
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/362927219

ECBA-MLI: Edge Computing Benchmark Architecture for Machine Learning

Inference

Conference Paper · July 2022

DOI: 10.1109/EDGE55608.2022.00016

CITATION

1
READS

146

4 authors:

Some of the authors of this publication are also working on these related projects:

Artificial Intelligence for Digitizing Industry (AI4DI) View project

PRYSTINE - PRogrammable sYSTems for INtelligence in automobilEs View project

Mathias Schneider

OTH Amberg-Weiden

20 PUBLICATIONS 39 CITATIONS

SEE PROFILE

Ruben Prokscha

OTH Amberg-Weiden

7 PUBLICATIONS 4 CITATIONS

SEE PROFILE

Seifeddine Saadani

OTH Amberg-Weiden

8 PUBLICATIONS 5 CITATIONS

SEE PROFILE

Alfred Hoess

OTH Amberg-Weiden

36 PUBLICATIONS 122 CITATIONS

SEE PROFILE

All content following this page was uploaded by Mathias Schneider on 26 September 2022.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/362927219_ECBA-MLI_Edge_Computing_Benchmark_Architecture_for_Machine_Learning_Inference?enrichId=rgreq-87b4bb25a257d351fb64bcc694779f43-XXX&enrichSource=Y292ZXJQYWdlOzM2MjkyNzIxOTtBUzoxMTQzMTI4MTA4NjMwMzMzN0AxNjY0MTkyNjU3NzE1&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/362927219_ECBA-MLI_Edge_Computing_Benchmark_Architecture_for_Machine_Learning_Inference?enrichId=rgreq-87b4bb25a257d351fb64bcc694779f43-XXX&enrichSource=Y292ZXJQYWdlOzM2MjkyNzIxOTtBUzoxMTQzMTI4MTA4NjMwMzMzN0AxNjY0MTkyNjU3NzE1&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Artificial-Intelligence-for-Digitizing-Industry-AI4DI?enrichId=rgreq-87b4bb25a257d351fb64bcc694779f43-XXX&enrichSource=Y292ZXJQYWdlOzM2MjkyNzIxOTtBUzoxMTQzMTI4MTA4NjMwMzMzN0AxNjY0MTkyNjU3NzE1&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/PRYSTINE-PRogrammable-sYSTems-for-INtelligence-in-automobilEs?enrichId=rgreq-87b4bb25a257d351fb64bcc694779f43-XXX&enrichSource=Y292ZXJQYWdlOzM2MjkyNzIxOTtBUzoxMTQzMTI4MTA4NjMwMzMzN0AxNjY0MTkyNjU3NzE1&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-87b4bb25a257d351fb64bcc694779f43-XXX&enrichSource=Y292ZXJQYWdlOzM2MjkyNzIxOTtBUzoxMTQzMTI4MTA4NjMwMzMzN0AxNjY0MTkyNjU3NzE1&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mathias-Schneider?enrichId=rgreq-87b4bb25a257d351fb64bcc694779f43-XXX&enrichSource=Y292ZXJQYWdlOzM2MjkyNzIxOTtBUzoxMTQzMTI4MTA4NjMwMzMzN0AxNjY0MTkyNjU3NzE1&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mathias-Schneider?enrichId=rgreq-87b4bb25a257d351fb64bcc694779f43-XXX&enrichSource=Y292ZXJQYWdlOzM2MjkyNzIxOTtBUzoxMTQzMTI4MTA4NjMwMzMzN0AxNjY0MTkyNjU3NzE1&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/OTH_Amberg-Weiden?enrichId=rgreq-87b4bb25a257d351fb64bcc694779f43-XXX&enrichSource=Y292ZXJQYWdlOzM2MjkyNzIxOTtBUzoxMTQzMTI4MTA4NjMwMzMzN0AxNjY0MTkyNjU3NzE1&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mathias-Schneider?enrichId=rgreq-87b4bb25a257d351fb64bcc694779f43-XXX&enrichSource=Y292ZXJQYWdlOzM2MjkyNzIxOTtBUzoxMTQzMTI4MTA4NjMwMzMzN0AxNjY0MTkyNjU3NzE1&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ruben-Prokscha?enrichId=rgreq-87b4bb25a257d351fb64bcc694779f43-XXX&enrichSource=Y292ZXJQYWdlOzM2MjkyNzIxOTtBUzoxMTQzMTI4MTA4NjMwMzMzN0AxNjY0MTkyNjU3NzE1&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ruben-Prokscha?enrichId=rgreq-87b4bb25a257d351fb64bcc694779f43-XXX&enrichSource=Y292ZXJQYWdlOzM2MjkyNzIxOTtBUzoxMTQzMTI4MTA4NjMwMzMzN0AxNjY0MTkyNjU3NzE1&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/OTH_Amberg-Weiden?enrichId=rgreq-87b4bb25a257d351fb64bcc694779f43-XXX&enrichSource=Y292ZXJQYWdlOzM2MjkyNzIxOTtBUzoxMTQzMTI4MTA4NjMwMzMzN0AxNjY0MTkyNjU3NzE1&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ruben-Prokscha?enrichId=rgreq-87b4bb25a257d351fb64bcc694779f43-XXX&enrichSource=Y292ZXJQYWdlOzM2MjkyNzIxOTtBUzoxMTQzMTI4MTA4NjMwMzMzN0AxNjY0MTkyNjU3NzE1&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Seifeddine-Saadani?enrichId=rgreq-87b4bb25a257d351fb64bcc694779f43-XXX&enrichSource=Y292ZXJQYWdlOzM2MjkyNzIxOTtBUzoxMTQzMTI4MTA4NjMwMzMzN0AxNjY0MTkyNjU3NzE1&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Seifeddine-Saadani?enrichId=rgreq-87b4bb25a257d351fb64bcc694779f43-XXX&enrichSource=Y292ZXJQYWdlOzM2MjkyNzIxOTtBUzoxMTQzMTI4MTA4NjMwMzMzN0AxNjY0MTkyNjU3NzE1&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/OTH_Amberg-Weiden?enrichId=rgreq-87b4bb25a257d351fb64bcc694779f43-XXX&enrichSource=Y292ZXJQYWdlOzM2MjkyNzIxOTtBUzoxMTQzMTI4MTA4NjMwMzMzN0AxNjY0MTkyNjU3NzE1&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Seifeddine-Saadani?enrichId=rgreq-87b4bb25a257d351fb64bcc694779f43-XXX&enrichSource=Y292ZXJQYWdlOzM2MjkyNzIxOTtBUzoxMTQzMTI4MTA4NjMwMzMzN0AxNjY0MTkyNjU3NzE1&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alfred-Hoess-2?enrichId=rgreq-87b4bb25a257d351fb64bcc694779f43-XXX&enrichSource=Y292ZXJQYWdlOzM2MjkyNzIxOTtBUzoxMTQzMTI4MTA4NjMwMzMzN0AxNjY0MTkyNjU3NzE1&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alfred-Hoess-2?enrichId=rgreq-87b4bb25a257d351fb64bcc694779f43-XXX&enrichSource=Y292ZXJQYWdlOzM2MjkyNzIxOTtBUzoxMTQzMTI4MTA4NjMwMzMzN0AxNjY0MTkyNjU3NzE1&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/OTH_Amberg-Weiden?enrichId=rgreq-87b4bb25a257d351fb64bcc694779f43-XXX&enrichSource=Y292ZXJQYWdlOzM2MjkyNzIxOTtBUzoxMTQzMTI4MTA4NjMwMzMzN0AxNjY0MTkyNjU3NzE1&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alfred-Hoess-2?enrichId=rgreq-87b4bb25a257d351fb64bcc694779f43-XXX&enrichSource=Y292ZXJQYWdlOzM2MjkyNzIxOTtBUzoxMTQzMTI4MTA4NjMwMzMzN0AxNjY0MTkyNjU3NzE1&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mathias-Schneider?enrichId=rgreq-87b4bb25a257d351fb64bcc694779f43-XXX&enrichSource=Y292ZXJQYWdlOzM2MjkyNzIxOTtBUzoxMTQzMTI4MTA4NjMwMzMzN0AxNjY0MTkyNjU3NzE1&el=1_x_10&_esc=publicationCoverPdf

ECBA-MLI: Edge Computing Benchmark
Architecture for Machine Learning Inference

Mathias Schneider, Ruben Prokscha, Seifeddine Saadani, and Alfred Höß
Department of Electrical Engineering, Media Technology and Computer Sciences,

Ostbayerische Technische Hochschule

Amberg-Weiden

92224 Amberg, Germany

Email: {mat.schneider, r.prokscha, se.saadani, a.hoess}@oth-aw.de

Abstract—Recent developments in Artificial Intelligence
(AI) research enable new strategies for running Machine
Learning (ML) models. Evaluating application data on a
remote server used to be common practice. However, novel AI
accelerators herald a paradigm shift by moving the inference
step from the cloud closer to the application in the edge. This
approach increases service availability while significantly
reducing latency. Nevertheless, choosing the right target
platform and model for inference is a challenge that depends
on the use case and its non-functional requirements. In this
work, we present an Edge Computing Benchmark Architecture
for Machine Learning Inference (ECBA-MLI) which provides a
universal, reproducible, and comparable solution for evalu-
ating non-functional criteria such as latency and energy con-
sumption for edge deployment scenarios. It further evaluates
results for six state-of-art object detection models deployed
on twenty-one different platform configurations.

