROGRESSTUPLE pt) {
29 /* Check mode */
30 If (mode == IDLE) return;
31
32 /* Update progress information */
33 If (pt.creator is a REQUESTSOURCEID) {
34 If (pt.progress[pt.creator] <= target[pt.creator]) return;
35 target[pt.creator] := pt.progress[pt.creator];
36 reports[pt.creator] := now;
37 } else if(pt.creator is a EXECUTORID) {
38 If (pt.progress � ordered[pt.creator]) return;
39 ordered[pt.creator] := pt.progress;
40 PROGRESS p := ordered.highest(F+1);
41 If (actual ≺ p) timeout := CONTROLLER TIMEOUT;
42 actual := p;
43 }
44
45 /* Update deadline */
46 deadline();
47 }
48
49 VOID deadline() {
50 TIMESTAMP time := ∞;
51 For each REQUESTSOURCEID rqs in REQUEST SOURCES(partition) {
52 If (actual[rqs] < target[rqs]) time := min(time, reports[rqs] +

timeout);
53 }
54 deadline := time;
55 }
56
57 /* View change */
58 VOID process(VIEWTUPLE vt) {
59 /* Update view information */
60 If (view.update(vt.creator, vt.view) == false) return;
61
62 /* Enable monitoring */
63 target := PROGRESS();
64 mode := NORMAL;
65
66 /* Update deadline */
67 deadline();
68 }
69
70 Periodically {
71 /* Check deadline */
72 If (mode == IDLE) return;
73 If (now < deadline) return;
74
75 /* Disable monitoring */
76 timeout := timeout * 2;
77 mode := IDLE;
78
79 /* Publish new view */
80 VIEWTUPLE view := VIEWTUPLE(id, partition, view.current + 1);
81 emit(view, VIEW SINKS(partition));
82 }
83 }

	I Introduction
	II Background and Problem Statement
	II-A Replication Protocols
	II-B Stream Processing Frameworks
	II-C Problem Statement

	III Tara
	III-A Overview
	III-B System Model
	III-C Request Handling
	III-D Garbage Collection
	III-E View Change

	IV Parallelizing Tara
	V Implementation
	VI Evaluation
	VI-A Development Effort
	VI-B Performance
	VI-C Partitions
	VI-D Fault Tolerance

	VII Related Work
	VIII Conclusion
	References
	Appendix A: Tara Protocol Specification

