

Workflow-based composition of web-services: a business model or a

programming paradigm?

Dinesh Ganesarajah1
Orbis, NDS,
London, UK

dganesar@orbisuk.com

Emil Lupu
Department of Computing

Imperial College, London, UK
 e.c.lupu@doc.ic.ac.uk

1 Work undertaken while at Imperial College, London, UK

Abstract

While SOAP/XML is perceived as the appropriate
interoperability level for web-services, companies
compete to provide workflow-based tools for web-service
integration. This paper presents the design and
implementation of a prototype workflow management
system for building new web-services from a workflow of
existing web-services. This enables the creation of
multiple layers of value-added service providers and
provides fast service creation, customisation and
deployment. The system caters for multiple workflow
paradigms, provides an extensible language for workflow
specification and emphasises encapsulation and tight
constraints on workflow execution. To expose a workflow
of web-services as a web-service, several design steps
have been required including the deployment as a web-
service of the generic workflow engine and a
generalisation of the Visitor Pattern to concurrent
visitors.

1. Introduction

In the early days the Web was mainly used to publish
information. Then, application servers were used to offer
services to human customers. We now witness
development of the Services Web where the services can
be accessed programmatically and application servers
collaborate with each other, typically using the Simple
Object Access Protocol (SOAP). The Services Web
evolves out of the desire to perform transactions in an
open and automated environment with ubiquitous
services, rather than using other mechanisms such as EDI
or manual processing. The Services Web environment
typically exhibits the following characteristics:

• Web Services are black-box components that
encapsulate behaviour. The underlying object
model and implementation technology are hidden
though the functionality is not.

• Web Services interact using SOAP over HTTP
thus providing, through the use of wrappers,
interoperation between technology specific
components such as DCOM, CORBA components
or Enterprise Java Beans (EJBs).

• Web Services can be discovered at run-time for
dynamic binding. Their APIs are published in a
standard format (WSDL) that can be inspected
and invoked dynamically; in essence a liberal
form of reflection.

• Several Web Services can be orchestrated to
perform a series of functions in a workflow.

Web Services are units of extremely low coupling;
they communicate with each other with low dependency
on the other party. In many respects they are akin to
deployed components; a similarity that has created both
confusion and controversy. Can web services be
composed like components? Can the result be exposed as
a web service, thus providing hierarchical composition?
What are the restrictions imposed by such strict
encapsulation? One possibility is to manually program in
a Web Service its interactions with other Web Services, or
to implement in a Web Service the functionality needed to
find other services and bind to them. However, Web
Services are expected to become ubiquitous. In Hewlett-
Packard’s Cool Town project [1] every entity has a URI
and can be represented by a Web Service. This ranges
from businesses to handheld devices and even people. In
such a world, the ability to compose Web Services
through workflows rapidly and with less effort than
through general programming will be of substantial value.
The potential for this evolution is considerable. Multiple
layers of value-added service providers could easily be
formed where providers aggregate existing services into
new web-services. Services customised to each client’s
specific needs could be easily created and deployed. And
even customers themselves could aggregate existing
services into new more convenient applications.

emil
In Proceedings of the 6th International Enterprise Distributed Object Computing Conference (EDOC 2002), 17-20 September 2002, Lausanne, Switzerland, Proceedings. IEEE Computer Society 2002, ISBN 0-7695-1742-0

Workflows emphasize the separation of control and
information flows between components from the actual
execution of the code in the underlying components. This
separation provides the ability to easily rearrange and
change the components.

By and large, current workflow languages consider
workflow as a graph problem, with control flow and data
flow described in terms of lines in a graph; this is
exemplified by the Web Service Flow Language (WSFL)
[2]. However, such an approach produces systems that are
difficult to maintain and modify because control lines are
similar to programming with goto statements.

The approach to workflow specification we consider
here is that of encapsulating boxes of control. Each ‘box’,
defines a Non-Terminal Expression of the workflow
language, which determines control within that box. For
example, a Sequence Expression entails that all
constituent expressions are executed in order, while a
Concurrent Expression entails that all constituent
expressions are executed in parallel. Boxes (non-
terminals) can then be recursively encapsulated avoiding
the need for lines that define the control path between the
expressions. A substantial advantage is that modifications
to any part of the workflow are contained within the
expression concerned, and Non-Terminals act as a
structuring mechanism for decomposing large complex
problems, and providing scalability for large workflows; a
form of encapsulation. Additionally, an entire workflow or
any subsection can be deployed as a new Web Service, for
use in another workflow or in the workflow itself, and thus
providing composition.

This paper presents a complete web-service
environment having the characteristics mentioned above.
The design and implementation cover the workflow
service implementation as well as the specification
language, workflow execution, monitoring tools and
visualisation.

The paper is organised as follows: Section 2 will
present the relevant related work from both the Web-
Service environments and workflow management systems;
Section 3 will present the overall system architecture;
Section 4 will focus on the workflow language while
Sections 5 and 6 will focus on the workflow engine and
the user interface respectively.

2. The Scene

The success of Web Services will be determined by the
availability of tools and product support for building,
enacting and interoperating between web services. All
major software vendors have tried to position themselves
into the field by developing their own solutions.

As a first step, software development environments
have been extended to facilitate the development and

deployment of web-services. In Microsoft’s .NET
framework, programming code can be written in almost
any language, including Microsoft’s C#, and targeted for
deployment on a variety of mediums including Web
Forms and Web Services [4]. The cornerstone of the
architecture is that all the deployment models produce
self-describing components that are not directly dependent
on other components.

