
ar
X

iv
:2

30
7.

06
39

7v
1 

 [
cs

.D
C

] 
 2

9 
Ju

n 
20

23

When Edge Meets FaaS: Opportunities and

Challenges

Runyu Jin

IBM Almaden Research Center

San Jose, California

runyu.jin@ibm.com

Qirui Yang

Arizona State University

Tempe, Arizona

qyang30@asu.edu

Ming Zhao

Arizona State University

Tempe, Arizona

mingzhao@asu.edu

Abstract—The proliferation of edge devices and the rapid
growth of IoT data have called forth the edge computing
paradigm. Function-as-a-service (FaaS) is a promising computing
paradigm to realize edge computing. This paper explores the
feasibility and advantages of FaaS-based edge computing. It
also studies the research challenges that should be addressed
in the design of such systems, which are 1) the quick de-
composing and recomposing of applications, 2) the trade-off
between performance and isolation of sandbox mechanisms,
and 3) distributed scheduling. The challenges are illustrated
by evaluating existing FaaS-based edge platforms, AWS IoT
Greengrass, and OpenFaaS.

Index Terms—Function-as-a-Service, Edge Computing, Cloud
Computing, function

I. INTRODUCTION

The proliferation of edge devices and the rapid growth

of edge data challenged the traditional cloud computing. In

early settings, edge devices produced data and sent it to

cloud for computation and storage. The high costs of cloud

services and the network latency caused by data transporta-

tion outweigh the high-performance cloud can provide. Edge

computing emerged to solve the problem. In edge computing,

edge devices and edge servers are considered as important

resources that can help with computation and data storage;

data generated on edge devices is processed locally to avoid

network latency. This can greatly reduce application response

time which is especially important for time-sensitive edge ap-

plications. Also, many edge devices generate data concerning

user privacy. The data is more secure to be stored on local

devices than on a shared cloud.

A proper abstraction is key to enabling computing across the

heterogeneous resources on the edge and across the multiple

tiers of resources from the edge to the cloud. In this paper,

we argue that Function-as-a-Service (FaaS), an emerging cloud

computing model can provide the much needed abstraction for

edge computing. In FaaS, the unit of computation is a function.

When a request is received, the platform starts an ephemeral

execution sandbox for the function. When load increases, it

quickly and dynamically increases the number of execution

units. As soon as the function finishes, the sandboxes are

terminated.

To investigate the opportunities and challenges, we consid-

ered the existing commercial FaaS platforms for edge com-

puting such as AWS IoT Greengrass [5]. It enables the edge

workloads to be computed locally using AWS Lambda [6]. We

also developed our own prototype based on OpenFaaS [4],

which is an open-source FaaS platform that supports edge

devices. Using these platforms we study the challenges of FaaS

for edge computing. We conducted the experiments on local

edge devices and a edge server.

II. MOTIVATIONS

We advocate FaaS as the abstraction for edge computing

because it can greatly help reap the benefits of edge computing

and address its challenges by providing the following.

Faster Responses: First, FaaS improves edge applications’

response time by doing more computation closer to data

sources. Compared to complex applications, functions are

small in size and resource-conserving. They can better fit into

the limited resources on edge devices.

Second, FaaS can better exploit the heterogeneous resources

available at the edge to deliver faster responses. Applications

often contain functions that have different workloads. Func-

tions with I/O intensive workloads can gain optimal perfor-

mance running on flash storage. Functions with computation

intensive workloads can boost the performance using hardware

accelerators such as GPUs and FPGAs.

Third, FaaS can reuse functions for different applications to

save function initialization time. Various applications contain

the same function. For example, many personal virtual assis-

tant applications contain the text-to-speech function to interact

with users. The frequently used functions can be reused by

different applications to avoid the cold start.

Better Privacy: FaaS isolates each function to its own address

space. A function generally involves less user data compared

to an application. This facilitates better privacy since FaaS

prevents data from being leaked or modified at a large scale

on edge devices.

Higher Productivity: Edge devices are highly heterogeneous

with diverse software and hardware. This prevents the utiliza-

tion of distributed edge resources. FaaS provides a nice ab-

straction to hide the heterogeneity and enables the productive

use of the diverse edge resources.

More Reliability: One key benefit of FaaS is to provide more

reliability by employing function-based sandboxes. On edge

devices, due to the continuous interaction with the physical

world, they are more prone to failures that can bring severe

http://arxiv.org/abs/2307.06397v1


consequences (think of a camera failure on an autonomous

driving car). FaaS restraints the failure within a function

sandbox to improve the reliability.