Index Terms—Edge Computing, Benchmark, Machine
Learning, Power Consumption, Inference

I. Introduction

With the emergence of ubiquitously deployed smart
sensors in the last decade, collecting and processing
decentralized Big Data in a centralized manner was the
common approach [1]. This tendency was further ampli-
fied by the progress of ML and in particular deep learn-
ing. More refined and sophisticated network architec-
tures offer higher accuracy, but imply more demanding
resource requirements. Accordingly, deployment often
happened on computationally powerful platforms, exac-
erbating centralized architectures. Nevertheless, a push
towards the edge is noticeable in recent years, mostly
driven by application requirements, such as low-latency
processing, high mobility with unreliable connection,
and data privacy [2]. Accordingly, hardware vendors
designed and marketed a variety of energy-efficient plat-
forms, meeting common edge requirements to unlock
the full potential of decentralized ML. Harnessing spe-
cialized accelerator hardware, ML inference at the edge
is now tangible [3], and its potential is already evaluated
in use cases such as Intelligent Transport Systems [4].

However, selecting a suitable edge device is still a chal-
lenging design decision involving multiple criteria and

trade-offs [5]. Especially for ML, estimating the metrics
of a model running on an edge device a priori is chal-
lenging, even if all static model and platform attributes
(e.g., number of operation and processor frequency) are
available. Thus, benchmarking is still a reliable indicator
to determine metrics such as latency and power con-
sumption empirically. Since a fair comparison between
different scenarios requires a concise setup and evalua-
tion approach, we introduce Edge Computing Benchmark
Architecture for Machine Learning Inference (ECBA-MLI).
Our architecture targets to collect benchmarks for vari-
ous model and platforms combinations in a unified way
and allows to generate metrics for an objective com-
parison between different deployment scenarios. Thus,
it supports developers during their design phase and
could further enable new approaches for task offloading
strategies in heterogeneous, collaborative edge networks.

The paper is structured as follows. In Section II,
conventional concepts and implementations for edge
computing benchmarks are presented. Subsequently, we
define the scope of our benchmark comprising hetero-
geneous platforms in Section III. Section IV introduces
a variety of state-of-the-art deep object detection models
as well as an unified architecture for benchmarking edge
inference. Based on this setup, we elaborate our bench-
mark architecture, conduct measurements, and apply
our evaluation concept. Finally, a conclusion summarizes
our findings and proposes potential future research.

II. Related Work

The MLCommons association addressed the demand
for an independent and reliable ML benchmark for
processing units, since vendor benchmarks for inference
and training were often difficult to compare, resulting
in MLPerf [8, 9]. However, due to the relative novelty of
embedded hardware accelerators, and their continuous
development of the accompanying software frameworks,
the first implementation prioritized training and infer-
ence deployment scenarios on high performance com-
puters. The recently introduced MLPerf Tiny [10] aims

PREPRINT - This paper has been accepted at the IEEE International Conference on Edge Computing (EDGE) 2022.

© 2022 IEEE. DOI 10.1109/EDGE55608.2022.00016
Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Pre
prin

t

RaspberryPi 4 Model B

+ Intel Movidius NCS2
Google Coral Dev Board NVIDIA Jetson Nano NVIDIA Jetson TX2 NVIDIA Jetson AGX Xavier

CPU Quad-Core ARM Cortex A72 Quad-Core ARM Cortex A53
Quad-Core ARM Cortex A57

MPCore

Dual-Core NVIDIA Denver 1.5

+ Quad-Core ARM Cortex A57

MPCore

8-core NVIDIA Carmel

ARMv8

RAM 4 GB LPDDR4 1 GB LPDDR4 4 GB LPDDR4 8 GB LPDDR4 32 GB LPDDR4x

AI-Chip
Intel Movidius Myriad X

(VPU)

Google Edge Coprocessor

(TPU)

128 CUDA Cores

(Maxwell GPU)

256 CUDA Cores

(Pascal GPU)

512 CUDA Cores

64 Tensor Cores (Volta GPU)

Interface USB 3.0 PCIe PCIe PCIe PCIe

OPs 4 TOPs 4 TOPs 472 GFLOPs 1.33 TFLOPs 32 TOPs

TDP 7.6 W + 2 W (NCS2) 3.5 W + 2 W (TPU) 5 W/10 W 7.5 W/15 W 10 W/15 W/30 W

Toolkit OpenVino TensorFlow Lite CUDA / TensorRT CUDA / TensorRT CUDA / TensorRT

TABLE I: Edge devices hardware specifications [2, 6, 7].

to fill this gap by benchmarking low-end embedded
devices. All measurements fulfill a high quality standard
and integrity, however the number of ML models is lim-
ited to representatives from certain domains, comprising
image classification and segmentation, object detection,
language processing, and anomaly detection.

Another promising approach was introduced in a pa-
per by Nokia Bell Labs [11]. They tested a variety of edge
platforms in combination with common model architec-
tures for motion detection, audio processing and image
recognition. Their benchmark monitored various met-
rics, including execution time, memory utilization and
energy consumption. For evaluation, the measurements
were divided into the three phases: model load, warm
up and inference. By providing a benchmark of eight
different models with a wide range of parameters and
structures, the authors offer an opportunity to estimate
how other models might perform on these platforms in
future work.

Including the previous references, Varghese et al. pro-
vide a broader view on the state-of-art development
in edge computing benchmarks and the relations to
former benchmarks applicable in the field of high per-
formance and cloud computing [12]. In their survey, a
range of edge performance benchmarks were investi-
gated. Besides the valuable representation of benchmark
commonalities and their setups, the authors highlight
observations and use them to shape a vision for the
future research directions. These involve the following
recommendations: Integration of measures for accelera-
tors, inclusion of energy consumption as a criteria, and
the usage of virtualization techniques for deployment of
the benchmarks.

Following these proposals, this work presents a bench-
mark utility specifically designed to deal with hardware
accelerators in embedded environments. The main focus
is set on having a modular architecture, which can
easily be extended by additional devices in the edge
and adapted for a specific deployment scenario. Fur-
thermore, our approach supports monitoring and bench-
marking multiple devices in parallel. This will enable
further research concerning real-time task scheduling

and placement of entire data processing pipelines in
edge and fog clusters.

III. Hardware Setup

In recent years, different vendors, i.a. Intel, Google and
NVIDIA, developed specialized hardware solutions to
realize accelerated and energy-efficient edge computing.
This section introduces these platforms, as well as the
incorporated accelerator hardware used in the prelimi-
nary test setup. An overview of all key specifications is
provided by Table I.

A. Edge Devices and Accelerators

Running model inference efficiently on edge devices
entails a set of highly optimized hardware and software
components. Therefore, all vendors introduced copro-
cessors for ML tasks, which are connected via a high
bandwidth interface to a carrier platform. The hardware
is optimized for generating high Operations Per Second
(OPs) while maintaining a low Thermal Design Power
(TDP). This makes them ideal for edge processing, where
the energy supply is often limited. Each kind of copro-
cessor implies the usage of a toolkit for mapping the
model efficiently to the respective hardware architecture.

1) Intel Neural Compute Stick 2 (NCS2): Based on the
Intel Movidus Myriad X-Vision Processing Unit (VPU)
chip Architecture, the computing stick accelerates the
inference of ML models. NCS2 has to be connected to
a carrier platform via Universal Serial Bus (USB) and
harnesses the Open Visual Inference and Neural network
Optimization (OpenVINO) toolkit, providing its model
optimizer for deployment and the Myriad inference en-
gine for execution.