IBM, who has played an active role in the development
of standards like UDDI, SOAP and WSDL, has integrated
support for creating web applications in its VisualAge and
WebSphere products and now provides a suite of freely
available test tools for web-service development through
these products and from AlphaWorks.

The Sun ONE architecture [3] provides a method of
web service development based on Java that permits the
deployment as Web Services and Applications of macro
services composed from developer written pre-built
components (micro services).

Hewlett Packard has developed a Web Services
Platform that includes tools for the graphical
specification, creation and management of Web Services.
Specifically, the HP Services Composer can be used to
automatically create WSDL files and deploy Java Beans
as Web Services. The Web Services work has evolved
from HP’s previous work on E-Speak [5].

Existing Business Workflow frameworks are not
always suitable for orchestrating Web Services. Firstly,
because Web Services do not immediately fit into the
current workflow components. Secondly, because Web
Services have properties like reflection that are not readily
considered in business workflow systems. Finally, because
business process workflows are geared for dealing with
human users whereas Web Service workflows need only
interact with other automated services − human users are
implicitly represented through the Web Services they use.
However, the techniques used in business workflow
systems and Enterprise Application Integration teach
valuable lessons for the orchestration of Web Services.

By and large Workflow Management Systems
(WFMS) have similar structures, irrespective of the
application domain or type. The general pattern used is
characterized by the Workflow Management Coalition’s
Workflow Reference Model [6].

OTSArjuna [7], a WFMS for CORBA-based
environments uses a graph-like notation to represent
workflows. The graph is made up of nodes denoting tasks,
which represent units of computation. Each task has a
group of input and output sets. At runtime, a Workflow
Repository service holds schemas of different workflows.
A Workflow Execution service co-ordinates the workflow
and delegates responsibility for executing and managing
tasks to Task Controllers associated with each task, thus
decentralizing the management of the workflow.

METEOR2 [8] uses a more declarative language
approach towards workflow specification than in
OTSArjuna. Each task is associated with a directed graph
representing the states into which the task can change to.
Changes from one state to another arise through inter-
dependencies to other tasks. These inter-dependencies are
described using the Workflow Intermediate Language
(WIL), which is specific to METEOR2. Both control and
data inter-dependencies can be specified and the
specification can be generated from a GUI application.

The creators of RainMan [9] argue against centralized
Workflow Management Systems and consider some novel
use-cases that are typical in an Internet environment.
These include the ability to download and run workflow
schemas, to reconfigure the workflow at runtime and to
cater for devices that can go offline but that can still be
assigned to tasks. RainMan workflows have Performers
and Sources. Sources request Performers to complete
tasks and can hold activities, which are essentially
workflow schemas and comprise several tasks. Each
Performer has a list of the different tasks it has been asked
to perform. The RainMan system defines interfaces for
Performers and Sources, which can be implemented in
different ways. RainMan has been implemented as a
RainMan Builder, which is essentially an applet for
creating workflow specifications, which can also act as a
Source and can monitor the completion of the activities.

WSFL [2] has two models of ‘flow’, Flow Model and
Global Model. The former is concerned with describing
workflow between several parties. The latter describes
interfaces for Web Services and patterns of interaction
between them. Conceptually, a Flow Model is made of
Control Links between activities which represent business
tasks within a process. Activities can be interpreted as a
method call within a conversation of methods calls in the
business process. Control Links can have transition
conditions and data links are superimposed over control
links.

The Workflow Management Facility specification for
CORBA accepted by the OMG is jointFlow [10], which
describes a set of interfaces that can be implemented to
create WFMS systems built on parts that can interoperate
with other WFMS systems. The interfaces include
WfRequesters that have WfProcesses, representing
workflow schemas. WfProcesses hold a set of
WfActivities, which are the tasks to be completed. Each
WfActivity is assigned to a WfResource.

Microsoft’s BizTalk [11] Orchestration framework
provides the means to coordinate in a workflow the
applications and components it supports including SOAP
accessible components. At first sight BizTalk
orchestration has similar objectives to those presented in
this paper. However, BizTalk Orchestration lacks
flexibility and some of the advanced aspects presented

here. The language supports concurrent tasks,
synchronization and dynamic task assignment to
components. However, functionality such as choice is not
provided in the workflow. Furthermore, BizTalk
Orchestration focuses on enterprise level workflow
between components, and does not consider some of the
more general use-cases of Web Service workflow. During
workflow execution, monitoring is limited to querying the
state of each component. The system offers a simple
approach to the Web Service workflow but it is very
constrained and does not solve other problems considered
here, such as recursive workflow encapsulation.

3. Architecture

The ability to provide arbitrary web-service
composition through workflow requires a WFMS
architecture that caters for the creation of workflows,
which can be used by other WFMS systems. Thus, other
WFMS systems should be able to invoke this WFMS to
enact workflows created with this system. To satisfy these
requirements the fundamental design approach is to treat a
workflow over web-services as a composite component,
thus placing strict restrictions on the workflow
encapsulation. The Workflow Engine, which enacts the
workflow, is also implemented as a Web Service and
accessible via SOAP. Thus, SOAP clients can be other
workflow engines that access the engine enacting each
workflow as a web-service. In turn, this requires an
execution environment that caters for the concurrent
execution of different workflow schema or several
instances of the same schema over the same web services.
The execution environment encapsulates the interpreters
for the workflow schemas and provides persistency for
schemas that have been created and deployed (Figure 1).

