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Abstract

Artificial Intelligence (AI) and Deep Learning (DL) are pervasive to-
day, with applications spanning from personal assistants to healthcare.
Nowadays, the accelerated migration towards mobile computing and In-
ternet of Things, where a huge amount of data is generated by widespread
end devices, is determining the rise of the edge computing paradigm,
where computing resources are distributed among devices with highly het-
erogeneous capacities. In this fragmented scenario, efficient component
placement and resource allocation algorithms are crucial to orchestrate
at best the computing continuum resources. In this paper, we propose a
tool to effectively address the component placement problem for AI ap-
plications at design time. Through a randomized greedy algorithm, our
approach identifies the placement of minimum cost providing performance
guarantees across heterogeneous resources including edge devices, cloud
GPU-based Virtual Machines and Function as a Service solutions. Finally,
we compare the random greedy method with the HyperOpt framework
and demonstrate that our proposed approach converges to a near-optimal
solution much faster, especially in large scale systems.

Keywords: Component placement, resource selection, AI applications.

1 Introduction

In the last few years, the cloud computing paradigm led to significant growth
of Artificial Intelligence (AI) and Deep Learning (DL) pervasiveness: the total
worldwide spending on cloud services is expected to surpass 1.3 trillion in rev-
enue by 2025, at a CAGR of 16.9% [1]. The main strength of this paradigm is
given by the fact that it makes an ideally unlimited computational and storage
power accessible according to pay-to-go pricing models [2]. However, cloud re-
sources are far from end users and Internet of Things (IoT) devices where data
are generated, and such distance can cause long delays. Exploiting resources at
the edge of the network can reduce latency, save bandwidth and increase energy
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efficiency and privacy protection. Accordingly, edge computing was proposed as
an alternative to cloud and its adoption is steadily increasing [3]. Such comput-
ing paradigm exploits devices with highly heterogeneous capacities. Therefore,
component placement and resource allocation algorithms are crucial to orches-
trate at best the physical resources of the computing continuum, minimizing
the expected execution costs while meeting DL model accuracy, application
performance, security and privacy constraints.

The primary goal of these algorithms is to determine, at design time, the
optimal deployment of all AI application components, characterized by heteroge-
neous requirements in terms of, e.g., computational and storage power, on the
candidate resources available in the computing continuum. Such deployment
may then be adapted at runtime to deal with workload fluctuations causing
resources saturation or under-utilization. Moreover, AI applications frequently
include Deep Neural Network (DNN) components that might be partitioned
differently according to resources capacity and network settings. Each partition
can run on a device independently. Accordingly, in the following we will use
partition placement and component placement alternatively.

This paper proposes a design-time tool to tackle the component placement
problem and resource selection in computing continua, effectively addressing
resource contention by adopting queueing theory to model application compo-
nents response times. We developed an efficient randomized greedy algorithm,
that identifies the hardware to buy on the edge and the minimum-cost place-
ment across heterogeneous resources including edge devices, cloud GPU-based
Virtual Machines and Function as a Service solutions, under Quality of Service
(QoS) response time constraints.

To the best of our knowledge, this is the first work that considers AI ap-
plications with different candidate deployments which include different DNN
partitions for each component and different resource candidates and aims to
select the optimal deployment and resource candidate while taking into account
resource contention. Through an extensive experimental campaign, we high-
light that our approach can yield a significant improvement compared with the
HyperOpt framework [4], based on Bayesian methods, by decreasing the average
running time by a factor of 120–160.

The remainder of this paper is organized as follows. Section 3 introduces
the application and the computing continuum model considered in this work.
Section 4 describes the use case we address in the paper, providing an example
of the benefits our result would produce in real-life scenarios. Section 5 presents
the problem statement and the algorithm we propose to tackle it. Experimental
results are discussed in Section 6, while Section 2 describes the related works.
Conclusions are finally drawn in Section 7.

