
CONTINUER: Maintaining Distributed DNN
Services During Edge Failures

Ayesha Abdul Majeed∗, Peter Kilpatrick∗, Ivor Spence∗, and Blesson Varghese∗†
∗School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast, UK

E-mail: {aabdulmajeed01, p.kilpatrick, i.spence}@qub.ac.uk
†School of Computer Science, University of St Andrews, UK

E-mail: bv6@st-andrews.ac.uk

Abstract—Partitioning and deploying Deep Neural Networks
(DNNs) across edge nodes may be used to meet performance
objectives of applications. However, the failure of a single node
may result in cascading failures that will adversely impact the
delivery of the service and will result in failure to meet specific
objectives. The impact of these failures needs to be minimised at
runtime. Three techniques are explored in this paper, namely
repartitioning, early-exit and skip-connection. When an edge
node fails, the repartitioning technique will repartition and
redeploy the DNN thus avoiding the failed nodes. The early-
exit technique makes provision for a request to exit (early)
before the failed node. The skip connection technique dynamically
routes the request by skipping the failed nodes. This paper will
leverage trade-offs in accuracy, end-to-end latency and downtime
for selecting the best technique given user-defined objectives
(accuracy, latency and downtime thresholds) when an edge node
fails. To this end, CONTINUER is developed. Two key activities
of the framework are estimating the accuracy and latency when
using the techniques for distributed DNNs and selecting the best
technique. It is demonstrated on a lab-based experimental testbed
that CONTINUER estimates accuracy and latency when using
the techniques with no more than an average error of 0.28% and
13.06%, respectively and selects the suitable technique with a low
overhead of no more than 16.82 milliseconds and an accuracy of
up to 99.86%.

Index Terms—Distributed DNNs, Edge computing, Failures

I. INTRODUCTION

Distributed Deep Neural Network (DNN) services that un-
derpin many modern applications are known to benefit from
edge computing [1], [2]. The responsiveness of applications
can be improved because edge computing offers compute
resources to process data closer to the source where it is
generated. Pretrained DNN models are adopted by real-time
image recognition applications such as virtual reality gaming
or autonomous vehicles, where devices continuously transmit
the data to the cloud for inference. To achieve distributed
DNN inference, DNNs are partitioned by the granularity of
neural network layers. As a result, DNN layers that demand
a substantial amount of processing power can be offloaded to
the cloud or to edge servers.

The failure of one resource, such as a compute node in an
edge computing environment, can result in cascading failures.
This adversely impacts the DNN service and may violate
application requirements, such as latency thresholds [3]. Tra-
ditionally, techniques, such as checkpointing, container migra-
tion, and server replication have been adopted to reduce the

impact of failures [4], [5]. However, they are not best suited for
edge environments in which resources may be compute/storage
limited and are highly decentralised.

One technique to minimise the impact of failures specific to
distributed DNN services is repartitioning [6]. A monolithic
DNN can be partitioned and its layers are distributed across
multiple resources to meet performance objectives of the ap-
plication [7]. If a node fails, then the DNN can be repartitioned
such that a new distribution of the DNN layers is generated
so that the layers originally mapped on to the failed edge
node can be executed elsewhere. While DNN repartitioning
will maintain the original accuracy, it is expensive in that it
has both computational and communication overheads making
it unsuitable as a general technique for mitigating failures in
any edge environment.

Alternate techniques, namely early-exit [8] and skip con-
nection [9] that exploits certain characteristics of the DNN to
maintain the service of a distributed DNN when an edge node
fails are explored in this paper. While these techniques have
been adopted in the literature to meet runtime requirements
of applications (considered further in Section VI), but have
been minimally considered in the context of edge failures.
In the early-exit technique, a classification request can be
terminated early before it reaches a failed edge node. While
early-exit reduces the inference latency, it impacts the accuracy
of the DNN. In the skip connection technique, the route of a
classification request can be dynamically adapted to skip failed
nodes. However, adopting skip connection reduces the latency
but requires extra resources and increases bandwidth use.

This paper develops a novel framework, namely CON-

TINUER that maintains the service of distributed DNNs
when edge outages occur. Failure recovery strategies for edge
services have been relatively less studied compared to failure
detection [10], [11]. Therefore, CONTINUER focuses on
service recovery from failures by presenting a mechanism to
recover from a service failure. CONTINUER selects one
of the three techniques (repartitioning, early-exit and skip
connection) by accounting for: (i) trade-offs in accuracy and
performance characteristics (such as latency and downtime1

incurred) for each technique, and (ii) user-defined objectives,

1Downtime in this paper refers to the time taken to recover from edge
failure.

1

ar
X

iv
:2

20
6.

05
26

7v
1

 [
cs

.D
C

]
 2

5
A

pr
 2

02
2

such as accuracy, latency and downtime thresholds.
CONTINUER operates in two phases. The first is the

profiler phase in which the accuracy and latency of a DNN
can be estimated for the three techniques with low overhead to
respond quickly to failures. The second is the runtime phase
in which a scheduler selects the best technique for an edge
failure given the estimated accuracy and latency of a DNN
for the three techniques and user-defined objectives. Using a
lab-based testbed comprising two processor platforms and two
production DNNs, namely ResNet-32 and MobileNetV2 it is
demonstrated that CONTINUER (i) estimates the accuracy
and latency of DNNs for the three techniques with an average
percentage error of no more than 0.28% and 13.06%, respec-
tively, and (ii) selects a suitable technique when an edge node
fails with a low overhead of no more than 16.82 milliseconds
and high accuracy of up to 99.86%.

The remainder of this paper is organised as follows: Sec-
tion II presents the techniques used for maintaining the ser-
vice of a DNN when there is an edge failure. Section III
presents the CONTINUER framework, including the design
considerations and the operating phases. Section IV presents
both the profiler and runtime phases of CONTINUER. Sec-
tion V presents the experimental results obtained from a lab-
based testbed to confirm the feasibility of CONTINUER.
Section VI presents the related work. Section VII concludes
the paper by considering the limitations of the current work
and future directions of this research.

II. BACKGROUND

This section presents the context of our work together with
two DNNs that are used as case studies.

