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Abstract— The paper proposes a more formalized definition of 

UML 2.0 Activity Diagram semantics. A subset of activity 
diagram constructs relevant for business process modeling is 
considered. The semantics definition is based on the original 
token flow methodology, but a more constructive approach is 
used. The Activity Diagram Virtual machine is defined by means 
of a metamodel, with operations defined by a mix of pseudocode 
and OCL pre- and postconditions. A formal procedure is 
described which builds the virtual machine for any activity 
diagram. The relatively complicated original token movement 
rules in control nodes and edges are combined into paths from an 
action to action. A new approach is the use of different (push and 
pull) engines, which move tokens along the paths. Pull engines 
are used for paths containing join nodes, where the movement of 
several tokens must be coordinated. The proposed virtual 
machine approach makes the activity semantics definition more 
transparent where the token movement can be easily traced. 
However, the main benefit of the approach is the possibility to 
use the defined virtual machine as a basis for UML activity 
diagram based workflow or simulation engine. 

I. INTRODUCTION 
The UML 2.0 standard (Standard), whose development was 
started in 2002, now is under the final adoption [1]. Activity 
diagrams (AD) are redesigned radically in the Standard, where 
besides significant syntax modification the main difference is 
switching from State Machine based semantics to the token 
flow (Petri net like) semantics. The semantics sections in the 
Standard contain an informal description for each AD element, 
how this element influences the token movement in a diagram. 
Though these descriptions of AD semantics are sufficient for 
informal modeling of processes, the formality level is not 
sufficient for the use of activity diagrams as precise process 
definitions, e.g., for workflow specification. 
The goal of this paper is to define an Activity Diagram Virtual 
Machine (ADVM), which would describe this token-based 
semantics formally enough for process execution. The paper 
proposes an ADVM for a subset of activity diagram features, 
which are significant for business process modeling and 
definition [2]. ADVM itself is defined by means of a runtime 
extension to the metamodel, whose operations are defined by 
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means of a procedural OCL-based pseudocode and pure OCL 
pre- and postconditions [3]. Though the size of the paper does 
not permit to present completely formal descriptions for all 
operations of ADVM, the provided methodology is sufficient 
for achieving this goal. The structure of the proposed ADVM 
is, on the one hand, meant to be simple enough for precise 
analysis of process definitions by humans. On the other hand, 
it could be used as the basis, e.g., for an activity diagram 
based workflow engine. It should be noted that a similar 
approach could be used also for “cleaning up” all the 
remaining semantic problems in the Standard, e.g., those 
related to single execution. 
The definition of ADVM in the paper is divided into two 
parts. Section IV shows how a “runtime copy” is built for an 
activity diagram. Section V provides the definitions of all 
runtime operations. A possible usage of the approach is given 
in the conclusion.  
There are only few papers commenting the intended informal 
semantics of AD [2,8,9], even less research is devoted to 
formal definition of UML 2.0 activity diagram semantics. 
Many of them use pure Petri nets, in such a way losing some 
semantics for data tokens [4,5]. The approach closest to the 
one used in this paper is in [6]. There a similar subset 
including object flows is analyzed. The main difference is that 
[6] uses a translator to classic (colored) Petri nets. Though this 
enables the use of formal process analyzers, Petri nets are not 
the best model for understanding workflows [4]. Therefore our 
approach which tries to rely on the original AD notation as 
much as possible in semantics definition is more suited for 
workflows, even if it doesn't support a formal mathematical 
analysis. 