2 Related Work

Components placement in computing continua has recently received a lot of
attention from the research community. Authors of [5] recently proposed a clas-
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sification of the literature proposals according to the layers involved (cloud/fog-
edge nodes/end devices), the purpose of the placement (e.g., end devices offload,
fog nodes offload, fog nodes cooperation, data distribution among fog nodes or
cloud, etc.), the decisions taken (e.g., tasks priority, resource to task assign-
ment, hardware resources placement, etc.), the relevant metrics (latency, energy,
profit-cost, and device-specific), and the general goal (e.g., energy minimization,
latency-throughput trade-off, privacy and security of data).

As a recent paper close to our work, [6] proposed a framework to provide a
deadline-aware service placement on fog/cloud. The service placement is per-
formed according to different application requirements, such as memory, pro-
cessing power, bandwidth, and application deadlines. The framework extracts
the applications modules and, for each module, it obtains a detailed description
of the requirements. Then, it applies a Genetic Algorithm to find the best place-
ment. Each gene in a chromosome denotes a module, and its value represents a
resource assigned to it.The fitness function is the residual time to the deadline
of the application. The authors used iFogSim simulator to validate the proposed
approach in terms of fulfilment of the service deadlines.

Authors in [7] propose Pogonip, an edge-aware scheduler integrated with
Kubernetes, that is designed for asynchronous microservice-based applications.
They model the placement of microservices in edge-cloud environments as an
Integer Linear Programming problem, which minimizes operational costs under
network latency constraints, and develops a greedy algorithm to determine a
solution both for the edge-placement and the cloud-placement subproblem.

Deep Neural Networks (DNNs) partitioning is a commonly adopted approach
to reduce model size and computational requirements. While traditional ap-
proaches partition the DNNs by layers, authors in [8] propose a novel frame-
work, where DNN models are split horizontally, so that each partition (called
sub-task) has a smaller version of all layers. In such context, they propose
a reinforcement learning-based algorithm for resource allocation, creating an
inference dependencies table shared across the whole system.

Some works focus on Mobile Edge Clouds, with a particular emphasis on
the network resources. For example, [9] proposes an Integer Linear Program-
ming problem and a greedy heuristic algorithm to tackle the cloudlet placement
problem in a Wireless Metropolitan Area Network, minimizing the average delay
between mobile users and the cloudlets. In MECs, user mobility is also partic-
ularly relevant. [10] models the service infrastructure placement problem in a
fog computing environment as a latency and capacity-constrained location selec-
tion problem. The placement problem in a Fog Computing/NFV environment is
modeled as a Mixed-Integer Linear Programming problem, and tackled through
a Simulated Annealing algorithm coupled with a Tabu Search, considering 5G
mobile network requirements.

Among the proposals, [11], [12] and [13] are the closest to our approach.
Authors in [11] formulate an offline version of a multi-component application
placement problem as a Mixed Integer Linear Program, solved by the CPLEX
solver. The solution of the offline problem is used as a lower bound to estimate
the performance of an online algorithm based on simple heuristic techniques
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such as iterative matching and local search. [12] investigates the placement of
multi-component applications in the edge. Application components are modeled
as an application graph while physical edge devices as a physical graph. Both
online and offline algorithms are proposed to optimally map the application to
the physical graph while providing performance guarantees for the end appli-
cations. Finally, [13] tackles the problem of determining which tasks should be
deployed on edge or cloud resources, in the context of the FaaS paradigm. It
proposes a dynamic task placement framework to minimize latency subject to
cost constraints or to minimize costs subject to latency constraints.

The novelty of our paper lays on the fact that the design time tools pro-
posed so far in the literature, to the best of our knowledge, consider only a
single application instance running on the available resources, so that resource
contention is never considered in the estimate of application performance as the
DN network optimal partition point selection.

3 Application and Resource Models

In this section, we provide an overview of the general model developed for the
design-time component placement and resource selection problem tackled in
our work. In particular, we discuss the application components model and the
Quality of Service (QoS) requirements in Section 3.1, while we describe the
computing continuum resources model, the network model and the system costs
in Sections 3.2 and 3.3, respectively.