A. Edge Failures

Service outages at the edge can occur as a result of
intermittent network connectivity, and link or node failure [12].
To ensure the continued availability of services, mechanisms
such as check-pointing [5], replication [4] and rescheduling
of services [11] have been used. Since a distributed DNN is
deployed over different edge nodes to provide collaborative
inference [13], the failure of a single node may have a
cascading effect and cause the failure of other nodes.

When an edge node fails, DNN applications deployed on
the edge will need to be redeployed. Redeploying the failed
services by repartitioning the DNN incurs a downtime making
it unsuitable for latency-critical applications. Alternative ap-
proaches to ensure the resilience of a DNN service in the face
of edge outages exploit certain characteristics of the DNN. For
example, dynamically adapting to routes within the DNN such
that failed nodes are skipped (referred to as skip-connection)
or terminating requests before reaching a failed node.

B. Underpinning Techniques

The techniques used in CONTINUER to ensure contin-
ued availability of services are repartitioning, early-exit and
skip connections. While the repartitioning technique has been
employed in the literature to adapt a distributed DNN for

performance efficiency (layers of the DNN are distributed
across multiple resources, such as the edge and the cloud),
it has not been employed in the context of edge node failures.
Similarly, early-exit and skip connection are two techniques
that are employed in the literature for reducing delays in
inference to effectively use limited compute resources that
may be available [14]. For the first time, these techniques
will be utilised to ensure that a distributed DNN can carry
on providing services when an edge outage occurs.

1) Technique 1 – Repartitioning: A DNN model compris-
ing a sequence of layers can be partitioned and distributed
over the edge and the cloud to meet privacy and perfor-
mance objectives (such as end-to-end inference latency) of
an application. Inference requests generated from a device
may be processed by the first partition (the initial sequence
of layers of the DNN) on the edge. The intermediate results
are transferred via the network to the second partition (the
remaining sequence of layers of the DNN) on the cloud. The
performance of the partition executing on the edge may vary
due to the system load (such as CPU or memory utilization)
and the overall performance can be affected due to an unstable
network between the edge and the cloud. The system must
adapt to these changes that occur at runtime to maintain
the required performance of the DNN application. This is
achieved by repartitioning (finding a different layer at which
the DNN should be partitioned) and redeploying the partitions
on the edge and the cloud [1], [15]. In the repartitioning
technique, another edge-cloud pipeline can be employed to
deploy the distributed DNN to reduce the service downtime
on the edge [6].

2) Technique 2 – Early-exit: The second technique is early-
exit, which as the name implies makes provision for an
inference request to exit (early) before the last layer of the
DNN. This allows for accelerating inference albeit there may
be accuracy losses. To this end, the base DNN architecture
is required to be modified and intermediate classifiers are
added to the layers after which inference requests can exit.
The classifiers added to the base model allow an input sample
to be classified in the intermediate layers [8], [13].

Production DNNs comprising many layers will be large and
have substantial computational requirements. This makes it
challenging to deploy such DNNs on the edge where there
may be resource limitations, and if deployed the end-to-end
latency will increase. Dynamic DNNs that make use of early-
exit can reduce the end-to-end latency and can be adapted
to suit the computational resources available during inference
and the input characteristics provided to the DNN [14].

3) Technique 3 – Skip connection: This technique facilitates
the skipping of one or more layers of the DNN model.

A skip connection is achieved within a DNN by using gating
networks that are inserted between layers in the DNN model.
The gating networks map the output of a previous layer to a
binary decision whether to enable or skip the next layer [16].
Skip connections were designed to accelerate the training
speed and improve the accuracy of large DNNs [9]. Skip
connections have been used to provide input-aware dynamic

2

inference and reduce the computational cost of using large
DNNs [17].

C. DNN Selection

Two DNNs, namely ResNet-32 and MobileNetV2 are se-
lected for investigation in the CONTINUER framework.

ResNet-32: The Residual Network (ResNet) [9] is designed
with skip connections to speed up the training process and
to achieve a high accuracy. The ResNet model consists of
residual blocks, made up of two or more convolutional layers,
and skip-connections, which allow direct paths between any
two residual blocks. A residual block is defined as

y = F (x, {Wi}) + x (1)

where x denotes the input and y denotes the output vector,
F (x,Wi) is the function for the residual mapping to be
learned and F + x is the operation performed by a shortcut
connection and element-wise addition.

Residual blocks have been found not to have a strong
relationship with each other [18] and it is also noted that the
classification errors increase when more residual blocks are
skipped from the model during inference.

MobileNetV2: This is a DNN model for compact, low-
latency, low-power mobile devices [19]. The architecture con-
sists of 17 residual blocks followed by a 1× 1 convolution, a
global average pooling layer, and a classification layer.

D. Suitability of Underpinning Techniques for Edge Failures

ResNet and MobileNetV2 are selected as the base DNN
network because of their architectural design, which includes
pre-defined skip connections. Assume a DNN is distributed
over edge nodes N = {n1, n2, n3, n4, n5} in a network.
If a service outage occurs at n3, then the path to n4 and
n5 is disconnected, thereby preventing any further inference
requests from being processed.

To ensure resilience when nodes fail (n3 in the example),
the DNN can be redeployed over the first two nodes (n1 and
n2). For this the first technique presented above, namely repar-
titioning can be employed. When the DNN is repartitioned, a
new partitioning layer at which the DNN can be partitioned
and deployed on n1 and n2 will be identified. This technique
will achieve the same accuracy as the original DNN, but may
incur a downtime for repartitioning [6].

Alternatively, the failed node (n3) may either be bypassed
by using the skip connection technique or the inference request
can be terminated at n2 by using the early-exit technique. Skip
connection will address the edge failure problem by bypassing
the node that failed. The early-exit technique addresses the
edge failure problem by terminating incoming requests before
the failed node. The skip connection technique may have a
higher accuracy than early-exit, however, the relative end-to-
end latency will be higher.

III. THE CONTINUER FRAMEWORK

In this section, the design of CONTINUER is presented.
The design considerations are: it should be agnostic to the

Fig. 1: Overview of the CONTINUER framework

infrastructure; decision making should be rapid with low
overhead; and user-defined objectives should be accounted for.

