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Abstract—This paper introduces a software architecture for
real-time object detection using machine learning (ML) in an
augmented reality (AR) environment. Our approach uses the
recent state-of-the-art YOLOv8 network that runs onboard on the
Microsoft HoloLens 2 head-mounted display (HMD). The primary
motivation behind this research is to enable the application of
advanced ML models for enhanced perception and situational
awareness with a wearable, hands-free AR platform. We show
the image processing pipeline for the YOLOv8 model and the
techniques used to make it real-time on the resource-limited edge
computing platform of the headset. The experimental results
demonstrate that our solution achieves real-time processing
without needing offloading tasks to the cloud or any other
external servers while retaining satisfactory accuracy regarding
the usual mAP metric and measured qualitative performance.

Index Terms—augmented reality, machine learning, real-time
object detection, edge computing

I. INTRODUCTION

Augmented Reality (AR) technology belonging to the class
of immersive technologies offers an ability to blend digital ar-
tifacts and the physical environment by superimposing digital
content in the user’s field of view (FoV) [1] (Fig. 1).

Presently, popular AR applications running on mobile de-
vices, such as smartphones or tablets, can be further enhanced
with machine learning (ML). Thanks to such an approach,
we can include vision-based features for object detection and
tracking on video and imagery data [2].

However, mobile AR solutions have significant limitations,
such as a relatively small FoV confined by screen canvas or
needing hand control [3]. The latter narrows down potential
scenarios where we can successfully deploy AR, such as
manual assembly [4], device repair task [5], or the use of
AR enhancers by older adults [6]. In such cases, the user’s
ability to not only freely move hands but promptly shift the
unconstrained FoV or the body posture is crucial for safety
concerns and task completion [5], [7].

These caveats are circumvented by the alternative tech-
nology of wearable smart head-mounted display (HMD) [4].
The AR headsets, such as widely-considered state-of-the-art
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Fig. 1: The proposed onboard object detection with YOLOv8
offers real-time onboard object detection enhancing HoloLens
2 capabilities without a common requirement of WiFi or
Internet access to perform server-based computations.

Microsoft HoloLens 2 (HL2) [8], offer a hands-free AR expe-
rience [4], [5]. Unfortunately, HL2 and other similar headsets
do not offer a satisfactory level of support for ML-based
processing that could enhance the user’s ability to interact with
the environment [9], [10], Thus, having onboard, real-time ML
models running in the headset’s edge computing platform is
crucial for developing new AR application areas.

We address the problem of real-time object detection on
the HL2, including the most recent You Only Look Once [11]
YOLOv8 framework. We focus on defining the steps necessary
to achieve a desired frame rate of image processing with
the onboard ML model while identifying the constraints of
the HL2 computing platform. Overcoming these limitations
enables using widely-available ML algorithms on headsets. We
also believe that AR developers can use our work on YOLOv8
for HL2 to create new applications extending the current use
cases of this headset.

Our contribution can be summarized as a unique, easy-to-
replicate, real-time, onboard object detection pipeline on the
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HL2 headset. Following the open-science principle, our code
and complete guide on how to run the most recent YOLOv8
network architecture in the resource-limited hardware environ-
ment of this HMD is freely available as a GitHub1 repository.
Furthermore, as a byproduct of our work, we also developed
a commented list of limitations of the HL2 as a computing
platform for ML. These should be tackled first to broaden the
development of modern ML-based applications on this widely
used among AR community device [4], [5].

II. RELATED WORK

The usage of object detection on AR headsets is an item of
past and current research explorations [13]–[16]. For example,
in [13], the authors explore the possibility of using a no
longer state-of-the-art object detection approach with a two-
stage network to detect and track objects while offloading the
processing to the high-end server. We argue that while on
the server side, we are not constrained by the computational
capabilities of HL2, we cannot use the headset to carry out
object-detection tasks without local WiFi or a fast wireless
broadband communication (e.g., LTE connection). Off-board
processing limits the HL2 headset to only a frame-capturing
camera and head-mounted display output than a standalone
solution for object detection and tracking. Presently, the Mi-
crosoft Azure Custom Vision library [17] offers a complete
high-level solution when considering off-board computations.