2) Google Coral: Google’s solution uses a Tensor Pro-
cessing Unit (TPU) which is carried out for various
interfaces [13]. Besides different developer boards, a USB
dongle variant, and adapter cards with mini Peripheral
Component Interconnect Express (PCIe) and M.2 are
available. Inference requires INT8 quantised Tensorflow
Lite models which are further optimized by Google’s
Edge TPU Compiler for deployment.

PREPRINT - This paper has been accepted at the IEEE International Conference on Edge Computing (EDGE) 2022.

© 2022 IEEE. DOI 10.1109/EDGE55608.2022.00016
Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Pre
prin

t

3) NVIDIA Jetson: NVIDIA’s approach for addressing
edge inference is coupling an ARM CPU with an em-
bedded version of their GPUs. The Jetson Xavier has
additional tensor cores, which are able to accelerate 16 bit
floating point operations. Currently tensor cores are part
of NVIDIA’s Turing, Volta and Ampere architecture. The
Jetson Nano and TX2 utilizing previous GPU architec-
tures are limited to Compute Unified Device Architec-
ture (CUDA) units for inference. There are two common
approaches to run a model on the embedded GPU. The
first one is to use a ML framework leveraging CUDA
instructions for GPU acceleration. The second way uses
the TensorRT (TRT) SDK for model optimization. By
applying TRT, the model is translated to engines, which
are highly optimized to perform on the target platform.
All platforms are tested with Jetpack 4.6 installed, their
respective maximum specified power mode, and with
programmatically active fan cooling set to 50 %.

B. Power Monitor

Fig. 1: Modular power monitor prototype for up to 48
devices.

Power consumption is a critical metric for edge in-
ference. Especially battery driven setups require a low
energy footprint. Thus, it is important to make a sensible
comparison of the different devices in this regard. For
this benchmark a custom power monitor is developed
as depicted in Figure 1, empowered by a STM32H750VB
MCU. Twelve module slots are connected via I²C which
enable non-evasive measurements of current and supply
voltage with a frequency of up to 50 Hz using INA220
sensors for up to four devices each. Modules can provide
different voltage levels, depending on the external power
supply, for monitoring heterogeneous clusters.

ui
nt
16
_t

Sy
nc
Fr
am

e
[3
]

ui
nt
16
_t

Fo
rm

at

tim
e_
t

U
ni
xT
im
es
ta
m
p

ui
nt
16
_t

Se
co
nd
Fr
ac
tio
n

ui
nt
16
_t

D
at
aS

iz
eB

yt
e

ui
nt
32
_t

C
R
C
Va

l

Channel [N_INA220]

ui
nt
16
_t

La
be
l

ui
nt
16
_t

Vo
lta
ge
_m

V

ui
nt
16
_t

C
ur
re
nt
_m

A

...

Fig. 2: PMS data frame structure.

Data packages are broadcasted after each cycle via
Universal Asynchronous Receiver Transmitter (UART)
in a compact format, as shown in Figure 2. The first
three bytes are for synchronization purposes, while the
format field enables versioning for detecting potential
future firmware updates. Time stamps for each frame

consists for the Unix Epoch Time and a fraction of a
second (16 bit), which allows a maximum resolution of
about 15 µs. As data payload, each frame includes a list
of probes comprising sensor channel label, voltage, and
current.

Consecutive data buffering and processing is realized
by an external HTTP service. This service is hosted on a
Raspberry Pi 3 Model B+ and receives measurements via
UART from the power monitor. The web server provides
a minimal interface to start, stop, and download the
measurements for a channel. Recorded messages are
validated using a Cyclic Redundancy Check (CRC). After
finishing a measurement interval indicated by start and
stop signals, data can be downloaded in JSON format.

IV. Software Setup

In order to distribute various ML tasks to a het-
erogeneous multiplatform appliance, several steps need
to be taken into account. Figure 3 illustrates the pro-
cessing steps for running device specific inference. The
deployment of the benchmark is realized using Docker
container virtualization shipping all required runtime li-
braries in distinct versions as indicated in the illustration.
This creates a consistent environment, which can easily
be modified and deployed in a multi-tenancy manner. It
further allows to measure improvements introduced in
updated runtime libraries.

CPU GPU TPUVPUHardware

M
o

d
e

l
P

re
p

a
ra

ti
o

n

Trained Model
Arbitrary Framework

TensorFlow

ONNX

EdgeTPU

TFLite Converter

TFLite

EdgeTPU Compiler

Model

Format

TF exportONNX export

Convert

R
u

n
ti
m

e
C

o
n

ta
in

e
r

-
a
a
rc

h
6
4
:
n
v
c
r.
io

/n
v
id

ia
/l
4
t-

b
a
s
e
:r

3
2
.6

.1

ONNX Runtime
1.9.1

TFLite Runtime
2.5.0.post1

libedgetpu
16.0

OpenVINO
2021.4.1

CUDA
10.2

TensorRT
8.0.1

Benchmark Suite

Engine/

Delegate

Runtime

Application

Copy/Mount Copy/Mount

Fig. 3: Model conversion and deployment.

Execution of a ML tasks requires different base mod-
els, which are fetched from a model repository. The
model accuracy is improved by utilizing transfer learn-
ing with an application specific dataset. To establish a
unified interface for the subsequent steps, the models
are converted beforehand into predefined frameworks.

A. Models

Table II lists object detection models used in this
benchmark. They are selected due to their architecture,
input size and layer depth.

PREPRINT - This paper has been accepted at the IEEE International Conference on Edge Computing (EDGE) 2022.

© 2022 IEEE. DOI 10.1109/EDGE55608.2022.00016
Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Pre
prin

t

SSDMobileNetv2 TinyYolov3 TinyYolov4 Yolov4 Yolov5s Yolov5l

ONNX 70.30 35.41 24.28 257.48 29.90 189.72

TFlite 6.95 9.45 6.92 65.65 10.68 53.57

TABLE II: Model candidate file size [MB].

1) SSDMobileNetv2: As the name suggests Mo-
bileNetv2 serves as the lightweight backbone for the
object detector [14]. The base model for the ONNX con-
version was taken from the TF1 object detection model
zoo [15]. Since this base model could not be properly
converted to TFLite, a model with the same label was
taken from the Coral Edge TPU model zoo [16]. Both
models have their input size set to 300 pixels squared.

2) TinyYolov3: The third adaptation of You Only Look
Once (YOLO) [17] is widely used for object detection
tasks. The smaller version (TinyYOLO) of the network is
part of the model candidates. The model weights were
taken from the original paper implementation and trans-
ferred to a TF-Keras model according to [18]. Afterwards
models are converted to ONNX using tf2onnx [19], and to
TFlite using the Tensorflow converter module applying
post-training quantization. Additional, improvements, as
All models have squared input size of 416 pixels.

3) YoloV4 and TinyYolov4: YOLOv4 [20] is the newest
iteration from the original YOLO developers. It uses
various micro optimizations in the model design and
the training process to outperform existing models in
both speed and accuracy. The benchmark considers both
the full implementation, which was obtained from repos-
itory [21], and the tiny version from repository [22].
It is worth mentioning that the developers of the tiny
model made additional modifications to the model to
perform better on the Edge TPU. The models have a
perception field of 300 pixels squared for the full model
and 608 pixels squared for the tiny variant.

4) YoloV5s and YoloV5l: Contrary to the name,
YOLOv5 is not related to original YOLO project, but is
published by Ultralytics LLC [23]. YOLOv5 (v4.0) comes
in four different versions, compromising between size
and accuracy. The models are implemented in PyTorch.
Scripts are available to export the trained model to
ONNX. Additional effort is required to convert this
model to TFLite via TF. The benchmark evaluates the
small (s) and large (l) model. Both using an input size of
640 pixels squared.

B. Inter Framework Conversion

Due to the large number of ML frameworks, a unified
architecture for inference should be employed. This re-
quirement is addressed by leveraging the ONNX frame-
work [24]. It enables the exchange of models between
frameworks with the benefit of a common interface and
format. An ONNX model can be used for inference by
means of the ONNX runtime [25], allowing hardware

vendors to implement standardized ONNX operations
for their respective accelerator.

Since training models using the ONNX runtime is in
an experimental stage, model conversion is performed
after the training step. Therefore it comes with the
disadvantage, that every framework has to be present
for training various different models. Accordingly, the
preparation for selecting and converting models for the
benchmark is high and will be addressed in future
benchmarks. Thereby, the goal will be to utilize solely
pretrained model, reducing the necessity for additional
modifications as described in Section IV-A.