A. Assumption

A DNN is represented as a directed acyclic graph with a set
of layers L = {l1, l2, l3, ...} and a group of layers is termed as
a block. The set of blocks is denoted by B = {b1, b2, b3, ...}.
An edge computing system is assumed that consists of a set
of nodes N = {n1, n2, n3, ...} over which a DNN model is
distributed. It is also assumed that each block is placed on a
different node as shown in Figure 3.

B. Technique Selection

Figure 1 illustrates the proposed CONTINUER framework
which operates in two phases.

Profiler phase: The profiler phase collects the values for
the metrics on which CONTINUER relies and operates in
offline mode. These metrics are the accuracy and the end-to-
end latency of the DNN model and the downtime incurred
when selecting a suitable technique when a node fails. There
are two components within the profiler phase, namely the
Accuracy Prediction Model and the Latency Prediction Model.
In the profiler phase, the accuracy and latency of the DNN
model are profiled for training the accuracy and latency
prediction models. The Accuracy Prediction Model estimates
the accuracy of the DNN at runtime if any of the three
techniques (partitioning, early-exit and skip connection) were
to be selected given the pretrained weights of the DNN can
be provided as input.

The purpose of the Latency Prediction Model is to es-
timate the layer latency of the techniques given the layer
hyperparameters of the DNN. It is not feasible to measure
accuracy and end-to-end latency at runtime using a profiling
technique due to timing constraints and the speed required in
selecting a technique to mitigate the impact of node failure and
maintain the service of a DNN. Therefore, prediction models
are employed that estimate accuracy and end-to-end latency
during runtime. The profiler phase is discussed in Section IV.

Runtime phase: During the runtime phase the Scheduler
determines the suitable technique that needs to be used given a
node failure. The Scheduler takes as input the estimated accu-
racy, estimated end-to-end latency, and downtime (empirical)
and selects the optimal technique for mitigating the impact of

3

the node failure. During runtime, the value for the downtime
metric is calculated as the time taken to predict and retrieve
the estimated accuracy and end-to-end latency parameters. The
runtime phase is further discussed in Section IV.

IV. THE PROFILER AND RUNTIME PHASES

To determine a suitable technique to maintain the service of
a distributed DNN when a node failure occurs, the CONTIN-

UER framework makes use of three metrics, namely accuracy,
latency, and downtime associated with each technique.

A. Profiler Phase

Resource-independent and resource-specific values are gath-
ered in the profiler phase. The latency metric is a resource-
specific value that depends on the underlying hardware. Accu-
racy and downtime are resource-independent, depending only
on the DNN model and the technique (repartitioning, early-exit
and skip connection), respectively. The values of accuracy and
latency of the techniques are estimated in the profiler phase,
which is carried out offline. Downtime values are however
not estimated, instead empirical values of downtime of each
technique are used.

In this section, first the partition points defined within the
repartitioning technique and the modification of the DNN
models for defining early exit points and skip connections are
presented. Then the data collection approach and the prediction
models used for estimating the latency and accuracy of each
technique for different exit points and skip connections that
can be used when a node fails are considered. Finally, the
empirical values obtained for downtime metric are discussed.

1) Repartitioning: In the repartitioning technique, the DNN
is partitioned after each residual block represented by grey
bars in Figure 2. The partitioned points are defined under
the assumption that each residual block of DNN is placed on
different nodes. The architecture of ResNet-32 consists of an
initial convolutional layer, batch normalisation and activation
layers, 15 residual blocks, followed by a global average
pool layer and dense layer. The architecture of MobileNetV2
consists of 17 residual blocks, followed by a 1×1 convolution,
a global average pooling layer, and a dense layer. ResNet-32
can be distributed on up to fourteen nodes (Figure 2a) and
MobileNetV2 on up to eleven nodes (Figure 2b).

Model training parameters for Repartitioning: For reparti-
tioning, the ResNet-32 model is trained with a learning rate
of 1e− 4 and MobileNetV2 is trained with a learning rate of
1e−3. Both models are trained using loss function categorical
cross-entropy on the CIFAR-10 dataset2 that contains 50000
training and 10000 test images of resolution 32×32 consisting
of 10 classes, with a batch size of 64 and epoch size of
500. The epoch size is set to 500 to generate a dataset of
500 instances for the accuracy prediction model for predicting
accuracy through pretrained weights. The accuracy obtained
for ResNet-32 is 82.52% and for MobileNetV2 85.54%.

2https://www.cs.toronto.edu/ kriz/learning-features-2009-TR.pdf

2) Early-exit: CONTINUER adds exit points on ResNet-
32 and MobileNetV2 under the assumption that each block
of layers is placed across different nodes in the edge. Given
that ResNet-32 can be distributed across 13 nodes, up to
13 different exit points can be added; one after each node
(n1 − n13) as shown in Figure 3a. The green bars represent
individual layers, whereas the grey bars represent blocks
distributed on thirteen nodes for ResNet-32. For MobileNetV2
there are 10 different positions where exit points can be added
which are placed on up to 10 nodes (n1 − n10) (Figure 3b).

In ResNet-32, an exit point is defined after each residual
block. Each exit point comprises a convolutional layer with
filter size = 32, kernel size = 3, strides = 2, followed
by a classifier that has a max pool layer, batch normalisation
layer, and two dense layers of units = 64, and units = 10
respectively. The early exit points have the aforementioned
layers so that prediction accuracy can be improved. The
convolution layers specified at the exits points are fine-tuned
based on experience to extract coarse level features of an input
images that will be used by the classifers at the exit points.