3.1 Application components model and QoS requirements

In our framework, AI applications are modeled as directed acyclic graphs (DAGs),
see Figure 1, whose nodes represent the different components. These are Deep
Neural Networks (DNNs) implemented as Python functions running in Docker
containers that can be deployed in edge devices, cloud Virtual Machines (VMs)
or according to the Function as a Service (FaaS) paradigm. For the sake of
simplicity [14, 15, 16], we assume that the DAG includes a single entry point,
characterized by the input exogenous workload λ (expressed in terms of re-
quests/sec), and a single exit point. We assume that the inter-arrival time of
requests, i.e., 1/λ is exponentially distributed. We denote the set of components
by I. The directed edge connecting components i and k ∈ I is labelled with
⟨pik, δik⟩, where pik is a transition probability, and δik denotes the size of data
sent from i to k. Furthermore, components can be characterized by multiple
candidate deployments. Each element in a candidate deployment is a partition
of the corresponding DNN. We denote by Ci the set of all candidate deployments
for component i ∈ I. Each element cis ∈ Ci is defined as cis = {πi

h}h∈Hi
s
, where

πi
h denotes a DNN partition. The set Hi

s is defined as the set of indices h of all
the partitions πi

h in the candidate deployment cis. An example of AI application
component (denoted by i = 1) with its candidate deployments is reported in Fig-
ure 2. Three alternative deployments are available: c11 and c12, characterized by
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two partitions and denoted by c11 = {π1
1 , π

1
2} and c12 = {π1

3 , π
1
4}, respectively,

and c13, characterized by three partitions and denoted by c13 = {π1
5 , π

1
6 , π

1
7}.

In this setting, we will define H1
1 = {1, 2}, H1

2 = {3, 4}, and H1
3 = {5, 6, 7}.

Note that, in some cases, one of the candidate deployments may correspond to
the complete DNN identifying the component. The corresponding set cis would
therefore contain a unique partition πi

h.

C1

λ1

C3

C2

CN

λ3

λ2

<p12, δ12>

<p13, δ13>

λN

Figure 1: Directed acyclic graph for components.

(a) Component 1 (b) Candidate deployment c11

(c) Candidate deployment c12 (d) Candidate deployment c13

Figure 2: Example of AI application component with its candidate deployments

Together with pik, which is related to the transition from component i to
component k, we introduce an additional parameter p̃ihξ, which defines the prob-

ability that partition πi
ξ is executed just after partition πi

h. Mechanisms as early
stopping [17] entail that not all component partitions are necessarily executed,

5



which dictates the necessity of defining the probability of actually moving from
one to the other. Similarly, we define δ̃ihξ as the amount of data transferred from

partition πi
h to partition πi

ξ. Moreover, each πi
h is characterized by a memory

requirement (expressed in MB), and by a total load λi
h, which depends on λ

and on the transition probabilities related to all predecessors of the partition.
For simplicity, we consider DAGs including only sequential execution and

branches, since, as in [14], we assume that loops are unfolded (or peeled) while
parallel execution is not supported for the time being. We define execution
paths as sequences of application components from the entry point to the exit
point of the DAG, while a path P denotes a set of consecutive components
included in an execution path.

The main performance metric we consider in our system is the response
time. QoS requirements may be imposed on both the response time of single
components (local constraints), and on the response time of all components
included in a path (global constraints).

3.2 Resources general model

Computing continuum resources include edge devices, cloud Virtual Machines
(VMs) and Function as a Service (FaaS) configurations. Each resource is char-
acterized by a maximum memory capacity and is included in a different com-
putational layer. In our model, the first layer includes local devices generating
data (such as drones, see Section 4). The second layer is often located in the
edge and may include smartphones, PC or edge servers with a higher compu-
tational power. Cloud layers include VMs coming from a single cloud provider
catalogue (however, our approach can be easily extended to consider multiple
cloud providers). The VMs selected at a given layer are homogeneous and evenly
share the workload due to the execution of one or multiple application compo-
nents. We consider VMs characterized by a single GPU, if available: costs and
inference performance scale linearly with the number of GPUs [18], therefore
such assumption allows to improve the availability of the whole system. Finally,
we consider all FaaS configurations to be in the same layer because functions
run on independent containers. The same component can be associated with
multiple FaaS configurations characterized by different memory settings.