As illustrated in Figure 3, model inference for TPU
requires a separate branch in this pipeline. Therefore, it
is necessary to transfer the model to Tensorflow and sub-
sequently TFLite, before it is compiled by the EdgeTPU
compiler. Within this step, additional quantization is
performed and the mappings of operations to CPU and
TPU are computed. The model is finally inferred using
the TFLite Runtime in combination with the EdgeTPU
delegate, which implements the interface to the TPU
accelerator.

V. Edge Benchmark

Based on the introduced hardware and software setup,
architecture and implementation of the benchmark suite
are elaborated in this section. ECBA-MLI’s design em-
phasizes on scaling and replicability to measure non-
functional key figures in an stable environment. Further,
we will present an evaluation strategy, harnessing ob-
tained measurements to create a comparable and quan-
tified characterization of a certain deployment.

A. Architecture and Implementation

Figure 4 provides a simplified overview of the im-
plemented class architecture of the benchmark suite.
It is built around the Scenario class, which marks the
entry point for the benchmark. This class implements
the concrete benchmark function and consolidates mul-
tiple measurement of the consecutive processing steps
within the scenario. The benchmark suite differentiates
scenarios:

• Idle Consumption: Device running without any addi-
tional load. This scenario allows to evaluate the net
power consumption for a specific model on different
devices.

• Model Warm-up: Model load from disk and cre-
ation of runtime session object, as well as a first
inference on a single input sample. In this scenario
overhead of running a model is determined. Since
some model preparations are conducted during the
very first inference of the model, it is beneficial to
incorporate this measurement in the warm-up. It
further avoids to distort measurements during the
inference phase.

PREPRINT - This paper has been accepted at the IEEE International Conference on Edge Computing (EDGE) 2022.

© 2022 IEEE. DOI 10.1109/EDGE55608.2022.00016
Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Pre
prin

t

Device

meta: Dict[str, Any]

__init__(meta: dict)
get_usb_dev(vendor_id: str, product_id: str): List[str]
get_pci_dev(vendor_id: str, product_id: str): List[str]

Profiler

data: Dict[str, Any]

__init__(ems : EnergyMonitorClient)
add_meta(meta_dict: Dict[str, Any])
dump_results(device_meta: Dict[str, Any], results: List[Dict[str, Any]], file_name: str, log_file: str)
profile(obj: Any, meth: Callable, args: List[Any], turns: int = 1): Any
start_measurements(): Dict[str, Any]
stop_measurements(self): Dict[str, Any]

EnergyMonitorClient

channel: int
connection: HTTPConnection

__init__(ip: str, port: int, channel: int)
measurement(command: str): Tuple[List[int], List[int], List[int]]

Scenario

log_file: str,
name_suffix: str,
results: List[Any]
save_dir: str
t_start : str

__init__(model: BaseModel, data_provider: DataProvider,
profiler: Profiler, save_dir: str,
name_suffix: str, log_file: str)
idle(time_s: int): Dict[str, Any]
warmup(): Dict[str, Any]
inference(interval: int, profile_each_turn: bool,
interval_is_time_s: bool,estimation_turns: int,
min_turns: int): Dict[str, Any]

BaseModel

model_path: str
session: Any
graph_input: Any
graph_outputs = List[str]

__init__(model_path: str)
meta(): Dict[str, Any]
load_model()
preprocess(data: np.ndarray): np.ndarray
inference(data: np.ndarray): Dict[str, Any]
postprocess()
restart_session()

ONNXModel

session_options: onnxruntime.SessionOptions

__init__(model_path: str, exec_providers: List[str])
load_model()
preprocess(data: np.ndarray): np.ndarray
inference(data: np.ndarray): Dict[str, Any]
postprocess()
restart_session()

ImageONNXModel

preprocess(img_tensor: np.ndarray): np.ndarray

DataProvider

__init__()
count(): int
+generate(reverse: bool): Tuple(np.ndarray, dict)
-generate(reverse: bool): Tuple(np.ndarray, dict)

ImageDataProvider

__init__(image_paths: List[str])
-generate(reverse: bool = True): Tuple(np.ndarray, dict)

TFLiteModel

delegates: tflite_runtime.interpreter.TfLiteDelegate

__init__(model_path: str, tpu: bool)
load_model()
preprocess(data: np.ndarray): np.ndarray
inference(data: np.ndarray): Dict[str, Any]
postprocess()
restart_session()

ImageTFLiteModel

preprocess(img_tensor: np.ndarray): np.ndarray

Fig. 4: Benchmark framework class diagram.

• Model Inference: Multiple iterations of single input
inference. In this scenario the stable, productive
phase of the model is measured by running the
single input inference with the same input data
multiple times.

Benchmark results are enriched by meta information
which is crucial feature of the benchmark suite, since
they ensure replicability and comprehensibility of the
tests. They are collected by multiple classes at different
stages. This includes precise information about the de-
vice and its software configuration and is encapsulated
in the Device class. Besides static information such as
software versions of runtime dependent libraries, e.g. the
installed NVIDIA driver version, it provides more dy-
namic information, e.g. whether accelerators connected
via USB or PCI are available.

The BaseModel class provides interfaces for data pro-
cessing and model inference. The vast variety of embed-
ded accelerators require usage of different ML frame-
works, depending on the platform in use. It is therefore
beneficial to establish an unified interface which other
modules can interact with as introduced in Section IV.
For both runtimes, a subclass is implemented with
a mandatory set of instructions. This set of methods
includes model loading, data preprocessing, inference
and postprocessing. The model class is injected with a
separated DataProvider offering input data required for
the respective model type under test.

A dedicated Profiler class wraps and monitors methods
under test. The current implementation measures call
duration and power measurements for the test interval.
Latter implements client-server communication with the
power monitoring service, executing the respective com-

mands remotely and returning the returning the results.
For the future, these measures could be further enriched,
e.g. by recording additional device specific information
such as CPU or RAM load.

B. Measurements

The following formulas are utilized to calculate met-
rics used on the raw samples. Thereby, the subscript
denotes the benchmark phase, respectively idle 0, load
l, warmup inference w, and inference i. Equation (1)
determines the average power consumption based on N
samples of voltage U(t) and current I(t) recorded by the
PMS.

P =
1

N

N

∑
k=1

U(k) · I(k) (1)

Determining the execution time of an operation is
conducted by collecting start and stop period. In par-
ticular, for processes that might be faster than the power
measurement cycle, e.g., model inference, the operation
is repeated r times to compute the average duration.
As represented by Equation (2), a slight improvement is
introduced by running test inferences prior to the actual
measurement. This initial average probe duration τtest

allows to estimate a proper number of repetitions r based
on a given maximal test duration Tmax. r has to exceed a
minimum number of repetition rmin to ensure statistical
significance. For our benchmark configuration Tmax is set
to 60 s and rmin to 100.

τ = (tN−t1)
r , s.t.

{

r = max
(⌈

Tmax
τtest

⌉

, rmin

)

, for inference

r = 1, else
(2)

PREPRINT - This paper has been accepted at the IEEE International Conference on Edge Computing (EDGE) 2022.

© 2022 IEEE. DOI 10.1109/EDGE55608.2022.00016
Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Pre
prin

t

7.0 7.5 8.0 8.5 9.0 9.5 10.0
Power [W]

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
De

ns
ity

cuda: yolov5s
cpu: yolov5s
tflite: yolov5s
trt: yolov5s
openvino: yolov5s

(a) Idle

10 15 20 25 30
Power [W]

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
De

ns
ity

trt: yolov5s
openvino: yolov5s
tflite: yolov5s
cpu: yolov5s
cuda: yolov5s

(b) Load

5 10 15 20 25 30 35 40
Power [W]

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
De

ns
ity

trt: yolov5s
openvino: yolov5s
tflite: yolov5s
cpu: yolov5s
cuda: yolov5s

(c) Warmup

5 10 15 20 25 30 35 40
Power [W]

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
De

ns
ity

openvino: yolov5s
trt: yolov5s
tflite: yolov5s
cpu: yolov5s
cuda: yolov5s

(d) Inference

Fig. 5: KDE plots per phase for YoloV5s benchmark measurements on NVIDIA Jetson Xavier AGX.

Name RaspberryPi 4B Coral Dev Board NVIDIA Jetson Nano NVIDIA Jetson TX2 NVIDIA Jetson AGX Xavier

P0,min 5.174 4.179 3.582 5.414 8.415

P0,mean 5.177 4.210 3.589 5.425 8.434

P0,max 5.179 4.243 3.597 5.440 8.488

TABLE III: P0 [W] range for platforms.