For MobileNetV2, the exit points are defined after the
residual blocks represented as grey bars and numbered 2, 4, 5,
7, 8, 9, 11, 12, 14, and 15 in Figure 3. The structure of the exit
point defined for MobileNetV2 residual Block 2, includes a
batch normalisation layer and then a convolutional layer with
filter size = 96, kernel size = 3, strides = 1, followed by
the classifier that has a global max pool layer and two dense
layers of units = 64 and units = 10. A batch normalisation
layer, followed by two convolutional layers with filter sizes of
160 and 80 are defined for residual blocks 4 and 5, followed
by a classifier that has a global max pool layer and two dense
layers of units = 64 and units = 10. For residual blocks
7, 8, 9, 11, and 12, a batch normalisation layer is defined
followed by a convolutional layer with a filter size of 320, and
a classifier that has a global maxing pool layer, and two dense
layers of units = 64 and units = 10. For blocks 14, and
15, a batch normalisation layer, followed by a convolutional
layer with filter size = 160, kernel size = 3, stride = 1
is defined, followed by a classifier layer that has a global
max pool layer and two dense layers of units = 64 and
units = 10. A convolutional layer with a stride of size = 1
and a global max-pooling layer are employed based on experi-
ence and trial-and-error to improve the prediction performance
of MobileNetV2. The batch normalisation layer is utilised to
improve the training performance.

Model training parameters for Early-exit: For training the
DNN models that can make use of the early exit technique,
a cross entropy loss function Li is employed for each of the
early exit points i = 1, ..., N , and a total loss function LT

is generated that is the weighted sum of these loss functions.
The ResNet-32 model along with the intermediate exit points
that are added is trained with a learning rate of 1e − 3 and
for MobileNetV2, the model with exit points defined is with
a learning rate of 1e − 4. Both models are trained with 500
epochs and a batch size of 64, on the CIFAR-10 dataset.

Figure 4 shows the accuracy of ResNet-32 and Mo-

4

(a) Partition points defined for ResNet-32

(b) Partition points defined for MobileNetV2

Fig. 2: Distribution of partition points of ResNet-32 and MobileNetV2 when layers and block of layers are distributed across
different compute nodes.

(a) Early exit points (E1 − E13) defined for ResNet-32

(b) Early exit points (E1 − E10) defined for MobileNetV2

Fig. 3: Distribution of exit points when layers and block of layers are distributed across different compute nodes. Red blocks
represent the new exit points defined for the DNN models in CONTINUER.

(a) ResNet-32 (b) MobileNetV2

Fig. 4: Accuracy of early exit points defined in ResNet-32 and
MobileNetV2.

bileNetV2 for the different exit points. The x-axis shows the
exit points and the y-axis shows the accuracy of the DNN
models. As shown in the Figure 4a, an accuracy lower than
70% is noted for the initial early exit points (E1 to E4) ranging
from 62.33% to 69.92%. Similarly, for MobileNetV2, E1 has
an accuracy of 68.39%, this is to be expected. However, there
is a trade-off between accuracy and the end-to-end latency of
the DNN models when using different exit points, which will
be presented in Section V.

3) Skip connection: CONTINUER uses the default skip
connections available in ResNet-32 and MobileNetV2. Fig-
ure 5 shows the skipping policy for skip connections for

ResNet-32 and MobileNetV2. The grey bar represents a block
of layers and the green bar represents a single layer. The red
dotted line represents the skip connections added to the base
model resulting in a total of 10 skip connections for ResNet-32
and 9 skip connections for MobileNetV2.

Model training parameters for Skip connection: The learn-
ing rate is set to 1e − 4 for ResNet-32 and 1e − 3 for
MobileNetV2. Both models are trained with a batch size of
64 and epoch size 500 using the categorical cross entropy
as loss function. Residual blocks which have layers in the
path of the skip connection are ignored and these blocks are
represented by a red star as shown in Figure 6. Figure 6 shows
the accuracy of ResNet-32 and MobileNetV2 for the skip
connections defined at different positions. The x-axis shows
the number of skip connections whereas the y-axis shows
the accuracy. For ResNet-32, highest accuracy of 84.98% is
obtained for skip connection 12 whereas for MobileNetV2
an accuracy of 86.91% is obtained for skip connection 8.
The accuracy obtained for the skip connections defined in the
ResNet-32 and MobileNetV2 indicates that skipping layers at
runtime has a low impact on prediction accuracy. The settings
for training hyperparameters defined for early-exit and skip
connections are determined by trial and error.

The above three techniques can be extended to other DNN
models. For DNN models that do not have default skip

5

(a) Skip connections defined for ResNet-32

(b) Skip connections defined for MobileNetV2

Fig. 5: Skip connections for ResNet and MobileNetV2 models. The pink dotted lines are the skip connections added to the
base model in CONTINUER.

(a) ResNet-32 (b) MobileNetV2

Fig. 6: Accuracy of skip connections of ResNet and Mo-
bileNetV2 when using different skip connections. The red star
indicates that skip connections are not possible at these points.

connections, skip connections need to be defined at specific
locations in the DNN model and model retraining is required
and similarly for early-exit technique.

B. Metrics

The objective of the CONTINUER framework is to select
the most suitable technique when a node fails while consid-
ering metrics such as end-to-end inference latency, accuracy
and downtime. This section presents the methods adopted for
obtaining the values of these metrics.

i) End-to-end Latency: CONTINUER adopts a layer-wise
approach that has been adopted in the literature to profile
the inference latency of each layer of the DNN [2], [20].
Based on the values of profiled end-to-end latency, a Latency
Prediction Model (as shown in Figure 1) is developed for each
type of layer by varying the layer’s hyperparameters as shown
in Table I. The Keras layers API3 is used for extracting the
execution time of each layer type on two different processors
that will be further discussed in Section V. The advantage
of using a layer-wise approach is that it profiles the inference
latency of each type of layer instead of the whole DNN model,
thus making it DNN-independent with a low profiling cost.

To predict the end-to-end latency of the DNN, the Latency
Prediction Model is trained using XGBoost [21]. The hyperpa-

3https://keras.io/api/layers/

TABLE I: Layer hyperparameters of the DNN model.