A User Application interacts with the WorkflowEngine
Web Service using standard SOAP messages in order to:
deploy a workflow schema, invoke the relevant workflow,
obtain information on the progress of the workflow
enactment and perform other operations such as retracting
the workflow. The User Application provides both a
graphical and a textual interface. Different user-interface
applications can be used, so long as the same protocol is
used to interact with the Workflow Service (Figure 1).

The workflow engine, which enacts the workflow, is
itself a Web Service, provides the mechanism to
recursively encapsulate workflows within other workflows
and can itself can be called by the workflow.

Much depends on the workflow specification language
which expresses the workflow structure, dependencies and
concurrency. Its design and constituent elements are
described in the next section.

Workflow Engine
(as Web Service)

Workflow
Schema

Interpreter

Monitoring
Service

Web Service
(in Workflow)

Web Service
(in Workflow)

Web Service
(in Workflow)

User
Application

create
workflow
monitor
workflow

Figure 1 Overall System Architecture

4. Workflow Language

The workflow language is designed to be used on both
the workflow engine and in the user application with
minimal modifications. The language caters for
sequencing of web service invocations, parallel execution,
choice and synchronisation mechanisms. The design of the
language emphasises its flexibility and reusability. The
main motivation is to be able to extend the workflow
language with new primitives with minimal impact on the
existing ones.

The language is based on the principles of Java Beans,
self-contained reusable software components. Each
expression in the language is a Bean definition with
properties that can be set to appropriate values. For
example, an instance of a composition expression will be
an instance of a Bean with its properties set to the
constituent expressions that are composed.

4.1 Language design and dialects

The starting point of the language is the Interpreter
Pattern [12]. However, the traditional implementation of
the pattern defines an Abstract Expression at the highest
level of the hierarchy, descending into Terminal and Non-
Terminal Expressions. The top-level expression of the
language (e.g. ‘class’ or ‘module’) will usually then
descend from the Non-Terminal expression. However, in
our implementation the top-level node, a
WorkflowService, extends directly from the Abstract
Expression (Figure 2). This design permits the
implementation, of more than one language-type, or
dialect, by providing different descendents to the abstract
WorkflowService class. These dialects can then share
some of the expressions within the Terminal and Non-
Terminal descendants (Figure 2).

In the current implementation there are two different
descendents of the WorkflowService:

• SafeFlow which provides a structured approach to
workflow design, with tight execution control.

• CircusFlow which is a dialect concerned with
information flow rather than execution control.

The WorkflowService class acts as an interface or
marker class for both, rather than implementing specific
functionality. Although the model suggests that all non-
terminals are shared between the two dialects the user
application will restrict each dialect to the appropriate
subset of what is available.

AbstractExpression

NonTerminal
Expression

Concurrent Sequence

Failure
SequenceBayesian

Workflow
Service

Terminal
Expression

SafeFlow
Service

CircusFlow
Service

Sync WebService

WSStatic WSDynamic

*

0..1

*

has a
Figure 2 Language Design

In addition to Concurrent and Sequence composition
the non-terminals include FailureSequence and Bayesian.
The former is a mechanism for dealing with failures, while
the latter is a complex choice mechanism based on
probabilistic inference. If an invoked Web Service fails,
FailureSequence defines the actions necessary to
overcome the failure. The terminals are either Sync, for
synchronisation, or Web Service (see Section 4.2).

The enactment of SafeFlow and CircusFlow schemas,
by their respective interpreters on the Workflow Engine,
is different, particularly in terms of concurrency. The
SafeFlow dialect provides explicit control of concurrency
through the Concurrent and Sequence non-terminals. All
non-terminals are mapped into components and thus, a
Concurrent expression is implemented as a component
which contains only sub-expressions that will be executed
simultaneously. All sub-expressions in concurrent
expressions must terminate before computation can
proceed. Similarly, the Sequence expression component
will contain only sub-expressions executed in sequence.
Note, that the above is more restrictive that general
workflow expressions based on arbitrary graphs. In
particular, an expression such as the one shown in Figure
3 cannot be represented.

However, in SafeFlow, expressions, particularly Non-
Terminals, can hide all their internal workings from all
other external expressions. The AbstractExpression, from
which all expressions descend, provides the common
means for one expression to interact with any other
expression, in a black-box way, without knowing what the

expression is. Thus, Workflow Services themselves can be
encapsulated and reused in other workflow schemas.

A B

C D

Figure 3 Graph prevented by strict encapsulation

Note that control in SafeFlow departs from traditional
workflows such as OTSArjuna or WSFL. While in
OTSArjuna or WSFL control is implicit and described by
lines in SafeFlow all control is explicit and determined by
component types and their encapsulation. Although
OTSArjuna allows encapsulation of workflow as
intermediate composite tasks, these do not represent
control but denote perimeter sub-graphs of control and
data-lines. To our knowledge none of the current available
ORB workflow languages use the structured Interpreter
Pattern style approach to their design, which is largely
exploited in SafeFlow, and prefer a more scripting
oriented approach. Even when some means of workflow
composition are integrated in to these languages, control,
by and large, remains unstructured.

The CircusFlow dialect adopts a more liberal
approach disregarding control flow over information flow.
Thus, in CircusFlow, all constituent expressions of a
workflow are executed as soon as the data representing
their input parameters is available. The sync terminal
expression provides explicit synchronisation when
needed. Note, that neither the Concurrent nor the
Sequence non-terminals are used in CircusFlow since
these provide control specifications. The idea behind
CircusFlow can also be encountered in data-flow based
computing, primarily used in multithreaded execution,
signal processing and reconfigurable computing.
OTSArjuna can also be seen as similar to a certain extent.
Although, in OTSArjuna control and data flow are mixed,
with control implemented as notification requests. Control
and data are then implicitly synchronised at each task or
composite task.