Lower Cost: FaaS can lower the cost of users by utilizing

more edge resources. As discussed above, FaaS can better fit

functions in edge resources to reduce the demand of cloud

servers. More requests are served locally and the cost is

reduced.

III. CHALLENGES

To deliver effective FaaS-based edge computing, we identify

the following key challenges.

From Applications to Functions: As illustrated in Section II,

FaaS edge computing benefits largely from the finer-grained

execution unit. However, benefits arise with challenges. Many

functions need to be chained to work in a pipelined manner

according to the application logic. The overhead of executing

sequential functions to get final results can be high if the

system is not cautiously designed. In Section IV, we show

that function chaining overhead is not significant for functions

deployed within an edge device. However, when the functions

are distributed across devices or across edge and cloud,

both computation and communication overhead needs to be

carefully considered.

Sandbox Mechanisms: Sandbox mechanisms is a key com-

ponent of FaaS, which includes virtual machines (VM), con-

tainers [7], [2] and other lightweight virtualization systems [1]

that isolate functions from each other to provide performance

and security guarantees. While providing necessary isolation,

sandboxes unavoidably add extra overhead to run functions.

There are two aspects to look at the sandbox mechanisms:

performance and isolation. Performance represents how fast

a function runs and responds. Isolation refers to performance

isolation which maintains performance when other functions

run together with the functions inside the sandbox, failure

isolation which restraints the failure within the sandbox, and

security isolation that secures the data of a sandbox. In edge

computing, time-sensitive edge applications demand both the

small performance overhead and strong performance isolation.

The balance point of the two aspects needs to be figured out

to achieve the best trade off for the target application and

scenario. We evaluate existing popular sandboxes for edge

computing in Section IV and study the trade off between

performance and isolation.

Distributed Scheduling: FaaS-based edge computing in-

creases the scheduling flexibility by providing smaller schedul-

ing units, which leads to the complexity of distributed schedul-

ing. To achieve distributed scheduling, at least two factors need

to be considered: scheduling horizontally within edge devices

and scheduling vertically across the edge and cloud. The

various constraints that scheduling must consider for resources

(e.g., power/battery capacity, availability) and applications

(e.g., privacy) on the edge further adds to its complexity.

The challenges in horizontal scheduling is in how to effi-

ciently utilize the edge resources. Applying FaaS decouples

the application logic and the hardware which executes the

R
u

n
 T

im
e

 (
s
)

0

0.4

0.8

1.2

1.6

BASE GNC GGC DOCK

Fig. 1: Performance overhead of different sandbox mecha-

nisms

No Stress

With Stress

R
u

n
 T

im
e

 (
s
)

0

1

2

GGC DOCK

Fig. 2: Performance isolation of different sandbox mecha-

nisms

program. How to effectively map functions to edge devices

equipped with heterogeneous hardware resources to accelerate

applications remains a question.

The challenges in vertical scheduling is in how to fully

utilize every tier bottom up from the edge to the cloud. Given

that devices on the path from the edge to the cloud are

usually less powerful than cloud servers, scheduling functions

vertically to the cloud can speedup the response time for some

functions.
IV. EVALUATION

A. Sandbox Mechanisms

AWS Greengrass supports three sandbox mechanisms to

isolate the function executions which are Greengrass container

(GGC), a lightweight container that makes use of cgroups

and namespaces for isolation, docker container (DOCK) and

Greengrass no container (GNC). We first evaluate the run

time overhead of each sandbox mechanism. We used a python

function, image recognition, as an example for evaluation.

It recognizes objects in the image using the SqueezeNet

deep learning model [8] executed on top of the MXNet

framework [3]. We recorded the timestamps of sending the

function trigger and the start and end of the computation to

get the function’s run time and compute time. We used the

default MQTT topic pub/sub system for function triggers. The

experiments were done on a Raspberry Pi 3B+ single board

computer which is equipped with 4 cores and 1GB memory.

Figure 1 shows the results. The error bars describe the

standard deviation. We compare the sandbox results with the

result of the same python code running on the bare metal

(BASE). We can see for GNC and GGC, the run time overhead

is quite small, at 3.8% and 4.2%, respectively. This is because

these two sandboxes are light weight with limited isolation.

However, We found that GNC and GCC do not provide

good isolation. For GNC, functions can read and write to any



Compute Time

Total Run Time

R
u

n
 T

im
e

 (
s
)

0

2

10

12

Cold Warm

Fig. 3: Function chaining and cold start overhead

files that belong to the user as long as the user’s uid and gid

is provided to AWS Greengrass. For GGC, functions cannot

write to local files but can still read any files belonging to

this user. For DOCK, which is heavier weight than GGC and

GNC, has an overhead of 78.3%. However, it is more secure

than the previous two sandboxes since functions do not have

access to host files.