An example application is tomato picking, where farmers
rely on inexperienced, part-time workers to harvest the fruits
with desired ripeness and blemishes [14]. It negatively impacts
harvest quality and work efficiency as people need to learn the
task. The presented work shows a complete AR and ML-based
solution to this problem that requires powerful servers needing
a steady, reliable LTE connection, which might not be available
in the field. Another example concerns a system for supporting
visually-impaired people, utilizing object detection in images
to provide information about objects in the surroundings using
an audio interface to the user [15]. The application directs
users to the desired objects in the scene based on audio
communication. This system uses an old YOLOv2 model
that is offloaded to the server, thus making it vulnerable
to LTE connection stability outdoors, hampering its ability
to efficiently determine desired objects’ locations. Similarly,
in [16], we are introduced to the concept of using HL2 as
a tool to increase drivers’ road condition awareness. The
authors explore the idea of a system that can focus users’
attention on incoming vehicles and support lane detection
while extending the view with vehicle speed. In such a context,
on-time, local processing capabilities are crucial to ensure the
proper operation of the complete solution. These examples
are only a subset of the existing works concerned with object
detection and tracking in headset-based AR that rely on server-
side computation [18], [19], summarized in a recent review
paper [20].

1https://github.com/kolaszko/hl2_detection

The alternative to server-side processing includes simpler
algorithms that run in real-time on AR headsets. Such an
approach is proposed in [21], where a custom-made processing
pipeline is used to detect cracks in the constructions using only
the onboard computation capabilities of HL2. Designing cus-
tom ML pipelines offers the desired object detection accuracy
but requires expert knowledge and is time-consuming, Hence,
another approach is to apply a readily-available software
framework, like Vuforia [22] or easyAR [23]. These solutions,
however, require a 3D CAD model of the considered objects,
which in practice limits detection capabilities to an object
instance from a class of rigid objects.

As a middle ground, it is possible to combine server-side
processing with on-device edge processing. Still, the resulting
solution has to properly synchronize the processing on both
ends, raising even more issues [24].

Consequently, we propose a pipeline that allows anybody
to achieve real-time object detection and tracking capabilities
using the state-of-the-art YOLOv8 network onboard HL2
without needing to be connected to any server. Furthermore,
to achieve our real-time performance, we put a hard limit of
100 ms on end-to-end processing from an image capturing
to data visualization as greater latency reduces an immersive
experience to users [25], [26]. To that end, our approach offers
new advantages to the ones already provided by a standalone
AR headset such as HL2 [7].

III. HARDWARE AND SOFTWARE FRAMEWORKS

The general, high-level processing idea is presented in
Fig. 2. We start by preparing the YOLOv8 neural network
models for HL2. These models can be optionally retrained
(fine-tuned) to include different detection classes. The next
step involves exporting the model to the Open Neural Network
Exchange (ONNX) [27] format. The model is then used by the
Barracuda [28] library in the Unity [29] engine to perform
object detection on HL2 and to provide visualization of the
detected objects. We decided to use the Unity platform as it is
among the most widely used software framework in AR [4],
[5] and VR (virtual reality) research [30]. We will introduce
the used frameworks in more detail in the following sections.

Fig. 2: The relation between the used hardware and software
frameworks. Notice the clear distinction between the offline
phase performed outside the AR device (red) and the online
operation on HL2 (yellow).

https://github.com/kolaszko/hl2_detection


Fig. 3: The image processing steps performed on the HL2 to achieve the object detection within the user’s FoV.

A. Augmented Reality Equipment: Microsoft HoloLens 2

To showcase the possibility of optimizing an ML model
performance on an HMD treated as an edge computing plat-
form, we decided to use the HoloLens 2 [8]. As a computing
platform, this headset is equipped with Snapdragon 850, a
high-performance 64-bit ARM LTE system on a chip designed
by Qualcomm, and an Adreno 630 graphics processing unit
(GPU). The headset also contains a second-generation custom-
built holographic processing unit (HPU) for computations
related to sensor information, core algorithm accelerators, and
compute nodes enabling onboard image processing without
using Snapdragon’s resources.