CircusFlow provides a high degree of concurrency and
overcomes the limitation identified for SafeFlow.
However, this is at the expense of control which is entirely
omitted. Additionally, recursive encapsulation is not
possible. Note however that SafeFlow and CircusFlow can
be used in conjunction to overcome the problems of both.
In particular, web services deployed using CircusFlow can
be included in a SafeFlow and vice-versa.

4.2 Terminals

WebService expressions (see Figure 2) are Beans
which contain the fields necessary to invoke a Web
Service namely: the URL of the Web Service, the
particular Service Name, the Method Name to be called,
the HTTP SOAP Action (header information on call
intent) and the XML Namespace defining the encoding
style of the call. With WebService expressions, import
parameters are cast into Apache SOAP parameters and
sent to the Web Service. After the invocation, the returned
parameters are converted to export parameters (see
Section 4.3). The WebService expression is an abstract
class deferring instantiation to a more specialised
expression which can be one of the following:

• WSStatic, used when the details of the Web
Service are defined at design time, as fields.

• WSDynamic, used when the details of the Web
Service are passed as special ImportParameters at
runtime using the names ‘#soapend’, ‘#nameuri’,
‘#method’, ‘#encode’ and ‘#action’.

Sync Beans are markers for synchronisation in
CircusFlow interpreters, and do not have specific data.

4.3 Guards and Parameters

Interactions between expressions in the workflow
language are achieved through import and export
parameters. Both types of parameters are implemented as
a specialisation of the Parameter bean defined in the
Apache SOAP implementation. Each parameter is
characterised by its name, value, type and XML
namespace to which it belongs. In addition, parameters
have a Reference field that specifies from which
neighbouring or other expression the value for this
parameter can be derived from. Only one of the Reference
or Value fields will usually have an assignment.

Abstract
Expression

Guard

*

Parameter

Import
Parameter

Export
Parameter

*

* *

*

Figure 4 Expressions, parameters and guards

The ability to express choice in workflow languages is
important in order to provide multiple alternatives in
different sets of circumstances. In our language choice is
expressed through the more general mechanism of guards.
In addition to the parameters each AbstractExpression
also maintains a list of guards and the expression is
evaluated only if all the guards are satisfied. Each guard is

<SafeFlowService id="somewsid">
 <ImportParam name="sourcedata" value="" type="String" encodingStyleURI="" ref="#import/data" />
 <Sequence id="someschema">

 <ImportParam name="sourcedata" value="" type="String" encodingStyleURI=""
 ref="#import/sourcedata" />

<WSStatic id="someproxy" soapend="http://services.xmethods.net:80/perl/soaplite.cgi"
nameuri="urn:xmethodsBabelFish" method="BabelFish" encode="">

<ImportParam name="translationmode" value="en_de" type="String" ref="" />
<ImportParam name="sourcedata" value="" type="String" ref="#import/sourcedata" />
<ExportParam name="return" value="" type="String" encodingStyleURI="" ref="#details/return" />

</WSStatic>
<WSStatic id="someproxy2" soapend="http://services.xmethods.net:80/perl/soaplite.cgi"

nameuri="urn:xmethodsBabelFish" method="BabelFish" encode="">
<ImportParam name="translationmode" value="de_fr" type="String" ref="" />
<ImportParam name="sourcedata" value="" type="String" ref="#someproxy/return" />
<ExportParam name="return" value="" type="String" encodingStyleURI="" ref="#details/return" />

</WSStatic>
 <ExportParam name="return" val="" type="String" encodingStyleURI="" ref="someproxy/return" />
 <ExportParam name="return2" val="" type="String" encodingStyleURI="" ref="someproxy2/return" />

 </ Sequence >
 <ExportParam name="return" val="" type="String" encodingStyleURI="" ref="someschema/return" />
 <ExportParam name="return2" val="" type="String" encodingStyleURI="" ref="someschema/return2" />
</SafeFlowService>

Example 1 Representing a SafeFlow schema in XML

associated with an import parameter, which can have
several guards (Figure 4).

4.4 The Role of Data Binding

In terms of internal representation, the language is
based on Java Beans that encapsulate data only.
Decorators and visitors are then used to add functionality
to the Beans as required by the program using them.

The transport used between the workflow engine and
the user application (Figure 1) is an XML representation
that has a direct one-to-one mapping with the Bean
representation. This tight mapping enables the conversion
process between Beans and XML to be independent of the
Beans and XML themselves; it describes only how to map
any of the language’s Bean to an equivalent XML form
and vice-versa. The language can therefore be extended
by simple addition of Beans, without modifying the
mapping to and from the transport. In essence, this is a
custom and specialised implementation of Sun’s Java-
XML Data Binding [13], which was not yet available at
the time of the implementation.

4.5 XML and Graphical Specification

The graphical representation of the language (also
inspired from the graphical representation of component-
based systems) has a direct one-to-one mapping to the
XML representation. Each workflow expression is
represented by a box where the import parameters are
represented on the left hand side and the output
parameters on the right hand side. Figure 5 gives the

graphical representation for the workflow described in
more detail in the Example 1 below.