We then evaluate the isolation of sandbox mechanisms. We

use a clone of the function which runs within a busy loop

as the stress test. We compare the run time of running the

function alone to running the function together with the stress

test. Figure 2 shows the result. From the result, we can see

that GGC fails to isolate the interference. The response time

is slowed down twice that of running the function alone. For

DOCK, which has a better isolation mechanism, the overhead

is much smaller at 40%. However, the interference is still

big and for some time-sensitive functions, the overhead is

unacceptable.

Finally, we evaluate the cold start overhead of functions

and the communication overhead of function chaining. We se-

quentially ran two functions using the default AWS Greengrass

container. The first function uses the on-board camera to take

a picture, stores it to the local storage and triggers the second

function, which then loads the picture and conducts image

recognition. We ran the functions using both cold containers

and warm containers and compared the total run time of the

two functions to the sum of two functions’ compute time.

We used the default MQTT topic pub/sub system for function

communications. From Figure 3, we can see that for cold

containers, the total run time is significantly more (5.3 times)

than the actual time required for function executions. The cold

start of containers has a huge impact on the application’s

run time which needs to be further optimized. For warm

containers, the overhead is negligible. But we cannot say

the current mechanism used for function communication is

good considering the weak isolation that Greengrass container

provides.

B. Distributed Scheduling

We implemented a prototype on OpenFaaS to evaluate dis-

tributed scheduling. The evaluation involves three platforms:

edge only platform, edge and cloud cooperate platform, and

cloud only platform. For edge only platform, the scheduling is

provided by OpenFaaS which dynamically scales the number

of functions to all the local devices when load increases. For

Edge Only

25% to Edge Server

50% to Edge Server

75% to Edge Server

Edge Server OnlyR
e

q
u

e
s
ts

0%
20%
40%
60%
80%

100%

Latency
0.5s 1.0s 1.5s 2.0s

Fig. 4: How scheduling affects performance

edge and cloud together platform, we modified OpenFaaS to

offload the requests to a server following a preset proportion.

For cloud only platform, to make a fair comparison, we also

used OpenFaaS on the server instead of a commercial FaaS

platform and offloaded all the requests to the edge server.

During the experiment, each edge device issued 3 requests

per second for 30 seconds. Each request contains a sentence

of 20 words to be transferred to audio speech. The maximum

concurrent running functions are set to be 12 and 6 for the edge

cluster and server, respectively. We recorded the run time of

each request.

Figure 4 shows the CDF results of function run time. We

set the proportion of offloading to cloud at 25%, 50%, and

75%, respectively. Edge only platform has an average run

time latency of 0.86s, whereas a cloud only platform on

average takes 0.44s. With the increased amount of offloaded

requests, the run time latency decreases. In this example,

the naive scheduling policy is by no means showing the

best performance of distributed scheduling but it can still

confirm the benefits of vertical scaling to nearby servers. In

the meanwhile, the reduced performance saves the costs of

the cloud service. With a fully-functional scheduling policy,

we believe the performance can be further improved and the

costs can be further reduced.

REFERENCES

[1] Firecracker. https://firecracker-microvm.github.io/.
[2] Google/gVisor: Container Runtime Sandbox. https://github.com/google/

gvisor.
[3] MXNet: A Scalable Deep Learning Framework. http://mxnet.incubator.

apache.org/, https://github.com/awslabs/mxnet-lambda.
[4] ELLIS A. Functions as a Service (FaaS), 2017. https://blog.alexellis.io/

functions-as-a-service/.
[5] Amazon. AWS IoT Greengrass. https://aws.amazon.com/greengrass/.
[6] AMAZON. AWS Lambda - Serverless Compute. https://aws.amazon.

com/lambda/.
[7] Docker. What is a Container? https://www.docker.com/resources/

what-container.
[8] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han,

William J. Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy
with 50x fewer parameters and <1mb model size. CoRR, abs/1602.07360,
2016.

https://firecracker-microvm.github.io/
https://github.com/google/gvisor.
https://github.com/google/gvisor.
http:// mxnet.incubator.apache.org/
http:// mxnet.incubator.apache.org/
https://github.com/ awslabs/mxnet- lambda
https://blog. alexellis.io/functions- as- a- service/
https://blog. alexellis.io/functions- as- a- service/
https://aws.amazon.com/greengrass/
https://aws. amazon.com/lambda/
https://aws. amazon.com/lambda/
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container

	Introduction
	Motivations
	Challenges
	Evaluation
	Sandbox Mechanisms
	Distributed Scheduling

	References