The response time of all the executed components is computed as follows:

• We characterize the demanding time to run a component on edge or cloud
resources without resource contention (i.e., when a node executes a single
request, see [19]).

• We model edge devices and VM instances as individual M/G/1 (single
server multiple class) queues [20] to cope with resource contention.

• We compute the average execution time for each component on a given
FaaS configuration starting from the execution times of hot and cold re-
quests, the expiration threshold and the arrival rate of the configuration
by relying on the tool proposed in [21].
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• We consider several network domains connecting edge devices with each
other and with the remote cloud back-end. Resource layers are included
in, possibly, multiple network domains, associated with a given technology
characterized by access time and bandwidth.

• We include in the global execution time of each path the network delay due
to data transmissions, depending (see, e.g., [20]) on the amount of data
transferred, the network bandwidth and the access delay of the network
domain. We neglect the network delay in the cloud since all VMs and
FaaS instances are executed in the same data center.

According to the results reported in [20] and [21], response times of compo-
nents deployed at each layer can be estimated with a percentage error between
10% and 30%, which is acceptable for design-time purposes [19].

Finally, a compatibility matrix A is introduced to show which devices can
be used to execute each partition. Specifically, aihj is 1 if πi

h can be executed on
device j, 0 otherwise.

3.3 System costs

The costs related to the computing continuum resources are:

• Edge devices costs are estimated, for the single run of the target appli-
cation, amortizing the investment cost along the lifetime horizon of the
device and dividing the yearly management costs by the number of times
the application is run over a year.

• Cloud VMs costs are hourly costs [22], while FaaS costs are expressed
in GB-second [23], and they depend on the memory size, the functions
duration, and the total number of invocations.

• An additional transition cost can be required by FaaS providers (e.g., [24])
to account for the message passing and coordination. Some third party
frameworks, e.g., [25], avoid transition costs by supporting the orchestra-
tion through an architectural component.

In the next section, we introduce a reference use case that will be quantita-
tively analysed deeply in Section 6.

4 A running example

To motivate our work and the obtained results, we investigate a use case related
to the maintenance and inspection of a wind farm. The identification of dam-
ages in wind turbines blades is performed in the computing continuum, based
on images collected by drones. The application software is characterized by
multiple components, consisting of DNNs that can be deployed and executed
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Assignment compatibility

<0.9, ->
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(λ5)

VM type 2

Figure 3: A Use case of identifying wind turbines blade damage.

locally (on the drone, or on operators’ PCs, or on local edge servers in the oper-
ators’ van) or remotely in the cloud (in a VM or through FaaS paradigm). The
set of components is illustrated in Figure 3. They can be deployed overall on
four layers, and the dotted arrows connecting each component to the different
resources denote the corresponding compatibility (i.e., they correspond to the
elements of the compatibility matrix A).

As an initial step, a drone with entry level or mid-range computation board
(which configuration to buy is a decision that is taken by our tool), controlled
remotely by a human operator, takes pictures of the wind turbine. These are
composed of three blades, and pictures must be collected, for each blade, from
four different angles, to account for different types of damages; therefore, a huge
amount of data is collected.

Images are processed in batches which define the incoming workload λ. Each
batch is subject to an exposure check (C1), which determines if the image quality
is sufficient for further processing. If not, the component triggers the acquisition
of new images. This improves the efficiency of the whole inspection process, since
it allows to immediately react to the need for further data acquisition.

All well-exposed pictures are inspected by a sequence of two components
(C2 and C3) which collectively implement a complex, computer vision-based
application whose goal is to monitor the inspection campaign and guarantee
that this covers the complete site. They take as inputs the images processed by
C1 and a model of the wind farm, and, positioning the pictures on the farm itself,
guide the operator to identify the next element to be examined. In particular,
C2 is responsible for the preliminary analysis of the images like identifying if it
is a part of the blade or not, while C3 identifies the parts and the position of
the image elements on the blade. These components, especially C3, require a
significant amount of computing and storage power. However, executing them
at the edge may help in reducing the time needed to complete the maintenance
and inspection process, if further data is needed to better identify the damages.