Based on these previous intermediate results, the con-
sumed energy is calculated. Whereas Equation (3) is
essential to estimate the overall platform energy con-
sumption, Equation (4) allows to determine whether
offloading a specific task to another already running
device is more energy efficient. However, Equation (4)
does not yet include wire resistance, which is essential
when comparing two different devices. For the measured
cases P is less than P0,min, ∆E is corrected to 0.

E = P · τ (3)

∆E =
(

P − P0,min

)

· τ (4)

In the following paragraphs, the results of a bench-
mark run on all platforms is presented and a subset of
the observed findings is discussed.

1) Idle Consumption: Idle power consumption of all
devices is measured by running a sleep method for τ0 =
100 s. This measurements include connected peripheral
AI accelerators, whenever necessary. Accordingly, all
carrier platforms are connected to NCS2 and EdgeTPU
via USB, whereas the Google Coral Dev board has solely
the NCS2 attached, since it uses the integrated TPU via
PCIe for accelerated inference.

Figure 5a illustrates the power consumption Kernel-
Density Estimates (KDEs). The KDEs are normalized to
unity for their respective maximum peak to increase
comparability. This representation will also be used to vi-
sualize other measurements in this work. Since the load
method is independent of the hardware architecture,
means of each distribution, indicated in dotted vertical
lines, are nearly identical and the distribution’s variance
in the samples is low. A summary of the idle power
consumption metrics for all platforms can be found in
Table III.

2) Model Warm-up - Load: As part of the Model
Warm-up scenario, load time for various models and
their power consumption as presented in Figure 5b are
recorded. This plot illustrates general characteristics that
are also prominent for other platforms: model loaded
to CPU require less power, followed by VPU and GPU-
CUDA. In contrast, GPU-TRT has a higher variance with
multiple peaks. These different power levels are presum-
ably due to the initial computations to build the TRT
engine for the loaded model. This online preparation of
the engine results in large duration even on powerful
platforms. Thus, it is recommended to activate the TRT
engine cache, which is disabled during the benchmarks.

Detailed measurements for all deployable configura-
tions are presented in Table IV. It summarizes latency
and energy consumption for all measurements. As indi-
cated, not all combinations can be executed, e.g. SSDMo-
bileNetv2 cannot be loaded using the GPU-TRT provider,
since building of the TRT engine fails. This behavior also
applies to the Yolov4 model on the NVIDIA Jetson Nano.
In contrast to other platform in this product group,
the Jetson Nano is equipped with less memory which
probably causes the failing TRT engine build. Similarly,
on the Coral Dev Board, larger models are not supported
by the VPU. Arguably, this as well can be caused by
exceeding the lower memory constraints on this board
(1 GB) in comparison to the other platforms, which is
requisite for model deployment preparation using the
OpenVINO Myriad engine provider implementation of
the ONNX runtime.

3) Model Warm-up - Inference: During the warm-up
scenario, the benchmark obtains measurements related
to the first model inference. For all inference tests, the
same image is used. As captured in Table V and Table VI,
warm-up latency τw exceeds τi for most measurements.
This observation is caused by lazy loading implemen-
tation for some processor deployment, for which addi-
tional preparation and memory allocation is conducted
during the first inference instead of the loading phase.
Whereas this behavior is less prominent for CPU in-
ference, especially GPU-CUDA latency is increased by
a significant margin in comparison with consecutive
inferences due to on-going GPU memory allocation. This

PREPRINT - This paper has been accepted at the IEEE International Conference on Edge Computing (EDGE) 2022.

© 2022 IEEE. DOI 10.1109/EDGE55608.2022.00016
Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Pre
prin

t

10 2 10 1 100 101

i [s]

10 2

10 1

100

101
E i

 [m
W

h]

SSDMobileNetv2

SSDMobileNetv2

SSDMobileNetv2
SSDMobileNetv2

SSDMobileNetv2

SSDMobileNetv2

SSDMobileNetv2
SSDMobileNetv2

SSDMobileNetv2

SSDMobileNetv2

SSDMobileNetv2
SSDMobileNetv2

TinyYolov3
TinyYolov3

TinyYolov3
TinyYolov3

TinyYolov3

TinyYolov3

TinyYolov3TinyYolov3
TinyYolov3TinyYolov3

TinyYolov3

TinyYolov3

TinyYolov3
TinyYolov3

TinyYolov3

TinyYolov3

TinyYolov4
TinyYolov4

TinyYolov4

TinyYolov4

TinyYolov4

TinyYolov4

TinyYolov4TinyYolov4
TinyYolov4TinyYolov4

TinyYolov4

TinyYolov4
TinyYolov4

TinyYolov4

TinyYolov4

TinyYolov4

Yolov4

Yolov4

Yolov4
Yolov4

Yolov4

Yolov4

Yolov4Yolov4
Yolov4

Yolov4

Yolov4

Yolov4

Yolov4

Yolov4

Yolov5l

Yolov5l

Yolov5l

Yolov5l

Yolov5l

Yolov5lYolov5l
Yolov5l

Yolov5l

Yolov5l

Yolov5l

Yolov5l

Yolov5l

Yolov5l

Yolov5s

Yolov5s

Yolov5s

Yolov5s

Yolov5s

Yolov5s

Yolov5s
Yolov5s
Yolov5s

Yolov5s

Yolov5s

Yolov5s

Yolov5s

Yolov5s

Yolov5s

SSDMobileNetv2
SSDMobileNetv2

SSDMobileNetv2

TinyYolov3
TinyYolov3

TinyYolov3

TinyYolov3

TinyYolov3

TinyYolov4
TinyYolov4

TinyYolov4

TinyYolov4

TinyYolov4

Yolov4
Yolov4

Yolov4

Yolov4

Yolov4

Yolov5lYolov5l

Yolov5l

Yolov5l

Yolov5l

Yolov5s

Yolov5s

Yolov5s

Yolov5s

Yolov5s

RaspberryPi 4B
Coral Dev Board
NVIDIA Jetson Nano
NVIDIA Jetson TX2
NVIDIA Jetson AGX Xavier

CPU
VPU
TPU
GPU-CUDA
GPU-TRT

Fig. 6: Benchmark summary showcasing time spent and the necessary average net energy consumption per inference.
Measurements include all possible deployments, combining carrier platform and available inference engines.

effect is further featured by the KDE depicted in Fig-
ure 5c, presenting an overall higher variance in the power
consumption. It is worth noting that the TinyYolo4 using
GPU-TRT measurement τw exceeds τl , which demon-
strates the opposite behavior than the other models. It
is presumably caused by TRT internal implementation
details, since this effect occurs on all three GPU carrier
platforms.

4) Inference: Several observation can be deduced by
the results in Table VI and their visual representation in
Figure 6. For models that are completely mapped to the
TPU, including the SSDMobileNetv2 and TinyYolov4,
τi is constant for all carrier platforms independent of
their CPU. However, as soon as part of the models are
partially executed on the CPU as indicated by the model
structure after the EdgeTPU compiler step, its clock
speed evidently becomes relevant for the overall latency.
This underlines the importance of model optimization
iterations to maximize computation executed on the TPU
and is reflected by the high overall variance in latency
and energy consumption.

Contrary effects can be examined for the VPU. In the
case of the SSDMobileNetv2 model, inference times for
VPU and CPU are nearly identical. Accordingly, it can
be assumed that the model execution is automatically
falling back to CPU. All other models however, require
the same amount of time for VPU accelerated inference,
independent of the respective carrier platform. This in-
dicates that models are either completely inferred on the
VPU or executed on CPU, implemented by the ONNX
runtime explicitly configured to utilize the OpenVINO
Myriad engine.

Whereas the SSDMobileNetv2, optimized for TPU,
performs best on the TPU with up to 60 FPS, both TinyY-
olov3 and TinyYolov4 result in more than 10 FPS for all
accelerated deployments (excluding TinyYolov3 on the
TPU). If an application does not require more than 15

FPS, TPU and VPU are viable options in terms of latency,
and outperform GPU execution by their higher energy
efficiency. For Yolov4, Yolov5s, and Yolov5l model, GPU
acceleration on more powerful platforms is required to
reach higher rates than 5 FPS. It is worth noting that on
the NVIDIA Jetson Nano, the VPU acceleration operates
at approximately same latency, but requires less energy
per inference in comparison to the GPU deployments.