Layer Type Hyperparameters
Batch Normalisation input shape, input channel

Convolution input shape, input channel,
kernel size, stride, filter

ReLu input shape, input channel
Dense input shape, input channel
Add input shape, input channel

Dropout input shape, input channel

Depthwise Convolution input shape, input channel,
kernel size, stride

Global Pool Average input shape, input channel
TABLE II: Accuracy of predicting the latency of different layer
types

Layer Type MSE R2

Batch Normalistaion 0.045 0.957
Convolution 0.040 0.980

ReLu 0.021 0.993
Dense 0.021 0.854
Add 0.009 0.995

Dropout 0.044 0.941
Depthwise Convolution 0.008 0.994

Global Pool Average 0.023 0.992

rameters of XGBoost are optimised using the Optuna4 optimi-
sation library. The following best performing hyperparameters
are identified by the optimisation framework for XGBoost
learning rate = 0.1, n estimators = 1000,max depth =
10, colsample bytree = 1,minchild weight = 1, seed =
123. The histogram-based algorithm is chosen as the XGBoost
tree method. The quality of the predictions of the Latency Pre-
diction Model is evaluated by quantifying the Mean Squared
Error (MSE) and Coefficient of determination (denoted as R2).
Table II shows the accuracy of each layer latency prediction
models. The R2 values except that of the dense layer, are close
to 1 and a very low MSE is noted. This indicates that the
Latency Prediction Model is fit for estimating layer latencies.

ii) Accuracy: Two approaches have been used in the liter-
ature to estimate the DNN model accuracy without profiling
the input data. The first uses the model training parameters
and hyperparameters [22]. The hyperparameters include the
characteristics of the DNN architecture, such as number of
layers, and the training parameters include learning rate and

4https://optuna.org/

6

loss function. The second approach involves predicting the
accuracy of the DNN model by providing the pre-trained
weights of the DNN model as input [23]. The training/test
data or the meta-data of the DNN architecture may not be
available in the production setting or when an edge node fails.
Hence, estimating DNN accuracy using the characteristics of
the DNN is impractical. The second approach is thus adopted
in CONTINUER by the Accuracy Prediction Model.

TABLE III: Parameters for predicting accuracy

Parameters Description
Activation Activation function of the DNN model

B init Initialisation used for bias weights
DNN architecture DNN model (ResNet32, MobileNetV2)

Epochs Total number of epochs (500)
Learning rate Learning rate
num layers Number of layers
Optimiser Optimiser used (Adam optimiser)

Train fraction Fraction of the total number of training samples
Train accuracy Accuracy on the training set

Train loss Loss on the training

Table III shows the parameters used when training the
Accuracy Prediction Model for ResNet-32 and MobileNetV2.
The parameters are extracted by implementing a custom Keras
callback function that is invoked at the end of each epoch
during training.

The Accuracy Prediction Model is based on the
Light Gradient Boosting Machine (LightGBM) [24]
that predicts accuracy by providing the pretrained
weights of the DNN model. The settings defined
for LightGBM hyperparameters are the following:
learning rate = 0.1, n estimators = 100,max depth =
−1, colsample bytree = 1.0,minchild weight = 0.001. A
split ratio of 80:20 is used to split the data into training and
testing data. The pre-trained weights provided to LightGBM
are pre-processed by using the mean, variance, and qth

percentiles for qε {0, 25, 50, 75, 100} for each layer of the
DNN model as presented in the literature [23]. The ResNet-32
model is trained with a learning rate set to 1e− 3 for all the
three techniques. For the repartitioning and skip connection
techniques, the learning rate is set to 1e− 3 for MobileNetV2
and to 1e − 4 in early-exit. Both models are trained using
the loss function categorical cross-entropy on the CIFAR-10
dataset with a batch size of 64 and epoch size of 500. Model
training parameters are determined by trial and error. The
MSE obtained is 0.223 (low indicates that the estimation has
a high accuracy) and R2 is 98.01% (high indicates that there
is a high correlation between the input parameters to the
prediction model and the output).

iii) Downtime: The downtime is the time taken to retrieve
the estimated accuracy and latency from the Accuracy Predic-
tion Model and Latency Prediction Model, respectively and for
the Scheduler (discussed further in Section IV-C to select one
of the three techniques, namely repartitioning, early-exit and
skip connection when an edge node fails. The repartitioning
and skip connection techniques have an additional 0.99ms
downtime to reinstate connections [6].

TABLE IV: Processor platforms used in the experimental
studies.

Platform CPU Clock Freq. Memory
Platform 1 Intel(R) Core (TM) i7-8700 3.20GHz 16GB
Platform 2 Intel(R) Core (TM) i5-8250U 1.60GHz 16GB

C. Runtime phase

The Scheduler is a key component used in the runtime
phase. The Scheduler takes as input the estimated accuracy and
the estimated latency of the DNN for all three techniques and
the downtime (empirically obtained) that will be incurred by
each technique and determines the suitable technique for node
failure. The accuracy is obtained from the Accuracy Prediction
Model, the end-to-end latency is obtained from the Latency
Prediction Model. The goal of the Scheduler is to select the
technique that best satisfies any user provided objectives, such
as thresholds for end-to-end latency, accuracy and downtime.

To minimise the cost of selecting a suitable technique
subject to user-defined objectives, a classic additive weighting
method is employed [25]. Different weights are assigned to
each objective and then the weighted sum of the normalised
values of the user-defined objectives is minimised. If the
accuracy, end-to-end latency and downtime objectives are
denoted as A, L and D, respectively, then the normalised
objectives are denoted as A′, L′ and D′ (normalised to a value
between 0 and 1 using the Linear Max-Min technique).

The suitable selection of technique considering user require-
ment is formulated in Equation 2.

min
∑

ω1A
′ − ω2L

′ − ω3D
′ (2)

where ω1, ω2, ω3 are the dynamic weights of accuracy, end-to-
end latency, and downtime. The value of each weight factor,
represents the level of importance, and is set by the user. For
instance, if the user has not specified a latency threshold, a
weight factor of 0 is assigned to latency objective.

V. EXPERIMENTAL STUDIES

This section presents the experimental setup used to assess
the CONTINUER framework and the results obtained.

A. Experimental Setup

Experimental studies are carried out on two 64-bit x86
processor platforms as shown in Table IV; similar processors
have been used as representative of edge environments in the
literature [26], [27]. Since latency is resource dependent, the
results of the Latency Prediction Model are obtained from
both platforms. Accuracy is not impacted by the platforms.
The repartitioning, early-exit, and skip connection techniques
are examined in the context of two DNNs in CONTINUER,
namely ResNet-32, and MobileNetV2. The DNNs are imple-
mented using the Tensorflow library and the Keras API.