II. SUBSET OF THE UML 2.0 ACTIVITY DIAGRAM AND 
LIMITATIONS 

A. Used Subset of the UML Activity Diagram 
Since the number of concepts and the metamodel for UML 2.0 
activity diagrams is very large, only "the most essential" 
subset of AD is considered in this paper. On the other hand, 
focus is on those AD elements, which directly influence the 
token movement semantics. Finally, a number of useful 
constructs are not included just to limit the paper size. But the 
main idea is to show that the used techniques work for the 
precise formalization of a subset of AD reasonable for process 
modeling. More concepts for which these techniques should 
work also are listed in the conclusion.  
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In the Standard the activity diagram definition is structured 
into packages with ever growing complexity – Fundamental, 
Basic, Intermediate, Complete (and some other which form a 
sideline of no great interest for business modeling). The subset 
analyzed in this paper contains (almost completely) concepts 
from Fundamental to Intermediate activities. We have 
included Activities, Actions, Control and Object flows, 
Activity Parameter nodes, Pins and all Control nodes. Namely 
these concepts are most relevant for the semantics definition 
by means of token movement. From Intermediate Activities, 
we have not included Activity Partitions and Groups, because 
they are not relevant for token management. 
Now more detailed comments on the subset. The most 
essential is the choice of subclasses of Object nodes. Only the 
Pins (Input and Output) and Activity Parameter nodes are 
included. Central buffers (with relatively complicated 
semantics) are not included because they are mostly used for 
physical system modeling [8]. No explicit object nodes are 
used for object flows – only the output and input pins at ends. 
Certainly, there is a certain controversy about object nodes in 
the Standard itself – ObjectNode is an abstract class, but has a 
graphical notation and a defined semantics. 
There are also restrictions on flows. First, object flows must 
mandatory have pins at points, where they are connected to 
actions (certainly, not at control nodes, exceptions see below). 
On the one hand, the existence of explicit pins makes the 
semantics definition much more transparent and similar to 
Petri nets – there are places for tokens to live in. On the other 
hand, this notation has already been accepted in practice – the 
most advanced UML 2.0 tool at this moment (IBM Rational's 
RSA [7]) uses only this notation. In addition, there is a natural 
restriction that each flow leaving (or entering) an action has a 
separate pin. Pins can have no upper bounds, and they have 
either a specified type or no type – for accepting values of 
several different types (e.g., the result of a Join). In the current 
version of Standard it is permitted to have also control pins 
(i.e., pins with isControlType=true). Using this fact, we 
require in our subset that control flows also must have pins at 
any (possible) end. Just to make the description of our ADVM 
shorter, we use in this paper a different criterion: control pins 
(and tokens) have the NULL type. Thus, in fact we can 
consider control flows to be a special case of object flows. 
Certainly, all the semantics specific only to control flows and 
tokens is retained. The final assumption on flows is that initial 
nodes also must have output (control) pins and final nodes 
must have input pins (of any relevant type). Though not 
suggested by the Standard, it does not contradict either (e.g., it 
is asserted, that a CentralBufferNode might be used after the 
initial node), and the semantics is not changed this way. Thus, 
flows have pins wherever possible. Fig. 2 shows a diagram 
example in our subset. Actually, all this section on flows just 
restricts the diagram drawing – any reasonable Intermediate 
level diagram can be redrawn this way. 
The next issue is actions. From all the action types available at 
Intermediate level only the CallBehaviorAction makes sense 
for business modeling, therefore only this was included in the 
subset [9]. This action can invoke either an OpaqueBehavior 
(elementary task) or another Activity. 
An additional requirement is that at any Decision node the 
outgoing edges must have mutually exclusive guards – a 

requirement found useful also in the Standard. The main real 
restriction for decisions (and any edge in general) is that 
guards are not allowed to use data from the activity context 
(i.e., only the data from the current token may be used). 
Only one element from Complete activities is included – join 
specifications (they also may use token data only). 
The selected subset implies two general restrictions on token 
movement – there may be no real “race for token” by several 
actions, and the guard value on a token cannot change in time. 
See more on this in section VI. 
The Intermediate level uses separate execution, so only this 
mode is considered in the paper. This mode is sufficient for 
most cases of process modeling, e.g., workflow definition. 
Though there are some semantic problems with single 
execution in the Standard, our approach could be extended to 
single execution quite easily (see IV.A). 
Fig. 3 shows the metamodel of the selected subset (light 
classes). To reduce the number of classes, the package merge 
has been performed, and some unnecessary for the paper 
classes and inheritance hierarchies have also been removed. 
Capitalized names are used in the paper as exact references to 
the metamodel classes (e.g. Activity), lowercase names are 
used as a generic term or arbitrary instance of this class (e.g. 
token). 

B. Additional restrictions for Activity Diagrams 
In addition to the restrictions imposed by UML 2.0, we 
assume that Activity Diagram is correct if and only if: 
a) outgoing edge from a ControlNode is not an incoming 

edge for the same ControlNode 
b) there should be no paths between CallBehaviorActions, 

InitialNodes, FinalNodes or ActivityParameterNodes 
containing both ForkNodes and JoinNodes. 