Figure 5 Visual Representation for SafeFlow

Example 1 below gives an outline of an XML schema
for a SafeFlow Service with a Sequence expression that
has two Static Web Services. The second bolded text
import parameter refers to the parameter imported from
the outer expression, using the reserved #import
directive, and the name of the parameter, sourcedata.
The first highlighted import parameter follows a similar
convention except that data refers to the name of the
parameter passed in at runtime when the method for the
workflow is called on the Web Service Engine. Export
parameters use a different referencing convention. The
export parameter for someproxy refers to the parameter
called return returned from the Web Service. This return
value is accessed using the reserved #details. The import
parameter for someproxy2 refers to the export parameter
from someproxy. The export parameters for the
Sequence and Workflow Service refer by convention to
export parameters from their constituent expressions. The

export parameters for the SafeFlow Service, return and
return2 near the bottom, refer to the workflow results.

5. Workflow Engine

The workflow engine encapsulates the functionality of
the workflow enactment and permits the encapsulated
system to be easily accessible while respecting low
coupling with clients. It also permits the deployment of
several workflow schemas which are enacted through
delegation to the appropriate workflow.

The WorkflowEngine is deployed as a Web Service,
and allows for several WorkflowServices to be deployed
on it. Each WorkflowService is an instance of a workflow
schema and is associated with an Interpreter (which may
create further child interpreters) to enact it. Clients
(including the user interface) can create several
WorkflowServices corresponding to possibly different
schemas and deploy them on the WorkflowEngine for
enactment. The WorkflowEngine is installed as a Web
Service on a server supporting a SOAP implementation
that allows for the deployment of SOAP services – in our
case a servlet that allows for the invocation of the Java
Beans that it holds.

As shown in Figure 6, the WorkflowEngine is
implemented as a single Java Bean with static methods
and a persistent Hashtable that maintains the services.
Each deployed schema behaves like a new method of the
WorkflowEngine which can be invoked with parameters
that become ImportParamters during enactment. The
WorkflowEngine bean provides the methods necessary to:

• Add a new Workflow schema by providing an
XML encoding of the schema.

• Remove a Workflow schema.
• Run a Workflow schema. An XML String version

of an EMethod object is passed to the enact
method. After parsing the string to an internal
representation, the enact method retrieves the
service name and passes the EMethod object as a
set of import parameters to it. The set of export
parameters returned from the WorkflowService is
converted to an XML version of a new EMethod
object and returned to the client.

• List the WorkflowServices deployed, together
with their required parameters.

• Enact a workflow service. This method is similar
to the Run method, but is used only by clients
capable of using the monitoring protocol.

• Update returns monitoring information on the
current state of a WorkflowService that is being
enacted. When the WorkflowService has finished
executing, this method returns the final result.
SOAP over HTTP does not allow for call-backs,
so relaying of calls to Update is necessary.

Note that more complex management of the Workflow
Schema is possible by combining these operations in a
Web Service that acts as a wrapper for the
WorkflowEngine Web Service. Although alternatives to
the use of the EMethod object were investigated, for
example by dynamically adding a new method to the
workflow engine for each schema, this would have
required stopping and restarting the server, which would
have been unacceptable.

MonitorPost

getMonitorPost()
MonitorPost ()
register()
update()
unregister()

-$thisInstance

WorkflowEngine
schemaList : java.util.Hashtable

add()
remove()
retrive()
enact()
run()
update()

uses

Interpreter
(f rom arctic)

registers/unregister with

EMethod
_id : String

EMethod()
getId()
setId()
setEParameter()
getEParameter()

recieves

Figure 6 Workflow Engine Bean

Update calls are made on a shared MonitorPost
component implemented as a singleton. When entering an
AbstractExpression, interpreter instances enacting the
workflow register with the MonitorPost the identity of the
AbstractExpression they have entered, together with the
workflow schema. When the enactment is finished the
AbstractExpression is unregistered. When an update call
comes from the WorkflowEngine, with a specified
workflow schema, the MonitorPost returns an EMethod
object identifying a list of active AbstractExpressions for
the schema. This system for monitoring the workflow
enactment is simple, but provides all the necessary
functionality. However, the singleton instance means that
the system is constrained in terms of scalability and a
more complicated implementation using Publisher-
Subscribers is desirable in future developments.

6. Interpreter – A Concurrent Visitor

Once the schema is converted from XML to the
internal representation, the enactment of the workflow is
performed by an Interpreter, implemented as a Visitor that
traverses the hierarchy of Beans which forms the internal
representation of the workflow, as described in the Visitor
Pattern [12]. This allows the encapsulation of
interpretation control and co-ordination in one logical
object and avoids placing interpretation code across the
different expression beans, thus making future
modifications difficult because of interdependencies.

However, the implementation of the Visitor Pattern is
modified, in that each time a new bean is visited, a new

instance of the interpreter evaluates it rather than the one
evaluating the current bean. This design decision was
made in order to: (i) provide support for concurrent
expressions, which require several threads of execution,
(ii) provide “natural” concurrency within the design and
(iii) cater for several instantiations of the workflow by
different clients, all represented by their own sets of
Interpreters. In this way, the information held in the Bean,
during interpretation is not changed and the interpreter
holds temporary information derived from processing the
Bean. If instead a single instance of an Interpreter were to
visit all the different Beans, it would be necessary to use a
stack to hold temporary information that must be saved
before traversal returns to the Expression where that
temporary information was needed.

When the workflow is invoked in a WorkflowService,
such as SafeFlowService or CircusFlowService, a new
instance of the Interpreter is created for the first time, and
the accept function of the top-level WorkflowService
schema Bean is passed the instance. Within the Bean, the
Interpreter has its visit function invoked with the Bean
itself, passed as a parameter (Figure 7).