B. Results

The performance of the three key components in the CON-

TINUER framework, namely the Latency Prediction Model,
the Accuracy Prediction Model and the Scheduler will be
evaluated in this section. It will be demonstrated that the

7

TABLE V: Average percentage error when estimating latency
using the repartitiong, early-exit and skip connection tech-
niques for ResNet-32 and MobileNetV2.

Technique Platform 1 Platform 2
ResNet-32 MobileNetV2 ResNet-32 MobileNetV2

Repartitioning 3.48% 2.44% 2.33% 0.51%
Early-exit 10.10% 3.22% 13.06% 5.07%
Skip connection 2.92% 2.92% 3.06% 0.73%

latency of the DNNs (resource dependent) can be estimated
on both platforms with a high accuracy. Similarly, accuracy
(resource independent) of the DNN model can be estimated
with a high accuracy without the need for profiling the DNNs
when a node fails. The results will also highlight that the
Scheduler that is based on estimated data will select a suitable
technique given user-defined objectives with a high accuracy.

1) Quality of estimating latency and accuracy metrics:
The quality of the results estimated by the Latency Prediction
Model and Accuracy Prediction Model is evaluated by com-
paring the estimated latency and accuracy with the measured
latency and accuracy. Measured accuracy is obtained from
the trained ResNet-32 and MobileNetV2 on the CIFAR-10
dataset for the three techniques. Measured latency is obtained
by profiling the trained ResNet-32 and MobileNetV2 DNNs
for the three techniques.

Figure 7 shows the measured and predicted latency on
different platforms for ResNet-32 and MobileNetV2. The x-
axis shows the node number on which a block of DNN model
is deployed and the y-axis shows the latency of each of the
techniques (repartitioning, early-exit, and skip connection).
For repartitioning the latency is a constant for all nodes
since the entire DNN is repartitioned and redeployed once an
edge node fails. For early-exit, the inference request will be
completed before a failed node through an exit point. Hence,
latency for early-exit is the execution time of the request,
which increases when the inference request passes through a
larger number of nodes. For skip connection, the latency metric
is the end-to-end latency of entire DNN deployed on edge
nodes excluding the failed node (the node that was bypassed
by the skip connection).

For the skip connection, red stars indicate nodes on which a
skip connection is not possible. Figure 7 shows the measured
and predicted latency of each technique. Table V shows the
average percentage error of each technique for ResNet-32 and
MobileNetV2. The percentage error is the difference between
the measured and actual values of latency and accuracy of
the three techniques. It is noted that the average percentage
error for the three methods is relatively low; the maximum is
13.06% for the early-exit technique on ResNet-32.

Figure 8 shows the measured and predicted accuracy of
ResNet-32 and MobileNetV2. The x-axis shows the node num-
ber on which a block of DNN model is deployed, whereas the
y-axis shows the measured and estimated percentage accuracy
of the DNN. The accuracy of ResNet-32 and MobileNetV2
remains the same on each node for repartitioning. For early-
exit the accuracy of ResNet-32 increases for higher node
number, whereas for MobileNetV2 the accuracy is 68.39% for

TABLE VI: Average percentage error when estimating ac-
curacy using the repartitiong, early-exit and skip connection
techniques for ResNet-32 and MobileNetV2.

Technique ResNet-32 MobileNetV2
Repartitioning 0% 0.12%
Early-exit 0.03% 0.03%
Skip connection 0.06% 0.28%

TABLE VII: Quality of the selection made by the CONTIN-

UER Scheduler when selecting a suitable technique.

DNN Model Platform 1 Platform 2
ResNet-32 99.86% 99.86%
MobileNetV2 86.12% 99.83%

the first exit point and a higher accuracy is noted at subsequent
exit points. The accuracy of ResNet-32 and MobileNetV2
varies slightly for the skip connection.

Table VI shows the average percentage error of accuracy
metric for ResNet-32 and MobileNet-V2 for each technique.
The accuracy metric is more precisely estimated than the
latency metric. The maximum average percentage error of
0.28% is noted for skip connection.

2) Quality of selection by the Scheduler: To determine the
quality of the technique selected by the Scheduler a parameter
sweeping analysis is performed. There are three parameters
to sweep, these are the weights for the accuracy, latency,
and downtime ω = ωA, ωL, ωD. The constraint for all three
parameters is defined as 0.1 ≥ ω ≤ 0.9 (in increments of 0.1).
Different combinations of weights are applied on each instance
(dataset generated using the normalised values for estimated
accuracy, estimated latency and downtime for all techniques
and for all nodes) for ResNet-32 and MobileNetV2. Min–Max
normalisation is applied on the accuracy, latency and downtime
metric to ensure the accuracy of the selection of the Scheduler.
Then the objective function defined in Equation 2 takes as
input the estimated accuracy, estimated latency and downtime
of each technique to determine which technique is suitable
when an edge node fails. Parameter sweeping is applied on the
normalised dataset which results in 767 instances for ResNet-
32 and 590 instances for MobileNetV2. The quality of the
selection made is based on the classification accuracy metric,
which is the total number of correctly identified techniques
divided by the total number of instances.

Table VII shows that the appropriate technique is selected
by the Scheduler with up to an accuracy of 99.86%. The results
demonstrate that the Scheduler is effective in determining the
appropriate technique by considering user-defined objectives.

3) Overhead: Table VIII shows the overhead (maximum
downtime) incurred for the repartitioning, early-exit and skip
connection in milliseconds (ms). Downtime is the sum of the
time taken to retrieve the estimated accuracy and end-to-end
latency metrics and to select a suitable technique based on
the user-defined objectives. CONTINUER selects a suitable
technique within 16.82 ms following a node failure.

Summary: The above results highlight that the Accuracy
Prediction Model and Latency Prediction Model of CON-

TINUER estimate the accuracy and latency metric with a
relatively low average percentage error. An accuracy of up

8

(a) ResNet-32 on Platform 1 (b) ResNet-32 on Platform 2 (c) MobileNet-V2 on Platform 1 (d) MobileNet-V2 on Platform 2

Fig. 7: Measured and predicted latency for ResNet-32 and MobileNetV2.

(a) ResNet-32 (b) MobileNetV2

Fig. 8: Measured and predicted accuracy for ResNet-32 and MobileNetV2.