HL2 perception system consists of four grayscale cameras
used in simultaneous localization and mapping (SLAM), two
infrared (IR) cameras for the built-in eye tracking, a time-of-
flight depth sensor used in hand tracking and spatial mapping,
an inertial measurement unit (IMU) sensors, and frontal RGB
camera. Our work uses a world-facing RGB camera mounted
above the user’s eyes in the center of the front headset panel.

All these features and their widespread application in AR-
related research [4], [5], made the HL2 a best-suited candidate
for deploying and testing our real-time, onboard object detec-
tion with YOLOv8 network architecture.

B. Object detection: You Only Look Once (YOLO) network

Object detection is an active research topic with multiple
scientific and real-world applications, as previously summa-
rized [31]–[33]. The YOLO family [11] is commonly used
when we need robust object detection capabilities [32]. YOLO
model is based on single-stage object detection with different
backbone sizes that can be chosen based on the available pro-
cessing power [11]. Real-time object detection on constrained
devices can be powered by YOLO Tiny or YOLO Nano, the
smallest models in the YOLO family, which however, limits
the performance [12].

Despite offering unrivaled results, this approach is still
actively explored [33], with research focusing on achieving
the best possible score (i.e., mean average precision, mAP) on
the available datasets while doing it with the least amount of
network parameters [31]. Currently, from the YOLO family

[11], the YOLOv8 network architecture gives the best results.
Hence, we will focus on this version in our demo application.

C. Barracuda library for ML inference

The neural network part of the detection pipeline is based
on the Barracuda [28] library. It is an open-source library
developed by Unity [29] for utilizing neural networks in the
game engine. It supports the most common deep learning
layers and provides GPU and CPU inference engines. Cross-
framework support for different machine learning libraries is
ensured by using an ONNX format to load pretrained neural
networks. It enables interoperability between different ML
frameworks, providing a standard set of operations used in
deep learning.

D. Model preparation

Each model used in the online operation can be prepared
using the same pipeline. We export each model from PyTorch
[34] serialized .pt file to the ONNX format. Since the current
Barracuda version supports ONNX deep learning operations
(opset) up to version 9, exporting models with the proper
opset flag is crucial. Apart from the export, it is also possible
to reduce the model with the ONNX simplification tool. The
operation merges redundant operators using constant folding,
consequently speeding up inference.

We successfully tested exporting and deploying the publicly
available original YOLOv8 object detection models. Moreover,
we can train the YOLOv8 for any custom class with sufficient
data while following the guidelines for model fine-tuning to
custom datasets.

IV. OBJECT DETECTION PIPELINE ON HL2

We present the universal pipeline for onboard, real-
time YOLO-based object detection for HL2. The processing
pipeline used in our evaluation is presented in Fig. 3.

The processing starts by an image acquisition done with
HoloLensCameraStream [35] package. This plugin en-
ables users to collect RGB camera images in all HL2-
supported resolutions and frame rates, along with the current
camera position in the world coordinate system. The package



provides the functionality essential to calculate a projection
from pixel coordinates into 3D world space using extrinsic
and projection matrices. The image, current camera-to-world
matrix, and projection matrix are constantly updated in a
separate thread whenever new data is available.

Next, we perform the initial image preprocessing step,
which consists of cropping an n×n image out of the center of
the acquired camera image, where n is the size of the neural
network’s input, and all pixel values are normalized to [0; 1]
range. Since YOLOv8 accepts a square input, we have omitted
using a rectangular image, simplifying the pre and postprocess-
ing. Finally, the input tensor of size (1, n, n, 3) is created. The
image is then passed to the module for image inference with
a YOLOv8-based model. The neural network structure and
weights are loaded to Unity.Barracuda.Model using an
ONNX file distributed as an asset inside the application. The
procedure of model preparation is described in Sect. III-D.
Once inference is completed, we have to parse the raw YOLO
output detection into final detection, consisting of bounding
box, object class and class score. At first, we determine a
class of an object by choosing the one with the highest score
for every detection in raw output. Next, the detections are
filtered by a class score. The threshold can be selected using
a precision-recall curve and depends on the requirements of
the target application. Elements with scores lower than the
given threshold are rejected. The next step is to perform
Non-Maximum Suppression (NMS) [36] to discard overlapping
boxes and select the best one.