Images are then processed by two additional AI modules. C4 is responsible
for a damage-free check, i.e., for assessing whether the inspected part is damaged
or not (this may possibly require the acquisition of new images). Depending on
the situation, it may happen that a high percentage of the acquired pictures
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is clear, namely it does not show a damage. Finally, C5 is responsible for
classifying the damage. These last steps are characterized by heavy computation
requirements, therefore they are always performed in the cloud. Cloud resources
are based on VMs and on the FaaS paradigm. FaaS includes different function
configurations with different memory allocated and only one component can be
run on each container with the specified function configuration.

The four computational layers, namely the one involving camera drones, the
one of edge resources, and those including Virtual Machines and FaaS, respec-
tively, belong to three different network domains. In particular, drones and all
edge resources communicate through a Wi-Fi network. Virtual Machines and
the FaaS configurations are connected via a fiber optic network, while data is
transferred from edge to cloud resources through a 4G or 5G network. For what
concerns the candidate deployments, C1 has a single, one-partition deployment,
C2, C4 and C5 have two deployments with one and two partitions while C3

has three deployments with one, two and three partitions. The transition prob-
abilities pik and the amount of data δik transferred between components are
reported in Figure 3.

This scenario is characterized by both local and global QoS constraints, as
described in Section 3.1. In particular, we prescribe that component C5 must
have a maximum response time of 2.5s, while we enforce that the global response
time of the first four components does not exceed 2s.

5 Problem Statement and Solution

This section provides an overview of how we modeled the applications compo-
nent placement and resource selection problem on heterogeneous edge and cloud
resources. We developed a Mixed Integer Non-Linear Programming (MINLP)
optimization formulation, aiming at minimizing the deployment cost at design
time, while satisfying local and global QoS requirements. For space limits, we
focus here only on the objective function of our model, while the complete for-
mulation is available as a technical report [26].

The main goal of our tool is to determine which kind of resource we should
select at each computational layer (that includes which hardware to buy on
the edge or, e.g., which type/flavor of VM to use in the cloud), whether each
component partition should be deployed on the given resource, and, in this case,
if the assignment is compatible with: 1) memory constraints, used to determine
the maximum number of components partitions that can be co-located in each
device, and 2) QoS requirements.

We denote by J the set of all resources in the computing continuum. To de-
fine the assignment decisions, namely to characterize which resources we should
select at each computational layer and how components are assigned to the
available devices, we introduce the following variables:

• yihj , which, for all i ∈ I, for all cis ∈ Ci and for each h ∈ Hi
s and j ∈ J , is

equal to 1 if partition πi
h is deployed on device j,
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• xj , which is 1 if device j ∈ J is used in the final deployment,

• ŷihj , which, for cloud resources, denotes the number of VMs of type j

assigned to any partition πi
h.

As introduced in Section 3.3, edge devices are characterized by the estimated
amortized costs for the single run of the target application, cloud VMs are
characterized by hourly costs, and FaaS configurations costs are expressed in
GB-second. In order to compute them, we denote with T the overall time an
application is active for a single run and we assume that T is equal or less than
one hour.

If we denote by JE the subset of J storing all the available edge devices,
the corresponding execution cost can be defined by CE =

∑
j∈JE

cEj xj , where cEj

is the amortized cost of the edge device j ∈ JE . The total execution cost on
cloud VMs, whose set will be denoted by JC ⊆ J , can instead be computed as
CC =

∑
j∈JC

cCj ȳj , where cCj and ȳj = max
i,h

ŷihj denote the hourly cost and the

maximum number of running VMs of type j ∈ JC , respectively.
Finally, let JF denote the set of all FaaS configurations, and let cF,i

hj be the

GB-second unit cost for executing πi
h on the function configuration j ∈ JF .