Interpreter

visit(..){ ...; start();}

Visited
Expression

visited.accept(new Interpreter())

i.visit(this)

usually, 'this' is passed

starts a new execution thread

Figure 7 Interpreter and Visited Exrpression

While interpreting a parent expression that contains
several child expressions, an interpreter will be created for
each child expression. The reference to the child
interpreter will be passed to the child expression through
its accept method which in turn will call the child’s
interpreter visit method with the child expression bean as
parameter. The visit method will call the start method,
thus forking execution and then an interpret method which
is overloaded for the different types of expression. Once
execution has forked, the parent’s execution thread will be
put to sleep. In case of a sequence expression the parent
interpreter will sleep until the child interpreter finishes
and then start visitation of the following child. In case of a
concurrent expression the visitation of the other child
expressions will start immediately. All instances of child
interpreters are grouped in a Thread Group, and when the
Thread Group indicates that all its threads are dead and all
the data from their enactment accumulated, the original
execution of the hosting Interpreter continues, effectively
synchronising all constituent Expressions. In the case of
CircusFlow, if any of the child expressions has sufficient

data to execute the visitation process starts for it. All child
expressions are checked each time a child interpreter
finishes and produces additional data.

According to this enactment pattern several
concurrently acting interpreters can be spawned.
However the Interpreters also need to communicate to
each other the import parameters and export parameters as
they become available. This was achieved by using a
double dispatched Publisher-Subscriber version of the
Observer pattern between the visitors.

Parent Interpreter

List of child
subscribers

Child
Interpreter

Child
Interpreter

publish

Child Interpreter

Parent
subscriber

Interpreter
publish

Figure 8 Publish-Subscribe coordination

The Parent Interpreter is registered with the Child
Interpreters, and the Child is also registered with the
Parent (Figure 8). The Parent publishes to its Children the
ImportParameter data necessary for a Child to execute.
The method the Child listens on (i.e. the method invoked
by the Parent) is protected as a synchronised method, for
concurrency purposes. Once a Child has finished
interpreting, it publishes the ExportParameter data to the
Parent. The actual co-ordination of information is
dependent on the nature of the expression. In concurrent
expressions (SafeFlow) the parent publishes its own
ExportParameters only once all the Children have
published their ExportParameters. In sequence
expressions the ExportParameters of a child are made
available to the next child through the parent. In
CircusFlow export parameters are published to the next
children as soon as they are available. Finally, the Parent
can publish any data it has to any of its Parents.

7. The User Interface

Although XML can be used for workflow schema
specification, XML is far from being a user-friendly
language. A user interface was therefore developed which
permits workflow specification, workflow enactment and
monitoring. The user interface follows a similar approach
to that used in component environments such as Darwin
[14] and in many respects it was designed to resemble an
Integrated Development Environment. The hierarchical
language data structure allows to maintain a tight
integration between the graphical specification and its
XML textual description, thus allowing knowledgeable
users to manipulate text directly.

The user interface comprises: a top window defining
the workspace area, one or several graphical composition
windows, a property window and a monitor browser
(Figure 9). The graphical composition windows permit a
top-down workflow specification by allowing various
language constructs to be selected from a toolbar, drawn
on the canvas and then linked to the components already
present. The properties window displays the properties of
the current selected element. The Monitor Browser
permits workflow deployment (and retraction) on a
workflow engine, and workflow invocation. When the
Monitor Browser is in use the graphical composition
window is used to display workflow execution state by
highlighting the elements currently being enacted.

Figure 9 Graphical specification tool

The top-down approach to workflow specification was
inspired by the B Method which describes a process of
progressive refinement of a formal specification into more
concrete descriptions. At the lowest level,
implementations such as pre-built machines can be
substituted to the components. This is not unlike our
environment where existing Web Services behave like
pre-built machines that provide the leaf nodes in the
hierarchical design. Thus, the workflow can be designed
at a higher level and decomposed into Non-Terminals and
predefined workflows that can be Web Services. This can
be a recursive process.

Several types of objects need to be drawn on the
canvas, ranging from AbsractExpressions like Web
Services, which have no constituent expressions, to

ImportParameters, which do not descend from
AbsractExpression, but are distinct fields of
AbstractExpressions, and need to be drawn as well. The
existing data structure of beans used for the language is
therefore decorated with the necessary graphical
information. However, this is not straightforward.
Although, a single Decorator Class, for
AbstractExpressions or EParameter, can be defined, it is
also necessary to traverse the hierarchy of language Beans
during graphical operations, for example to add
constituent expressions to the right Non-Terminals. While
a Decorator can refer to a language Bean, and the
language Bean to its constituents, it is also necessary to
derive the Decorator for the constituents as well, for
example when resizing an inner expression. To achieve
this the Visitor Pattern style double dispatching was
applied between each object that can be drawn on the
canvas and the Decorator Class that contains that object’s
graphic information. AbstractExpressions and
EParameters implement the Drawable interface which
requires that each implementing Bean provide methods
for getting and setting a VisualExpr decorator associated
with it. The VisualExpr decorator manages the graphical
and language data associated with each Drawable and
becomes the single point of contact for manipulating
language or graphical data associated with it. The
VisualExpr delegates all functionality such as expression
formatting to other classes which are therefore isolated
from the data elements and can be changed independently.
Amongst the different delegated decorator classes
VisualExprLogic is used to manipulate the hierarchy of
expressions while enforcing some of the language
restrictions e.g., FailureSeqs can only be added to Web
Services, Terminals can only be added to Non-Terminals,
etc. Another, the VisualExprFormatter, caters for the
visual manipulation of expressions on the canvas
enforcing graphical constraints e.g., parameters remain on
the expression boundary and expressions cannot move out
of parent expressions.