TABLE VIII: Downtime incurred when selecting a technique.

Technique ResNet-32 MobileNetV2
Repartitioning 3.56ms 16.16ms
Early-exit 1.83ms 9.28ms
Skip connection 3.32ms 16.82ms

to 99.86% is obtained in selecting a suitable technique when
an edge failure occurs with a relatively low overhead. These
confirm the feasibility of CONTINUER.

VI. RELATED WORK

Two aspects relevant to the research reported in this paper
are considered in this section. The first is approaches that
address runtime concerns when distributed DNNs are de-
ployed; for example, adapting to variable network speeds and
resource availability of compute resources. This is relevant as
maintaining services when an edge failure occurs is a runtime
concern. The second is consideration of edge failures.

Repartitioning is used to address runtime concerns, such as
change in network speed and resource variability, by reparti-
tioning and redeploying DNNs to suit the given operational
conditions in NEUKONFIG [6]. Approaches are incorporated
to reduce the service downtime when repartitioning.

Early-exit has been used in the context of addressing the
runtime concern of varying network speeds and availability
for distributed DNNs (e.g, Edgent [28]). Similarly, the latency
is reduced in the context of industrial IoT environments using
the early-exit technique in Boomerang [29].

Skip connection is used for reducing the inference latency
by introducing a layer-wise skipping policy in SkipNet [16].
Supervised and reinforcement learning approaches are used to
improve the policy by conditioning it against the input sample.
Similar approaches such as BlockDrop [17] skip residual
blocks at runtime to reduce inference delay.

Existing research that addresses edge failures of DNN
services has considered the early-exit approach. One such
example is SEE [30] in which it is assumed that the duration
of the failure is known apriori. This is impractical for a
dynamically changing environment such as the edge. LEE
fills this gap of SEE by knowing the duration of failure [31].
However, SEE and LEE make the decision for individual video
frames and uses buffers to hold pending inference requests.
The decision made for a current frame may negatively impact
future frames. Another example is DeepFogGuard [32] in
which skip connection is used to skip failed physical nodes on
which a distributed DNN is deployed. However, the approach
used requires retraining the DNN which makes it less suitable
for responding to runtime changes, such as the failure of
an edge node. In addition, the work does not quantify the
downtime incurred by skipping connections during failure.
Generally, the above research does not account for the resource
limited nature of the edge environment in response to a service
outage. Further, existing research does not consider the rapid
response to an edge failure that may be required for latency-

9

critical applications relying on DNNs. They do not quantify
the overhead that will be incurred and consider user-defined
objectives when an edge node fails.

VII. CONCLUSIONS

This paper presents the CONTINUER framework to main-
tain the service of distributed DNNs when an edge outage
occurs. CONTINUER is underpinned by three techniques,
namely repartitioning, early-exit and skip connection, one of
which is selected by the framework to continue delivering
DNN services when an edge node fails by accounting for
trade-offs in accuracy, end-to-end latency and downtime and
user-defined objectives. Experiments on a lab-based testbed
show that CONTINUER selects the appropriate technique
with high accuracy and low overhead, thus confirming the
feasibility of the framework.

Limitations and Future Work: Despite the challenge ad-
dressed by CONTINUER, it has certain limitations. Firstly,
for estimating the end-to-end latency of the DNN, the approach
for profiling DNN layers is CPU oriented. Future work will
include GPU-aware estimation of latency. Secondly, CON-

TINUER considers ResNet-32 and MobileNetV2, which by
default have skip connections defined in them. The research
can be expanded to consider other DNNs. Thirdly, it is
assumed in this paper that each DNN block is deployed on
a different edge node and only a single node fails. Efforts will
be made to address these limitation in the future.

REFERENCES

[1] L. Lockhart, P. Harvey, P. Imai, P. Willis, and B. Varghese, “Scission:
Performance-Driven and Context-Aware Cloud-Edge Distribution of
Deep Neural Networks,” in IEEE/ACM 13th International Conference
on Utility and Cloud Computing, 2020, pp. 257–268.

[2] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars,
and L. Tang, “Neurosurgeon: Collaborative Intelligence between the
Cloud and Mobile Edge,” ACM SIGARCH Computer Architecture News,
vol. 45, pp. 615–629, 2017.

[3] X. Deng, J. Yin, P. Guan, N. N. Xiong, L. Zhang, and S. Mumtaz,
“Intelligent Delay-Aware Partial Computing Task Offloading for Multi-
User Industrial Internet of Things through Edge Computing,” IEEE
Internet of Things Journal, 2021.

[4] Z. Tang, X. Zhou, F. Zhang, W. Jia, and W. Zhao, “Migration Modeling
and Learning Algorithms for Containers in Fog Computing,” IEEE
Transactions on Services Computing, vol. 12, no. 5, pp. 712–725, 2018.

[5] C. Puliafito, C. Vallati, E. Mingozzi, G. Merlino, F. Longo, and A. Pu-
liafito, “Container Migration in the Fog: A Performance Evaluation,”
Sensors, vol. 19, p. 1488, 2019.

[6] A. A. Majeed, P. Kilpatrick, I. Spence, and B. Varghese, “NEUKONFIG:
Reducing Edge Service Downtime When Repartitioning DNNs,” in
IEEE Int. Conf. on Cloud Engg., 2021, pp. 118–125.

[7] H. Wang, G. Cai, Z. Huang, and F. Dong, “ADDA: Adaptive Distributed
DNN Inference Acceleration in Edge Computing Environment,” in IEEE
25th Int. Conf. on Parallel and Distributed Sys., 2019, pp. 438–445.

[8] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Branchynet: Fast
Inference via Early Exiting from Deep Neural Networks,” in IEEE 23rd
International Conference on Pattern Recognition, 2016, pp. 2464–2469.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 770–778.

[10] M. Soualhia, C. Fu, and F. Khomh, “Infrastructure Fault Detection and
Prediction in Edge Cloud Environments,” in Proceedings of the 4th
ACM/IEEE Symposium on Edge Computing, 2019, pp. 222–235.

[11] A. Aral and I. Brandic, “Dependency Mining for Service Resilience at
the Edge,” in 2018 IEEE/ACM Symposium on Edge Computing, 2018,
pp. 228–242.