FaaS total costs depend on the memory size, the functions duration, and the
total number of invocations. The execution cost of the function layer will be as
follows:

CF =
∑
i∈I

∑
s:cis∈Ci

∑
h∈Hi

s

∑
j∈JF

cF,i
hj d

i,hot
hj yi

hj λ̃
i
hT, (1)

where di,hothj denotes the execution time of a hot request of partition πi
h

on function configuration j ∈ JF . Note that the cost of the used memory is
embedded in cF,i

hj . Indeed, di,hothj is inversely proportional to the memory m̃i
h

allocated to the partition πi
h (see [27]). According to some FaaS providers (see,

e.g., AWS Step Functions [24] and Azure Logic Apps [28]), we need to introduce
a state transition cost, denoted here with cT , to model the additional charge
for the message passing and coordination between two successive functions. If,
however, the orchestration is supported by an architectural component (see, e.g.,
SCAR and OSCAR [25]), the state transition cost is set to cT = 0. Without
loss of generality, we can thus formulate the transition cost as:

CT =
∑
i∈I

∑
s:cis∈Ci

∑
h∈Hi

s

∑
j∈JF

cT yi
hj λ̃

i
hT. (2)

Therefore, the objective function of our problem, which corresponds to the
minimization of all the operational costs defined in the previous equations, reads:

minCE + CC + CF + CT (3)
subject to assignment compatibility, memory and QoS constraints and to

the selection of a single device at each layer.
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Due to the M/G/1 models mentioned in Section 3.2, our formulation becomes
a Mixed Integer Non-Linear Program. Moreover, it can be considered as an
extension of [12] (because of, e.g., considering partitions for each component),
which is a NP-hard problem, hence, we face a NP-hard MINLP problem. In the
following, we describe the heuristic algorithm, based on a randomized greedy
method, we developed to solve it (Algorithm 1).

Algorithm 1 Random greedy algorithm

1: Input: I,H, J , DAG, A, components demands, QoS constraints, system costs, MaxIter
2: Initialization: BestSolution← ∅, BestCost←∞
3: for m = 1, . . . ,MaxIter do
4: x← [0],y← [0], ŷ← [0]
5: Randomly pick a node j at each layer; set xj ← 1
6: for i ∈ I do
7: Randomly pick a deployment cis ∈ Ci of component i
8: for h ∈ Hi

s do
9: Randomly pick j s.t. xj = 1 and aihj = 1; set yihj ← 1

10: end for
11: end for
12: ŷihj ← random[1, nj ] · yihj ∀i ∈ I, ∀h ∈ H

i
s, ∀ VM j

13: if memory constraints are fulfilled then
14: if local and global constraints are fulfilled then
15: ReduceVMClusterSize(j) for each VM j s.t. xj = 1
16: end if
17: end if
18: if ⟨x,y, ŷ⟩ is feasible and cost(⟨x,y, ŷ⟩) < BestCost then
19: BestSolution← ⟨x,y, ŷ⟩
20: BestCost← cost(⟨x,y, ŷ⟩)
21: end if
22: end for
23: if BestSolution ̸= ∅ then
24: return BestSolution
25: else
26: No feasible solution found
27: end if

The algorithm receives as input the compatibility matrix A, the application
DAG description with the performance demands, candidate device costs, local
and global constraints, and the maximum number of iterations to be performed.
First, we initialize the best solution and corresponding cost to infinity. At each
iteration, we set matrices x, y and ŷ to zero (line 4), we randomly pick a device
at each layer (line 5) and a deployment for each component, and we randomly
assign each partition of the selected deployment to the selected devices according
to the compatibility matrix A (lines 6-11). For each VM type j, we randomly
chose the number of nodes between 1 and nj , i.e., the maximum number of
instances (line 12). This generates a solution ⟨x,y, ŷ⟩ that satisfies the compat-
ibility constraints. Then, we check the feasibility of memory constraints (line
13), and QoS constraints (line 14). If possible, we reduce the maximum number
of selected VMs (line 15), preserving the feasibility of the current solution. At
line 18, we check if the current solution improves the BestSolution, which is
updated accordingly (lines 19-21). The best solution found, if any, is returned
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at lines 23-27.

6 Experimental results

In this section, we present the numerical experiments that evaluate the perfor-
mance of our Random Greedy algorithm. They were run on a Linux Ubuntu
server with 2.2 GHz CPU Intel with 40 cores and 32 GB memory.