Contemplating TRT and CUDA measurements, they
show that inference time is reduced by 18 % to 51 % for
TRT, depending on the model and platform. Thereby,
higher speedups are obtainable on the more powerful
GPU architectures on the NVIDIA Jetson TX2 and AGX.
As anticipated, this improvement in terms of latency
comes with the drawback of a higher power consump-
tion as illustrated in Figure 5d.

C. Evaluation

For evaluating model deployments, the obtained
benchmark measures are harnessed to calculate perfor-
mance profiles. These profiles reflect the behavior of the
different phases and allow a quantitative comparison.

N(t) =







0 t < τl + τw

1 +
⌊ t − (τl + τw)

τi

⌋

t ≥ τl + τw
, s.t. t ∈ R≥0 (5)

To characterize short- and long-term throughput,
Equation (5) allows to define functions to calculate the
maximal amount of inferences that are possible for a
specific model assuming that the model has not yet
deployed to its platform. Since each deployment config-
uration defines their own functions, they can be easily
compared. Their intersections define clear break-points
that allow a ranking between scenarios as exemplarily
illustrated in Figure 7a and 7b.

PREPRINT - This paper has been accepted at the IEEE International Conference on Edge Computing (EDGE) 2022.

© 2022 IEEE. DOI 10.1109/EDGE55608.2022.00016
Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Pre
prin

t

0 100 200 300 400 500 600
Time [s]

10 1

100

101

102

103

104

105
In

fe
re

nc
e

Co
un

t [
n]

CPU: Yolov5s
OpenVino: Yolov5s
TFLite: Yolov5s
CUDA: Yolov5s
TRT: Yolov5s

(a) NNano(t)

0 50 100 150 200
Time [s]

10 1

100

101

102

103

104

105

In
fe

re
nc

e
Co

un
t [

n]

CPU: Yolov5s
OpenVino: Yolov5s
TFLite: Yolov5s
CUDA: Yolov5s
TRT: Yolov5s

(b) NAGX(t)

10 1 100 101 102 103 104

Inference Count [n]

10 1

100

101

102

103

104

105

En
er

gy
 [m

W
h]

CPU: Yolov5s
OpenVino: Yolov5s
TFLite: Yolov5s
CUDA: Yolov5s
TRT: Yolov5s

(c) ENano(n)

10 1 100 101 102 103 104

Inference Count [n]

10 1

100

101

102

103

104

105

En
er

gy
 [m

W
h]

CPU: Yolov5s
OpenVino: Yolov5s
TFLite: Yolov5s
CUDA: Yolov5s
TRT: Yolov5s

(d) EAGX(n)

Fig. 7: Yolov5s model throughput and energy consumption profiles for different NVIDIA platforms.

E(n) =

{

El n = 0

El + Ew + (n − 1) Ei n ≥ 1
, s.t. n ∈ N0 (6)

Complementary, Equation (6) allows to estimate the
overall energy spent given a number of executed in-
ferences, enabling to select an appropriate platform by
comparing Figure 7c and 7d. In case both platforms are
already online and available, e.g. as part of a temporary
ad-hoc edge network, Equation (6) can be adapted to
utilize the respective ∆E to calculate the criteria when
task offloading between platforms becomes beneficial.

VI. Conclusion

Edge device and accelerators enable a novel direc-
tion to embed ML-driven data processing close to the
application where a reliable connection to cloud-based
AI is not viable. However, selecting the right model
and platform to fulfill functional and non-functional
requirements remains a challenging task for ML engi-
neers. In this paper, we presented ECBA-MLI, a scalable
benchmark architecture to approach this undertaking.
An unified container-virtualized runtime setup ensures
reproducible benchmarks for latency and power con-
sumption during different phases of the model execu-
tion. We implemented the architecture for a variety of
state-of-the-art edge devices and discussed significant
observations for conventional object detection models.
Based on these measurements, profiles were introduced,
allowing to evaluate and compare optimal operating
points for different deployment scenarios in quantified
manner. For future work, we plan to integrate model
accuracy measures as part of our benchmark architec-
ture. This is a critical complement, since model prepa-
ration and optimization, such as quantization, impact
the output of the model. In addition, task placement
algorithm, harnessing the deployment profiles, will be
developed to optimize workloads of entire data pipelines
in a collaborative edge environment.

VII. Acknowledgment

This work has been financially supported by the AI4DI
project. AI4DI receives funding within the Electronic

Components and Systems For European Leadership
Joint Undertaking (ESCEL JU) in collaboration with the
European Union’s Horizon 2020 Framework Programme
and National Authorities, under grant agreement n°
826060.

References

[1] Rubén Casado and Muhammad Younas. “Emerg-
ing trends and technologies in big data process-
ing”. In: Concurrency and Computation: Practice and
Experience 27.8 (2015), pp. 2078–2091.

[2] M. G. Sarwar Murshed et al. “Machine Learning
at the Network Edge: A Survey”. In: ACM Comput.
Surv. 54.8 (2021).

[3] Xiaofei Wang et al. “Convergence of Edge Com-
puting and Deep Learning: A Comprehensive Sur-
vey”. In: IEEE Communications Surveys Tutorials
22.2 (2020), pp. 869–904.

[4] Mathias Schneider et al. “Open Traffic Data for
Mobility-as-a-Service Applications - Architecture
and Challenges”. In: Sept. 2021, pp. 375–385.

[5] Sandeep Gupta. “Non-functional requirements
elicitation for edge computing”. In: Internet of
Things 18 (2022), p. 100503.

[6] Albert Reuther et al. “Survey of Machine Learning
Accelerators”. In: 2020 IEEE High Performance Ex-
treme Computing Conference (HPEC) (Sept. 22, 2020),
pp. 1–12. arXiv: 2009.00993. url: http://arxiv.org/
abs/2009.00993 (visited on 02/10/2021).

[7] Harness AI at the Edge with the Jetson TX2 Developer
Kit. NVIDIA Developer. Mar. 7, 2017. url: https:
//developer.nvidia.com/embedded/jetson- tx2-
developer-kit (visited on 03/27/2022).

[8] Vijay Janapa Reddi et al. MLPerf Inference Bench-
mark. 2020. arXiv: 1911.02549.

[9] Peter Mattson et al. “MLPerf Training Benchmark”.
In: Proceedings of Machine Learning and Systems.
Vol. 2. 2020, pp. 336–349.

[10] Colby Banbury et al. MLPerf Tiny Benchmark. 2021.
arXiv: 2106.07597.

PREPRINT - This paper has been accepted at the IEEE International Conference on Edge Computing (EDGE) 2022.

© 2022 IEEE. DOI 10.1109/EDGE55608.2022.00016
Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Pre
prin

t

https://arxiv.org/abs/2009.00993
http://arxiv.org/abs/2009.00993
http://arxiv.org/abs/2009.00993
https://developer.nvidia.com/embedded/jetson-tx2-developer-kit
https://developer.nvidia.com/embedded/jetson-tx2-developer-kit
https://developer.nvidia.com/embedded/jetson-tx2-developer-kit
https://arxiv.org/abs/1911.02549
https://arxiv.org/abs/2106.07597

[11] Mattia Antonini et al. “Resource Characterisation
of Personal-Scale Sensing Models on Edge Accel-
erators”. In: Proceedings of the First International
Workshop on Challenges in Artificial Intelligence and
Machine Learning for Internet of Things - AIChal-
lengeIoT’19. the First International Workshop. 2019,
pp. 49–55.

[12] Blesson Varghese et al. “A Survey on Edge Per-
formance Benchmarking”. In: ACM Comput. Surv.
54.3 (Apr. 2021). url: https://doi.org/10.1145/
3444692.

[13] Google Announces New Coral products for 2020.
Electronics-Lab. Jan. 3, 2020. url: https://www.
electronics-lab.com/google-announces-new-coral-
products-2020/ (visited on 09/21/2020).

[14] Mark Sandler et al. “MobileNetV2: Inverted Resid-
uals and Linear Bottlenecks”. In: 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion. 2018 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition. June 2018, pp. 4510–
4520.

[15] Tensorflow 1 Model Zoo. GitHub. url: https : / /
github . com / tensorflow / models (visited on
04/27/2021).

[16] Coral Edge TPU Model Zoo. Coral. url: https : / /
coral.ai/models/ (visited on 12/02/2020).

[17] Joseph Redmon and Ali Farhadi. YOLOv3: An
Incremental Improvement. 2018. arXiv: 1804.02767.

[18] keras-yolo3. https://github.com/qqwweee/keras-
yolo3. 2018.