[12] A. Aral and I. Brandić, “Learning Spatiotemporal Failure Dependencies
for Resilient Edge Computing Services,” IEEE Transactions on Parallel
and Distributed Systems, vol. 32, no. 7, pp. 1578–1590, 2020.

[13] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Distributed Deep
Neural Networks over the Cloud, the Edge and End Devices,” in IEEE
37th Intl. Conf. on Distributed Computing Systems, 2017, pp. 328–339.

[14] Y. Matsubara, M. Levorato, and F. Restuccia, “Split Computing and
Early Exiting for Deep Learning Applications: Survey and Research
Challenges,” arXiv preprint arXiv:2103.04505, 2021.

[15] F. McNamee, S. Dustdar, P. Kilpatrick, W. Shi, I. Spence, and B. Vargh-
ese, “The Case for Adaptive Deep Neural Networks in Edge Comput-
ing,” in 2021 IEEE 14th International Conference on Cloud Computing,
2021, pp. 43–52.

[16] X. Wang, F. Yu, Z.-Y. Dou, T. Darrell, and J. E. Gonzalez, “SkipNet:
Learning Dynamic Routing in Convolutional Networks,” in Proceedings
of the European Conference on Computer Vision, 2018, pp. 409–424.

[17] Z. Wu, T. Nagarajan, A. Kumar, S. Rennie, L. S. Davis, K. Grauman, and
R. Feris, “BlockDrop: Dynamic Inference Paths in Residual Networks,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 8817–8826.

[18] A. Veit, M. J. Wilber, and S. Belongie, “Residual Networks Behave
like Ensembles of Relatively Shallow Networks,” Advances in Neural
Information Processing Systems, vol. 29, pp. 550–558, 2016.

[19] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bilenetv2: Inverted Residuals and Linear Bottlenecks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 4510–4520.

[20] C.-C. Wang, Y.-C. Liao, M.-C. Kao, W.-Y. Liang, and S.-H. Hung,
“PerfNet: Platform-Aware Performance Modeling for Deep Neural Net-
works,” in Proceedings of the International Conference on Research in
Adaptive and Convergent Systems, 2020, pp. 90–95.

[21] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,”
in Proceedings of the 22nd ACM International Conference on Knowl-
edge Discovery and Data Mining, 2016, pp. 785–794.

[22] Y. Jiang, D. Krishnan, H. Mobahi, and S. Bengio, “Predicting the
Generalization Gap in Deep Networks with Margin Distributions,” in
International Conference on Learning Representations, 2019.

[23] T. Unterthiner, D. Keysers, S. Gelly, O. Bousquet, and I. Tolstikhin,
“Predicting Neural Network Accuracy from Weights,” arXiv preprint
arXiv:2002.11448, 2020.

[24] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and
T.-Y. Liu, “LightGBM: A Highly Efficient Gradient Boosting Decision
Tree,” Advances in Neural Information Processing Systems, vol. 30, pp.
3146–3154, 2017.

[25] K. P. Yoon and C.-L. Hwang, Multiple Attribute Decision Making: An
Introduction. Sage publications, 1995.

[26] A. Abouaomar, S. Cherkaoui, Z. Mlika, and A. Kobbane, “Resource
Provisioning in Edge Computing for Latency Sensitive Applications,”
IEEE Internet of Things Journal, 2021.

[27] C. Puliafito, E. Mingozzi, F. Longo, A. Puliafito, and O. Rana, “Fog
Computing for the Internet of Things: A Survey,” ACM Transactions on
Internet Technology, vol. 19, no. 2, pp. 1–41, 2019.

[28] E. Li, L. Zeng, Z. Zhou, and X. Chen, “Edge AI: On-demand Accel-
erating Deep Neural Network Inference via Edge Computing,” IEEE
Transactions on Wireless Comms., vol. 19, no. 1, pp. 447–457, 2019.

[29] L. Zeng, E. Li, Z. Zhou, and X. Chen, “Boomerang: On-demand
Cooperative Deep Neural Network Inference for Edge Intelligence on
the Industrial Internet of Things,” IEEE Network, vol. 33, no. 5, pp.
96–103, 2019.

[30] Z. Wang, W. Bao, D. Yuan, L. Ge, N. H. Tran, and A. Y. Zomaya,
“SEE: Scheduling Early Exit for Mobile DNN Inference during Service
Outage,” in Proceedings of the 22nd International ACM Conference
on Modeling, Analysis and Simulation of Wireless and Mobile Systems,
2019, pp. 279–288.

[31] W. Ju, W. Bao, D. Yuan, L. Ge, and B. B. Zhou, “Learning Early Exit
for Deep Neural Network Inference on Mobile Devices through Multi-
Armed Bandits,” in 2021 IEEE/ACM 21st International Symposium on
Cluster, Cloud and Internet Computing, pp. 11–20.

[32] A. Yousefpour, S. Devic, B. Q. Nguyen, A. Kreidieh, A. Liao, A. M.
Bayen, and J. P. Jue, “Guardians of the Deep Fog: Failure-Resilient DNN
Inference from Edge to Cloud,” in Proceedings of the First International
Workshop on Challenges in Artificial Intelligence and Machine Learning
for Internet of Things, 2019, pp. 25–31.

10

	I Introduction
	II Background
	II-A Edge Failures
	II-B Underpinning Techniques
	II-B1 Technique 1 – Repartitioning
	II-B2 Technique 2 – Early-exit
	II-B3 Technique 3 – Skip connection

	II-C DNN Selection
	II-D Suitability of Underpinning Techniques for Edge Failures

	III The CONTINUER Framework
	III-A Assumption
	III-B Technique Selection

	IV The Profiler and Runtime Phases
	IV-A Profiler Phase
	IV-A1 Repartitioning
	IV-A2 Early-exit
	IV-A3 Skip connection

	IV-B Metrics
	IV-C Runtime phase

	V Experimental Studies
	V-A Experimental Setup
	V-B Results
	V-B1 Quality of estimating latency and accuracy metrics
	V-B2 Quality of selection by the Scheduler
	V-B3 Overhead

	VI Related Work
	VII Conclusions
	References