The inference step of neural network inference produces
a 2D bounding box on the image. We use the time of the
original image acquisition from the camera-to-world matrix
to project this 2D bounding box into the 3D scene observed
by the user in AR. Based on this implementation, we can
adequately annotate the 3D position of the object even if the
user is looking in a different direction than when we captured
the image for object detection.

V. EVALUATION

The proposed processing pipeline with YOLOv8 is eval-
uated under two key criteria for the final application: (1)
processing time and (2) object detection performance. All
experiments were performed using the val2017 subset of
Microsoft COCO dataset [37]. This image data collection is
a large-scale object detection, segmentation, and captioning
dataset containing 91 categories of ordinary objects. It is a
common choice in object detection tasks regarding benchmark-
ing methods and using COCO pretrained models to perform
transfer learning and fine-tuning to adapt models to different
detection tasks [38]. Weights of YOLOv8 models pretrained
on COCO are available online.

We used System.Diagnostics.Stopwatch for pro-
cessing time measurement with high-resolution performance
counter mode on capturing either the whole processing or
a selected part of the pipeline. Each time measurement was
repeated 100 times after the model warm-up, i.e., several
initial inferences that are necessary for each GPU application

to stabilize the processing times and further ensure fair and
robust comparisons between different configurations. The HL2
battery charge level was over 50% for all trials, and the headset
was not connected to any other device or power source.

A. Measuring the impact of YOLOv8 model size

The first design choice we have to make when using
the YOLOv8 detector is selecting the network’s size among
the available family of architectures. The YOLOv8 authors
publicly share five pretrained networks that can be used out-
of-the-box in the desired application, starting from the smallest
network to the more extensive networks measured as a number
of parameters: (i) nano (YOLOv8n), (ii) small (YOLOv8s),
(iii) medium (YOLOv8m), (iv) large (YOLOv8l), and (v) extra
large (YOLOv8x). Selecting a smaller network hinders the
final performance while simultaneously taking less memory
on the device and providing faster inference. Simultaneously,
a larger network offers a better object detection performance.

Our experiments measured the processing time from the
image capture moment to the bounding boxes projected in the
3D view. The comparison was performed with a usual image
size of 224×224 pixels, and the results are presented in Fig. 4.
These results suggest that for the best user experience in dy-
namic scenes, only the smallest YOLOv8n can meet the real-
time requirements. Other models can still work in the resource-
constrained environment of HL2. However, they might only be
suited for scenarios where real-time performance is not vital
for user experience, e.g., when used to classify the object held
in hand or when the scene is not dynamic. In these cases, the
object detection will still be able to properly place the object
position in the user’s surroundings but will require more time
to get these results.

The usage of network models with a lower number of
parameters results in lower performance. The usual metric
to quantify performance is mean average precision (mAP),

Fig. 4: The single-image, onboard HL2 processing times
depending on the chosen YOLOv8 model size for a fixed
image size 224× 224 pixels.



Fig. 5: The measured performance of object detection as mAP
values depending on the network size for YOLOv8 starting
from the smallest network (YOLOv8n) to the largest network
(YOLOv8x) for a fixed image size 224× 224 pixels.

which is the average precision for all object classes measured
at a selected threshold A. mAP@A indicates the performance
when at least a A% overlap between the bounding box from
detection and ground truth bounding box (Intersection over
Union – IoU) is required to assume that the object was
correctly recognized. The performance of different detection
model configurations is presented in Fig. 5 for mAP@50 and
mAP@50-95 averaging the performance over a range of IoU
thresholds. The obtained results suggest that a significant
drop in performance should be expected when using smaller
models.

B. Object detection depending on the input image size

Unfortunately, even with the smallest model, i.e.,
YOLOv8n, we ought to seek further improvements to
achieve real-time performance dictated by the best immersive
experience for AR headset users.

Apart from the size of the network, the other possibility is to
reduce the input image size as it directly impacts the inference
times. The results we obtained for varying image input sizes
are presented in Fig. 6.