[19] tf2onnx - Convert TensorFlow, Keras, Tensorflow.js and
Tflite models to ONNX. url: https://github.com/
onnx/tensorflow-onnx (visited on 03/30/2022).

[20] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-
Yuan Mark Liao. YOLOv4: Optimal Speed and Ac-
curacy of Object Detection. 2020. arXiv: 2004.10934.

[21] Katsuya Hyodo. PINTO Model Zoo. https://github.
com/PINTO0309/PINTO model zoo. 2020.

[22] Hyeonki Hong. tensorflow-yolov4. https://github.
com/hhk7734/tensorflow-yolov4. 2018.

[23] Glenn Jocher et al. ultralytics/yolov5: v4.0 -
nn.SiLU() activations, Weights & Biases logging,
PyTorch Hub integration. Version v4.0. Jan. 5, 2021.
url: https://zenodo.org/record/4418161 (visited
on 02/24/2021).

[24] Bai et al. ONNX: Open Neural Network Exchange.
Oct. 6, 2020. url: https://github.com/onnx/onnx
(visited on 03/27/2022).

[25] microsoft/onnxruntime. Oct. 9, 2020. url: https://
github . com / microsoft / onnxruntime (visited on
10/09/2020).

PREPRINT - This paper has been accepted at the IEEE International Conference on Edge Computing (EDGE) 2022.

© 2022 IEEE. DOI 10.1109/EDGE55608.2022.00016
Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Pre
prin

t

https://doi.org/10.1145/3444692
https://doi.org/10.1145/3444692
https://www.electronics-lab.com/google-announces-new-coral-products-2020/
https://www.electronics-lab.com/google-announces-new-coral-products-2020/
https://www.electronics-lab.com/google-announces-new-coral-products-2020/
https://github.com/tensorflow/models
https://github.com/tensorflow/models
https://coral.ai/models/
https://coral.ai/models/
https://arxiv.org/abs/1804.02767
https://github.com/qqwweee/keras-yolo3
https://github.com/qqwweee/keras-yolo3
https://github.com/onnx/tensorflow-onnx
https://github.com/onnx/tensorflow-onnx
https://arxiv.org/abs/2004.10934
https://github.com/PINTO0309/PINTO_model_zoo
https://github.com/PINTO0309/PINTO_model_zoo
https://github.com/hhk7734/tensorflow-yolov4
https://github.com/hhk7734/tensorflow-yolov4
https://zenodo.org/record/4418161
https://github.com/onnx/onnx
https://github.com/microsoft/onnxruntime
https://github.com/microsoft/onnxruntime

Appendix

Device Accelerator
τl [s] El [mWh] ∆El [mWh]

SSDMobileNetv2 TinyYolov3 TinyYolov4 Yolov4 Yolov5s Yolov5l SSDMobileNetv2 TinyYolov3 TinyYolov4 Yolov4 Yolov5s Yolov5l SSDMobileNetv2 TinyYolov3 TinyYolov4 Yolov4 Yolov5s Yolov5l

Raspberry Pi 4B

CPU 24.188 0.162 0.135 1.217 0.275 1.014 42.782 0.276 0.229 2.201 0.477 1.829 8.020 0.042 0.034 0.452 0.082 0.372

VPU 24.138 3.061 0.270 15.607 5.805 43.907 39.886 5.546 0.438 29.532 10.908 85.816 5.197 1.148 0.050 7.101 2.566 22.715

TPU 0.017 0.021 0.015 0.020 0.029 0.101 0.027 0.033 0.024 0.031 0.045 0.165 0.002 0.003 0.002 0.003 0.004 0.019

Coral Dev Board

CPU 38.253 0.124 0.131 1.986 0.427 1.516 51.270 0.162 0.171 3.174 0.570 2.216 6.861 0.018 0.019 0.868 0.074 0.457

VPU 38.477 3.635 0.365 - - - 51.921 5.442 0.488 - - - 7.252 1.221 0.063 - - -

TPU 0.014 0.023 0.032 0.028 0.034 0.110 0.018 0.029 0.041 0.034 0.044 0.147 0.002 0.002 0.004 0.002 0.004 0.019

NVIDIA Jetson Nano

CPU 26.050 0.092 0.093 0.830 0.243 0.693 37.458 0.113 0.113 1.261 0.335 1.042 11.536 0.021 0.021 0.435 0.093 0.352

VPU 26.128 2.775 0.171 14.460 5.585 48.735 37.792 4.383 0.232 24.499 9.137 82.768 11.792 1.622 0.062 10.109 3.580 34.271

TPU 0.016 0.017 0.035 0.023 0.028 0.088 0.018 0.022 0.041 0.027 0.033 0.105 0.003 0.005 0.006 0.004 0.005 0.017

GPU-CUDA - 4.191 4.145 5.672 4.426 5.325 - 6.702 6.632 9.022 7.114 8.566 - 2.531 2.508 3.378 2.710 3.267

GPU-TRT - 73.378 3.689 - 130.595 170.551 - 125.671 5.903 - 224.412 300.736 - 52.652 2.232 - 94.456 131.019

NVIDIA Jetson TX2

CPU 33.657 0.117 0.109 0.911 0.279 0.820 56.714 0.193 0.180 1.615 0.468 1.438 6.094 0.018 0.015 0.244 0.048 0.205

VPU 34.030 5.107 0.223 17.913 9.045 69.156 57.247 9.327 0.378 33.855 16.771 132.188 6.066 1.646 0.042 6.914 3.166 28.178

TPU 0.015 0.021 0.015 0.023 0.030 0.097 0.023 0.032 0.023 0.036 0.047 0.157 0.001 0.001 0.001 0.001 0.001 0.010

GPU-CUDA - 4.459 4.426 5.540 4.734 5.424 - 7.664 7.605 9.612 8.116 9.390 - 0.959 0.947 1.281 0.996 1.233

GPU-TRT - 69.315 3.030 184.374 99.531 118.742 - 145.498 5.237 399.115 208.653 258.901 - 41.249 0.680 121.819 58.960 80.314

NVIDIA Jetson Xavier AGX

CPU 23.881 0.123 0.159 0.845 0.283 0.778 54.221 0.299 0.372 2.140 0.695 1.953 0.0* 0.013 0.001 0.165 0.034 0.134

VPU 24.405 2.954 0.338 13.617 5.826 51.665 55.645 7.764 0.800 35.359 15.387 131.348 0.0* 0.860 0.009 3.527 1.768 10.580

TPU 0.011 0.022 0.014 0.025 0.036 0.129 0.028 0.053 0.035 0.062 0.089 0.327 0.002 0.003 0.002 0.004 0.005 0.025

GPU-CUDA - 3.926 5.354 4.885 4.109 4.736 - 9.755 15.488 12.082 10.175 11.681 - 0.579 2.974 0.663 0.569 0.611

GPU-TRT - 70.314 2.884 197.971 112.748 142.560 - 196.579 7.175 580.444 326.195 437.071 - 32.217 0.434 117.680 62.641 103.831

TABLE IV: Model load phase: average latency and delta energy consumption (*negative result is replaced by 0.0).

Device Accelerator
τw [s] Ew [mWh] ∆Ew [mWh]

SSDMobileNetv2 TinyYolov3 TinyYolov4 Yolov4 Yolov5s Yolov5l SSDMobileNetv2 TinyYolov3 TinyYolov4 Yolov4 Yolov5s Yolov5l SSDMobileNetv2 TinyYolov3 TinyYolov4 Yolov4 Yolov5s Yolov5l