By taking advantage of the graphical representation
already used, it is possible to provide a simple way to
observe the enactment of the workflow, and its results. In
the same way as a train monitoring system shows the
progress of the trains between departure and destination,
the enactment of a workflow can be shown on the canvas
on which the workflow is drawn by highlighting the
elements currently active. Note that while in ‘Monitoring’
mode the canvas cannot be simultaneously used for
editing. The output of the workflow itself is displayed in a
form similar to a web-browser integrated in the monitor
browser component. The monitor browser also integrates
the functionality of a MonitorManager component which
caters for the deployment, revocation and invocation of
the workflow. While the workflow is executing, the

monitor manager receives continuous updates on its
execution state, which can be passed onto the graphical
display window.

8. Discussion

When applied to Web Service orchestration the
fundamental limitation of current workflow languages is
that they largely approach workflow definition as a graph
problem; nodes that perform work and lines of control
between them that describe how execution flows. This
means that in large workflows, managing all the different
nodes can become difficult as the workflow definition
graphically starts to look like a complex spider diagram.
Within the context of distributed systems, OTSArjuna,
METEOR2, RainMan and WSFL, which are probably
some of the most significant references for comparison,
are to an extent graph-based.

SafeFlow’s distinguishing characteristic is that it takes
a component-style programmatic approach to workflow
design. Whereas all the above-mentioned languages
approach workflow as a graph problem, SafeFlow is
motivated by encapsulation and tight control over the
enactment of the workflow. This means that control is
considered visually as a box with nodes in it, rather than
as a line between two nodes. The exact nature of the
control, such as concurrency or sequence is dependent on
the type of box used. Boxes can be nested and provide
encapsulation by hiding the inner workings of a particular
box, which will represent a sub-workflow. This structured
approach allows the workflow definition to be made in a
similar way to component composition where a higher
level component hides the lower level details of the
components it contains. At a lower level, within a box,
changes will impact only the other components within that
box. With a graph-based approach, manipulating whole
sub-workflows at a high level is difficult because there
may be many tangled inter-dependencies. Changing the
workflow at a low level is also difficult, as the workflow
designer needs to be aware of dependencies of a particular
node across the entire workflow, rather than just in the
local vicinity. The encapsulating component-style
composition approach to workflow design is largely due
to the language’s origins from the Interpreter Pattern - an
approach seemingly not considered in the other workflow
languages.

WSFL and OTSArjuna are the strongest related to
graph problems. The former lays control out as a graph
and overlays a data flow graph above it that respects the
control graph. OTSArjuna, METEOR2 and RainMan mix
both control and data flow in the same graph. Although
Composite Tasks (OTSArjuna), which define sub-graphs
that can be represented as nodes, can be used as a
structuring mechanism, the underlying approach remains

graph-based. Graph-based approaches cause difficulties in
the context of maintainability and problem structuring – a
graph of control lines is analogous to ‘goto’ statements. In
contrast, the argument for representing control as a graph
is that of increased flexibility and expressiveness.

SafeFlow uses recursively encapsulated control boxes,
which dictate the control within the box. The significant
advantage of such an approach is that any encapsulating
box can be easily removed and replaced without effect to
the rest of the workflow. Furthermore, SafeFlow allows
for high scalability, due to the natural presence of
recursive encapsulation. Thousands of nodes of Web
Services, or other distributed component, could be
organised effectively. Subsections within a workflow can
also be effectively reused, or the entire workflow itself.

SafeFlow has some synchronisation limitations owing
to the strict encapsulation. We have shown how these
limitations can be overcome by using an unstructured
workflow (CircusFlow) encapsulated in a web service and
used within the context of the SafeFlow structure. While
in essence, this may seem a way of circumventing the
problem, it contains the “uncontrolled” part of the
workflow in a strictly encapsulated manner.

The entire system described in this paper was
implemented and tested for varying case scenarios.
However, there are few freely available web-services,
which provide meaningful services that can be composed
in realistic experiments of large scale. If the momentum
gathered towards the Services Web environment is
sustained, we will be in a better position to test the
framework in larger scale environments.

9. Conclusions and Future Work

Workflow Management Systems have been
traditionally difficult to manage and evolve according to
changing business requirements. This problem will
acquire an entire new dimension in a Services Web
environment if significant parts of the business model are
based on the aggregation of existing services. Changes in
business requirements, availability of suppliers,
personalisation of services, mergers with other businesses
and acquisitions are only few amongst the factors that will
require changes in the workflows used. In the absence of a
structured environment providing strict encapsulation, the
impact of change will often be unforeseen and sometimes
unforeseeable. Workflows originated in an organisational
management background and typically lack the structures
and models that programming languages have evolved to.
This work has investigated adding structure and
approaching workflow as a programming problem; the
SafeFlow language described here can be reasoned for
workflow properties.

Workflow encapsulation is a powerful structuring
mechanism, which provides a way of managing
complexity that would otherwise be difficult with standard
approaches. Because each constituent part in a workflow
can be closed as a black box, either using a Non-Terminal
expression or by outsourcing to another Web Service
standard refinement and decomposition techniques can be
applied.

When the implementation of the basic framework was
completed, our programming landscape had somewhat
changed. Far from fuelling the component/web-service
debate [15],[16], the framework emphasised some of the
analogies. By using a structured (component-based)
approach to workflow specification and workflow as a
constrained form of programming it was possible to build
new components and deploy them in a uniform way. The
framework’s usability, greatly helped by the graphical
specification tool, constituted one of the main temptations.
In essence, it became easy to aggregate, deploy and re-use
web-services at will to build potentially large-scale
systems. Is this approach suitable for application
development in general, thus providing a new
programming paradigm? Workflows however, are not a
general-purpose programming tool, and in any realistic
setting it is unlikely that all of the required functionality of
a new service or application can be found by simply
composing existing web-services.