In a previous work [29] we compared the Random Greedy with an exhaustive
search in simplified deployment scenarios allocating components only on edge
and only on cloud demonstrating that our approach can identify the global op-
timum solution in small settings. Here, in Section 6.1, we compare the cost and
performance of the Random Greedy algorithm with the solution obtained by
HyperOpt [4], an open-source Python library. HyperOpt is based on Bayesian
optimization algorithms over awkward search spaces, which may include real-
valued, discrete, and conditional dimensions [4]. To make the Random Greedy
performance analysis more robust, we consider also a Hybrid Method that ex-
ploits HyperOpt to improve an initial result provided by the Random Greedy
algorithm (hence the Hybrid Method always obtains results at least as good as
the Random Greedy). To quantitatively evaluate the different approaches, we
define the percentage gain (denoted as Cost ratio) as follows:

Cost ratio =
(OtherMethodCost−RandomGreedyCost)

RandomGreedyCost
× 100,

where OtherMethodCost can denote the cost of HyperOpt or the Hybrid
Method. We performed each experiment twice with MaxIter = 1000 and Max-
Iter = 5000. Note that, in each setting HyperOpt and the Hybrid Method
always perform the same number of iterations of the Random Greedy.

Finally, Section 6.2 reports a scalability analysis aiming at assessing the
effectiveness of our tool to tackle large-scale systems. This paper results dataset
and the tool source code are available on Zenodo1.

6.1 Use Case Comparison

In this section, we compare the cost and performance of the Random Greedy
algorithm with the solution obtained by HyperOpt and the Hybrid Method on
the use case described in Section 4. According to the use case, we consider five
different components. The components can be placed across four computational
layers, defined as follows:

• Edge Resources are included in two computational layers. The first hosts
a drone with an entry-level compute board (cost: 4.55$/h), and one with
a middle-level compute board (cost: 6.82 $/h). The second layer includes
a PC and a GPU-based edge server (costs: 4.55$/h and 9.1$/h, respec-
tively). Drones costs have been determined considering initial costs of

1https://zenodo.org/record/5657843#.YYp8Ur3MLIE
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1000$ and 1500$, amortized over 2 years, and assuming that the appli-
cation is executed 110 times per year. The initial costs of PC and edge
server are of 1500$ and 3000$, respectively, amortized over 3 years (and
the same number of executions on the field).

• Cloud Resources are all included in the third computational layer. We
have considered G3 instances selected from the Amazon EC2 catalogue 2,
powered by NVIDIA Tesla M60 GPUs equipped either with 4 vCPUs and
30.5GB of RAM (with a cost of 0.75$/h), or with 16 vCPUs and 122 GB
of RAM (with a cost of 1.14$/h).

• FaaS Resources are selected from the AWS Lambda catalogue and are
all included in the last computational layer. Their cost depends on the
running component: the first configuration has a memory size of 4GB and
a hourly cost of 0.06, 0.54, 0.16 and 0.96$/h when used to run components
from C2 to C5, respectively. The second configuration has a memory size
of 6GB; it is used only to run component C5, with a cost of 0.83$/h. The
expiration time is set to 10 minutes 3.

The detailed demands of the components and partitions is reported in Ta-
ble 1. For what concerns the edge-to-cloud connectivity, we considered a 5G
network with 1ms access delay [30] and 4Gb/s bandwidth.

2https://aws.amazon.com/ec2/pricing/on-demand/
3DOI: https://doi.org/10.1109/TCC.2020.3033373
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We run the experiments for both light constraints (local and global con-
straints are equal to 20s) and strict constraints (the local constraint is equal to
2.5s and the global constraint is equal to 2s), with λ ranging in [0.1, 1] req/s
with step 0.01 req/s. The methods cannot find any feasible solution for λ > 0.47
req/s in the strict constraints scenario and λ > 0.94 req/s in the light constraints
scenario.

The cost comparison under light constraints is reported in Figure 4a and 4b,
while Figure 4c shows the average running time of each method varying the
number of iterations. The same is reported for the strict constraints setting
in Figure 4d, 4e and 4f, respectively.