Raspberry Pi 4B

CPU 0.429 0.420 0.521 5.062 1.543 8.460 0.827 0.823 1.018 10.625 3.150 17.900 0.211 0.219 0.269 3.349 0.933 5.742

VPU 0.429 0.069 2.691 0.520 0.313 0.951 0.777 0.125 4.900 1.048 0.617 1.977 0.160 0.026 1.032 0.301 0.168 0.610

TPU 0.043 0.396 0.061 6.435 1.585 4.797 0.067 0.698 0.096 11.244 2.905 8.904 0.005 0.129 0.008 1.997 0.628 2.010

Coral Dev Board

CPU 0.733 0.683 0.840 8.389 2.358 13.824 1.059 1.043 1.271 13.437 3.711 22.238 0.208 0.249 0.296 3.698 0.973 6.189

VPU 0.779 0.080 3.241 - 0.357 - 1.117 0.115 4.799 - 0.552 - 0.213 0.022 1.036 - 0.138 -

TPU 0.037 0.522 0.061 12.111 2.207 6.304 0.046 0.706 0.077 17.578 3.040 8.708 0.004 0.099 0.006 3.518 0.478 1.389

NVIDIA Jetson Nano

CPU 0.428 0.415 0.518 5.139 1.426 8.079 0.700 0.702 0.874 9.732 2.618 15.696 0.274 0.289 0.358 4.618 1.198 7.657

VPU 0.424 0.064 2.561 0.509 0.280 0.944 0.704 0.095 4.002 0.840 0.457 1.636 0.282 0.031 1.453 0.334 0.178 0.696

TPU 0.039 0.400 0.059 6.582 1.450 4.194 0.044 0.609 0.061 10.713 2.385 7.220 0.004 0.211 0.003 4.163 0.943 3.046

GPU-CUDA - 2.675 3.137 8.238 5.204 11.185 - 4.451 5.432 17.768 9.986 26.167 - 1.789 2.310 9.570 4.808 15.037

GPU-TRT - 0.134 60.990 - 0.360 1.038 - 0.178 113.229 - 0.593 2.444 - 0.044 52.537 - 0.235 1.411

NVIDIA Jetson TX2

CPU 0.402 0.333 0.419 3.839 1.192 6.399 0.757 0.626 0.793 7.855 2.397 13.124 0.152 0.125 0.163 2.080 0.605 3.501

VPU 0.403 0.068 4.684 0.517 0.299 0.953 0.767 0.120 8.527 1.017 0.578 1.955 0.161 0.018 1.483 0.240 0.129 0.521

TPU 0.040 0.433 0.060 7.176 1.538 4.401 0.062 0.735 0.092 12.402 2.707 7.856 0.001 0.083 0.002 1.609 0.394 1.237

GPU-CUDA - 2.498 2.655 4.485 3.362 5.381 - 4.509 4.961 11.185 7.216 15.040 - 0.751 0.969 4.440 2.159 6.947

GPU-TRT - 0.028 47.275 0.204 0.089 0.300 - 0.051 105.544 0.619 0.195 1.008 - 0.008 34.443 0.311 0.062 0.556

NVIDIA Jetson Xavier AGX

CPU 0.268 0.177 0.280 1.824 0.695 3.241 0.711 0.454 0.710 5.038 1.901 8.814 0.084 0.040 0.057 0.774 0.277 1.237

VPU 0.268 0.071 3.021 0.516 0.297 0.951 0.702 0.184 7.579 1.442 0.824 2.700 0.076 0.018 0.517 0.235 0.129 0.478

TPU 0.037 0.376 0.074 11.505 1.541 4.366 0.093 0.973 0.183 28.082 4.020 11.212 0.005 0.095 0.011 1.189 0.418 1.005

GPU-CUDA - 2.759 3.953 4.198 3.527 4.831 - 7.075 11.814 12.861 9.629 15.891 - 0.626 2.573 3.049 1.385 4.597

GPU-TRT - 0.014 50.498 0.116 0.052 0.173 - 0.039 155.799 0.437 0.149 0.767 - 0.007 37.757 0.166 0.028 0.362

TABLE V: Model warmup phase: average latency and delta energy consumption.

Device Accelerator
τi [s] Ei [mWh] ∆Ei [mWh]

SSDMobileNetv2 TinyYolov3 TinyYolov4 Yolov4 Yolov5s Yolov5l SSDMobileNetv2 TinyYolov3 TinyYolov4 Yolov4 Yolov5s Yolov5l SSDMobileNetv2 TinyYolov3 TinyYolov4 Yolov4 Yolov5s Yolov5l

Raspberry Pi 4B

CPU 0.399 0.395 0.500 4.997 1.482 9.039 0.797 0.804 0.986 10.198 3.010 18.128 0.224 0.235 0.268 3.016 0.880 5.137

VPU 0.399 0.066 0.084 0.504 0.288 0.941 0.804 0.135 0.169 1.071 0.607 2.045 0.230 0.040 0.049 0.348 0.194 0.693

TPU 0.018 0.373 0.034 6.340 1.593 4.869 0.033 0.699 0.064 11.283 3.000 9.187 0.006 0.163 0.015 2.172 0.711 2.189

Coral Dev Board

CPU 0.696 0.661 0.811 8.400 2.300 - 1.065 1.063 1.263 13.666 3.874 - 0.257 0.295 0.322 3.915 1.204 -

VPU 0.695 0.072 0.092 - - - 1.077 0.120 0.149 - - - 0.271 0.036 0.042 - - -

TPU 0.014 0.510 0.039 12.064 2.214 6.306 0.021 0.724 0.055 17.737 3.083 8.845 0.004 0.132 0.010 3.732 0.512 1.524

NVIDIA Jetson Nano

CPU 0.398 0.402 0.500 5.156 1.423 8.228 0.753 0.777 0.935 9.857 2.783 16.268 0.357 0.377 0.438 4.727 1.367 8.080

VPU 0.397 0.063 0.080 0.499 0.273 0.934 0.753 0.107 0.133 0.875 0.479 1.693 0.358 0.044 0.054 0.378 0.207 0.764

TPU 0.016 0.337 0.030 6.526 1.373 4.139 0.025 0.576 0.051 10.571 2.364 7.172 0.009 0.241 0.022 4.077 0.999 3.054

GPU-CUDA - 0.070 0.104 0.679 0.263 1.095 - 0.185 0.257 1.920 0.737 3.118 - 0.116 0.154 1.245 0.475 2.028

GPU-TRT - 0.050 0.061 - 0.206 0.896 - 0.138 0.162 - 0.552 2.486 - 0.088 0.102 - 0.347 1.594

NVIDIA Jetson TX2

CPU 0.367 0.314 0.396 3.778 1.171 6.367 0.750 0.653 0.810 7.880 2.455 13.289 0.198 0.180 0.215 2.197 0.693 3.713

VPU 0.370 0.066 0.084 0.505 0.287 0.941 0.762 0.132 0.165 1.050 0.596 2.023 0.206 0.033 0.038 0.290 0.164 0.607

TPU 0.016 0.348 0.032 7.189 1.427 4.262 0.030 0.622 0.059 12.579 2.588 7.747 0.005 0.099 0.011 1.766 0.441 1.336

GPU-CUDA - 0.029 0.028 0.276 0.128 0.431 - 0.104 0.101 1.092 0.456 1.715 - 0.061 0.058 0.677 0.264 1.067

GPU-TRT - 0.021 0.024 0.159 0.079 0.271 - 0.075 0.085 0.655 0.274 1.117 - 0.043 0.049 0.415 0.155 0.710

NVIDIA Jetson Xavier AGX

CPU 0.226 0.154 0.208 1.763 0.660 3.214 0.563 0.402 0.541 4.570 1.684 8.282 0.035 0.042 0.054 0.449 0.142 0.769

VPU 0.226 0.065 0.083 0.501 0.277 0.937 0.569 0.166 0.209 1.309 0.726 2.464 0.040 0.014 0.016 0.139 0.079 0.274

TPU 0.016 0.316 0.032 11.223 1.242 3.819 0.040 0.799 0.083 27.556 3.168 9.790 0.003 0.061 0.008 1.322 0.266 0.862

GPU-CUDA - 0.012 0.016 0.123 0.077 0.185 - 0.079 0.079 0.853 0.398 1.292 - 0.050 0.042 0.565 0.218 0.861

GPU-TRT - 0.008 0.010 0.076 0.037 0.139 - 0.050 0.056 0.486 0.205 0.868 - 0.031 0.033 0.310 0.118 0.543

TABLE VI: Model inference phase: average latency and delta energy consumption.

PREPRINT - This paper has been accepted at the IEEE International Conference on Edge Computing (EDGE) 2022.

© 2022 IEEE. DOI 10.1109/EDGE55608.2022.00016
Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Pre
prin

t

View publication stats

https://www.researchgate.net/publication/362927219

	Introduction
	Related Work
	Hardware Setup
	Edge Devices and Accelerators
	Intel Neural Compute Stick 2 (NCS2)
	Google Coral
	NVIDIA Jetson

	Power Monitor

	Software Setup
	Models
	SSDMobileNetv2
	TinyYolov3
	YoloV4 and TinyYolov4
	YoloV5s and YoloV5l

	Inter Framework Conversion

	Edge Benchmark
	Architecture and Implementation
	Measurements
	Idle Consumption
	Model Warm-up - Load
	Model Warm-up - Inference
	Inference

	Evaluation

	Conclusion
	Acknowledgment
	References
	Appendix