The environment provides a high degree of
concurrency as multiple workflows and web-services can
be executed concurrently. However, intensive network use
and remote communications increase the delay
experienced substantially. These performance
considerations impact the granularity at which services
can be composed and restrict the settings in which this
approach can be adopted. However, it is relatively easy to
redistribute coordination work by redeploying the
workflows “closer” to the underlying services they use,
thus minimising the impact of those communications with
large delays.

The framework described in this paper constitutes a
first step, and many improvements remain to be made both
in the workflow language and in the implementation. In
particular, the extensibility of the workflow language has
not been exploited and we intend to develop additional
language elements and dialects. For example, a new
dialect could combine aspects of both SafeFlow and
CircusFlow. In this model, Non-Terminal control
expressions do not synchronise data as it enters and leaves
the expression boundaries. In Concurrent Expressions,
constituent Web Service expressions that have sufficient
data to enact will do so, and for any other inner Non-
Terminal Expressions data will be passed straight through
the boundaries of that expression to any Web Services that
need it. Concurrent Expressions are similar to CircusFlow,

but the boundaries for intermediate Non-Terminal
composites like Concurrent / Sequence are not
synchronising. This creates a workflow model that is like
a graph of data, but where sub-graphs can be perimetered
into sections. The flexibility of the sub-graph does not
change, though this allows the sub-graph to be
encapsulated, and replaced with sub-graphs with the same
endpoints. Sequence expressions force ordering on the
constituent expressions.

The specification toolset also needs additional
improvements particularly for the manipulation of visual
expressions and to provide better support for debugging.

Business in an open environment raises issues relating
to the reliability, availability, and quality of service
provided by the services. These issues give rise to
contracts, trust models and preferences, which not only
complicate the model but also require greater adaptability,
tolerance to failures and performance deteriorations.
Further work is needed in order to provide support for
such scenarios within our framework.

Historically, workflow originates from business and
management as a way of modelling business processes
that could wholly or partially be automated. However, the
graph based models used have largely not evolved.
Programming is similar to the methods of describing
workflow, but has evolved incredibly to encapsulate
complexity and allow for greater manageability and
maintainability. This paper describes how adopting some
of the lessons learnt from programming can improve
business modelling using workflow.

10. References

[1] T. Kindberg and J. Barton. ‘A Web-based Nomadic
Computing System’, Computer Networks, 35(4):443-456,
March 2001.

[2] F. Leymann, ‘Web Services Flow Language’. IBM
Software Group specification, May 2001. http://www-
4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf)

[3] ‘Open Net Environment (ONE) Software Architecture’,
Sun Microsystems, http://www.sun.com/software/sunone/,
2001.

[4] M. Kirtland, ‘The Programmable Web: Web Services
Provides Building Blocks for the Microsoft .NET
Framework’ MSDC magazine, Sept. 2000. available
at:http://msdn.microsoft.com/msdnmag/issues/0900/WebPla
tform/WebPlatform.asp

[5] Hewlett-Packard. ‘E-Speak Architecture Specification,
version 2.2, 1999. see also www.e-speak.net.

[6] D. Hollingsworth, ‘Workflow Management Coalition The
Workflow Reference Model’ (1995),
http://www.wfmc.org/standards/docs/tc003v11.pdf

[7] Frédéric Ranno, Santosh K. Shrivastava, Stuart M.
Wheater, ‘A Language for Specifying the Composition of
Reliable Distributed Applications’, Proc. 18th Int. Conf. on

Distributed Computing Systems (ICDCS '98), Amsterdam,
The Netherlands, May 26 - 29, 1998.

[8] A. Sheth and K. J. Kochut. Workflow Application to
Research Agenda: Scalable and Dynamic Work
Coordination and Collaboration Systems. In Workflow
Management and Interoperability. A. Dogac et al. (eds.).
Springer Verlag, 1999, pp. 35-59. also see:
http://lsdis.cs.uga.edu/proj/meteor/meteor.html

[9] S. Paul, E. Park, and J. Chaar, ‘RainMan: A Workflow
System for the Internet’, Proc. USENIX Symp. on Internet
Technologies and Systems, December 8-11, 1997,
Monterey, California.

[10] Object Management Group. ‘Workflow Management
Specification v1.2’, available from: www.omg.org

[11] BizTalk Orchestration White Paper (July 1999),
Microsoft,http://www.microsoft.com/biztalk/techinfo/biztalk
orchestration.htm

[12] E. Gamma, R. Helm, R. Johnson and J. Vlissides. ‘Design
Patterns’, Addison Wesley Longman Publishing, 1994

[13] M. Reinhold, ‘An XML Data-Binding Facility for the Java
Platform’ (30 July 1999), Core Java Platform Group Java
Software, Sun Microsystems, Inc.,
http://java.sun.com/xml/jaxp-docs-1.0.1/docs/bind.pdf

[14] Ng, K., Kramer, J. and Magee, J., ’Automated Support for
the Design of Distributed Software Architectures’, Journal
of Automated Software Engineering (JASE), 3 (3/4), Special
Issue on CASE-95, (1996), pp. 261-284.

[15] C. Szyperski. ‘Components and Web Services’, Software
Development Magazine, August 2001. available from:
www.sdmagazine.com

[16] B. Meyer. ‘Product or Service’. Software Development
Magazine, October 2001. available from:
www.sdmagazine.com