In order to fairly compare the performance, we run both Random Greedy
and HyperOpt on one single core. However, note that our tool is based on
a multi-threaded implementation that can leverage multi-cores. Unfortunately,
HyperOpt is not able to exploit multiprocessing because it is a Bayesian sequen-
tial model-based optimizer. It can benefit from multi-cores only if run within
Spark but in our single, 40-cores machine it was not possible to improve its
performance.

As reported in Figure 4a, Random Greedy costs are up to 15% lower than
those obtained by HyperOpt, while losses are infrequent and about up to 5%
only for the 1000 iterations scenario. The Hybrid Method (Figure 4b) never
improves Random Greedy for 5000 iterations, even if it obtains small gains
(lower than 2%) at 1000 iterations. Under strict constraints, Random Greedy
method always finds a feasible solution for λ ≤ 0.46 req/s, while HyperOpt,
even when running for 5000 iterations, cannot find any feasible solution for
about 41% of scenarios (disconnected points in Figure 4d). However, it can be
noticed that 1000 iterations are barely enough for Random Greedy, since in few
cases, it loses up to 7% against the Hybrid Method (Figure 4e) and HyperOpt
(Figure 4d), while it never loses when it runs for 5000 iterations.

Note that, as reported in Figure 4c and Figure 4f, even if we run Random
Greedy for 5000 iterations, the required time is at least one order of magnitude
lower than the other methods running for 1000 iterations.

6.2 Scalability analysis

To evaluate the scalability of our approach, we considered four different scenarios
at different scales as reported in Table 2. In the following, we report the average
achieved by considering 10 random instances for each scenario. We randomly
selected between 1 and 3 deployments for each component and between 1 and 4
partitions for each deployment. We also selected randomly, between 3 and 5, the
maximum number of VMs of each type, while service demands were generated
randomly in the range of [1, 2]s for drones, [1, 5]s for edge resources, [0.5, 2]s for
VMs (as in [15]), and [2, 5]s for cold and warm FaaS requests (as in [31]). Note
that, in the following scalability analysis, in order to consider the worst case in
terms of average running time, we set local and global constraint thresholds to
slightly larger numbers. Indeed, since each iteration terminates as soon as any
constraint is violated, strict thresholds imply more frequent violations and also
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Figure 4: Comparison among the solutions obtained by Random Greedy, Hy-
perOpt and the Hybrid method.
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entail lower running times on average.
As it is shown in Table 2a, we considered problem instances including up to

15 components, 24 candidate nodes, 4 local and 4 global constraints. We set
λ = 0.11 req/s and we replicated the experiment twice for MaxIter = 1000
and MaxIter = 5000. The average execution time and feasibility percentage
across 10 instances is reported in Table 2b. Note that the maximum execution
times for the Random Greedy are about 14s and 1.7 min with 1000 and 5000
iterations, while HyperOpt takes about 9.8 min and 3.5 hours, respectively.
Moreover, HyperOpt cannot find a feasible solution for all instances (feasibility
percentage about 83%).

Our approach can thus obtain significant improvements (with a factor of
162 and 120 for small and large scale, respectively) compared with HyperOpt in
terms of average running time, which makes it suitable to tackle the component
placement problem at design time.

As mentioned above, the iteration running time depends on the solution
feasibility. For example in the largest case (15 components), the total time of
an iteration that found a feasible solution is about 366 ms, where 2% of the total
time is spent in creating the new solution and 98% in checking its feasibility,
while the total time of an iteration that could not find a feasible solution is
about 5 ms, where only 26% of the total time is spent in checking the feasibility
of the solution (the iteration terminates as soon as any constraint is violated).

7 Conclusions

This paper proposes a randomized greedy approach to support application com-
ponent placement and resource selection in computing continua at design time.
Experimental results have shown that the approach can reach near-optimal so-
lutions much faster than HyperOpt and as a result, it is useful to investigate
multiple design choices spanning across heterogeneous system configurations in-
cluding different edge devices and cloud based solutions. In our research agenda
we plan to validate our solution on industry based case studies.
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