The obtained relation between processing times and an
input image size shows that processing times scale almost
quadratically with the side length of an image (i.e. linearly
with the number of pixels). Based on this observation, we can
see that it is possible to obtain object detection results in less
than 100 [ms] when using an image size of 160× 160 pixels.
Using smaller input image sizes might impact the achieved
performance of the algorithm. We show the influence of the
input image size on the mAP of the algorithms in Fig. 7.

C. Choosing the best model based on processing time budget

We might also have a greater processing time budget
depending on the application. In these scenarios, we wanted
to quantify if using a larger network for inference is more

beneficial or, rather, increasing the backbone size to improve
the network’s detection performance makes sense.

The obtained results suggest that for any application with
an inference time budget below 400 [ms], it is beneficial to
use YOLOv8n while tuning the image size to fit the budget
requirements. Compared to YOLOv8n at the same processing
time, larger networks perform worse as they need to use
smaller images. For processing times thresholds greater than
400 [ms], we should choose YOLOv8s as it offers better
performance than YOLOv8n despite smaller input image sizes
than YOLOv8n while outperforming all larger backbones in
the analyzed processing time interval. The presented conclu-
sions are drawn based on the obtained performance on all
objects in the COCO dataset, which might not hold equally
for particular object classes.

D. Model performance analysis for AR applications

Flustered by the reduced performance of the YOLOv8n with
a small input image size of 160× 160, we conducted a series
of real-world test experiments. We focused on an example
object, i.e. a smartphone, detected from 1 [m] up to 4 [m] with
an object observed from 20 different viewing angles at each
distance as presented in Fig. 9. We selected these distances,
arguing that reaching up to 2 [m] is crucial for AR interaction
due to the maximum extent of human arms and hand-held
tools. We frequently encounter such situations when dealing
with shop floor tasks [4] or device repair [5], which require
close vicinity, i.e., arms-stretch distance from non-digital asset
users are interacting with.

We measured the performance at each distance as a recall,
i.e., a ratio of the number of cases when the smartphone
was properly detected to the number of images. The results
obtained for different confidence thresholds are presented

Fig. 6: The total processing time for object detection for
YOLOv8n model with different input image sizes. The light
blue interval shows the standard deviation of the performed
measurements.



Fig. 7: The measured performance of object detection using
YOLOv8n model with different input image sizes.

Fig. 8: Comparison of mAP and inference time for different
sizes of YOLOv8 models

in Fig. 10. These outcomes suggest that the proposed con-
figuration offering inference results in less than 100 [ms]
can still detect all object (i.e. smartphone) instances if we
focus on distances closer than 2.5 [m]. We believe that such
performance fulfills the requirements for most AR use case
scenarios [4], [5].

VI. ABLATION STUDY

The goal of the following section is to understand further
the limitations of the YOLOv8 with 160 × 160 input image
size and propose a solution that could further speed up the
processing capabilities depending on the application.

A. Processing time analysis

As a first step, we measured the time spent to prepare
the data (i.e., preprocessing), make the actual bounding box
prediction (i.e., inference), and the time necessary to analyze

the obtained predictions (i.e., postprocessing). The results
are summarized in Tab. I and indicate the most time spent
performing the inference. It shows that postprocessing, even
though the NMS step is not performed on the GPU, is not a
limiting factor.

processing time

operation mean [ms] std [ms]

preprocessing 1.97 1.49

inference 89.84 7.45

postprocessing 4.06 1.17

TABLE I: The analysis of the total processing time when
using the YOLOv8n model and 160 × 160 images size input
revealing that the most time is spent doing the core neural
model inference

Further analysis of the inference time using the Unity
profiler tool revealed that the time spent to copy the data
for inference is negligible, taking less than 1% of the overall
inference time. Therefore, further improvements should be
sought in the inference itself.

B. Testing different model processing backends

The processing time analysis indicates that we should
improve the inference time. One possibility is to explore the
inference backends available in the Barracuda package [39]
The backend choice determines whether the neural network
will be run on GPU or CPU and what kind of implementation
will be used. The results received for different backends are
presented in Tab. II.

inference time

device backend mean [ms] std [ms]

GPU
Compute 103.64 6.68

ComputeRef 174.65 6.65

Compute

Precompiled
89.84 7.45

CPU
CSharp 344.83 23.31

CSharpBurst 216.11 25.62

TABLE II: Inference times for different backend selections on
HL2 using YOLOv8n and image input size of 160× 160

The fastest inference times were obtained for
ComputePrecompiled backend, followed by the
Compute backend, which did not improve further results.
We were unable to execute an inference with remaining
CSharpRef and PixelShader backends.

Another way to improve the neural network inference
performance is the usage of quantization, either with reduced
float precision (FP16) or integer (INT8). Unfortunately, the
Barracuda library does not support the FP16 nor INT8 quan-
tization in its current implementation. FP16 usually offers a
significant speed-up compared to the full float implementations
as already proven on other computing platforms [40], [41].



(a) (b) (c) (d) (e)

Fig. 9: The performance of the proposed real-time YOLOv8n when using 160 × 160 input image size. The network detects
objects reliably from (a) 1 [m], (b) 1.5 [m], (c) 2.0 [m], (d) and 2.5 [m] distance, with decaying results up to (e) 3.0 [m].

Fig. 10: Recall depending on the distance to the smartphone
for different confidence thresholds based on the real-time
YOLOv8n run on 160× 160 input image sizes. The obtained
results suggest that the proposed real-time configuration of
YOLOv8n on HL2 can be sufficient for most AR applications.

C. Dealing with non-square image input

One commonly used approach to dealing with larger images
and smaller objects assumes sliding the object detector over
the whole image [42]. Consequently, we wanted to verify if
it is beneficial for HL2 to divide the input image into smaller
sub-images while increasing the batch size of the passed data
input. Here, another gain is that the view from HL2 is not
square, as we have a greater horizontal field of view than
the vertical one. Our experiment compared two approaches:
the network with 320 × 320 input image size and a network
input of 320×160 pixels divided into two sub-images, each of
size 160× 160 pixels, passed as a batch size two for network
inference. The results are summarized in Tab. III.

The total processing time for two side-stacked images is
almost half the time required to process the square-size single
image. These results confirm that the inference time linearly
depends on the number of image pixels and that the proposed
batch approach allows the process of non-square image inputs
to preserve the natural aspect sizes of objects. Retraining the
model for non-square inputs would require more effort than
the proposed sliding window approach.

detection time

image size mean [ms] std [ms]

2 x 160 x 160 133.64 3.94

1 x 320 x 320 236.31 4.98

TABLE III: Inference time comparison between the YOLOv8
processing the 320 × 320 input image size compared to the
two side-stacked images of 160× 160 input images passed as
batch size two.

VII. CONCLUSIONS

This paper presents the steps required for real-time object
detection using the state-of-the-art YOLOv8 network model
on the Microsoft HoloLens 2 edge computing platform.

We believe that the ability to run advanced ML such as
YOLOv8 algorithms directly on an HMD will become neces-
sary for the emerging edge-based virtual reality applications
[30] and the Metaverse concept [43]. For a wide range of
practical applications, particularly educational [44] and medi-
cal [45], the VR and AR technologies need to converge [46],
providing the users with an ability to seamlessly interact with
both real and virtual elements of the surroundings.

To that end, our experiments show the universal path that
can be taken to ensure real-time operation by finding the best
trade-off between the neural network model size and the input
image size. In the presented case of an AR headset, we are
forced to reduce the input image sizes to 160 × 160 pixels,
still obtaining satisfactory results from the perspective of AR
applications mainly within the 2.5 [m] range for an object of
interest detection. Such distance span is well-aligned with the
typical operational range of AR use case scenarios [4], [7].

The analysis of processing times (see Tab. I) reveals that
further improvements should be sought in the inference itself,
as preprocessing, postprocessing, or data copying take little
time. Beyond that, to boost the number of possible use cases
of the proposed solution, we also show that slicing a view into
multiple images processed in a single batch can be a sensible
approach when we are dealing with situations where wider
FoV is used.

In our future work, we plan to tackle the missing FP16
support to reduce inference times further. In addition, we will
also incorporate tracking into object detection to extend the
possible applications of the presented framework.
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