So, invalid cases for a) and b) are: 

 

a) b)

... ...

  
Fig. 1 Invalid constructs for activity diagram – loops and ForkNodes in the 
same path with JoinNodes 
Reason for a) is obvious - it prevents deadlocks for control 
nodes waiting for input, which should be provided by 
themselves. 
Restriction b) is reasonable from the practical point of view, 
because there is no need to make parallel branches, if they are 
simply joined back without any operation in these branches 
(i.e. there is no CallBehaviorAction between them). This 
restriction significantly simplifies rules for token movement. 
We assume that AD is validated before the diagram execution. 

III. GENERAL DESCRIPTION OF UML 2.0 AD AND OUR VM 
Let us give an example of activity diagram in the described 
subset. This example is similar to the one used in the Standard, 
but with some modifications illustrating all the key elements. 
Actually the process is described by two AD, and the main 
AD Process Order invokes another one – Make Payment. The 
main diagram starts with the initial node, then the process 
flows through decision-, fork-, join- and merge nodes and 
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finishes in ActivityFinal node. The MakePayment action 
invokes the subordinated activity, which starts and finishes 
with activity parameter nodes. All flows (control and object) 
have pins at their action ends (and also at initial and final 
nodes) – as it is required by our subset. Control pins have no 
type. Note that an object pin also may be typeless (the input 
pin of Close Order), here this is the only way to preserve the 
type conformance after merge and join nodes. Namely, this 
input pin must be able to hold tokens of types both Order and 
Payment. The advantage for semantics definition of using all 
these explicit pins is that we always have a place for tokens to 
"live in" – much in the same way as places in Petri nets are 
used. 

Make PaymentFill Order

Payment

Send Invoice

Accept 
Payment

Payment

Order

Ship Order
Order

Order

Order

Order

Order

Close Order

Invoice

InvoiceMake Payment

Receive Order

Order

Payment

Order

Process Order

[Order Accepted]

[Order 
Rejected]

 
Fig. 2 Example activity diagram “Process order” which invokes sub 
activity diagram “Make Payment” from action “Make Payment” 
 

A. Standard semantics of Activity diagrams 
In Standard the activity diagram semantics is described in a 
highly distributed manner, where each AD element has its role 
in AD execution - fork, decision, merge and join nodes each 
process token flow in their own way. E.g., for a ForkNode, 
“when an offered token is accepted on all the outgoing edges, 
duplicates of the token are made and one copy traverses each 
edge”. But for JoinNode, “if there is a token offered on all 
incoming edges, then tokens are offered on the outgoing 
edge”. The term offered actually needs to be understood more 
formally. The sole reasonable interpretation of “offered” is 
that a token is not actually moved along the edge, but only 
becomes visible through this edge. When there is a sequence 
of edges and control nodes in a diagram, these "offering 
visibility" rules define a sort of  "transitive closure visibility", 
by which tokens from output pins become visible to their 
actual consumers – actions, certainly, via their input pins.  
Now, according to the Standard, an Action is executed “when 
all of the input pins are offered tokens and accept them all at 
once, precluding them from being consumed by any other 

actions”. Namely at this moment the required set of tokens 
move to their corresponding input pins. This actually means 
that action uses pull semantics for token processing – the only 
really active elements in a diagram are the "action engines", 
which try to fill up their input pins with fresh sets of tokens, to 
be consumed by these actions. The “all at once” phrase in the 
definition actually means that all tokens from each output pin, 
which “offers” tokens (is visible) to the action are consumed. 
Especially, if there is a join before the action, which joins 
object flows, then all tokens from these output pins are 
“serialized” and provided to the relevant input pin of the 
action as one coherent group. It should be noted that this 
semiformal semantics is well defined only for separate 
execution (for single execution e.g. the "merging" of control 
tokens could lead to a loss of concurrent control threads), but 
this is a topic of a separate paper. 
It is clear that a "standard Activity Diagram Virtual Machine" 
(ADVM) could be defined, with "action engines" as the only 
active elements. However, the formalization of the entire 
"offering" (visibility) rules by a sort of "traffic switches" 
affecting the token movement would be highly complicated – 
visibility rules are harder to implement than simple actions.  

B. General principles of proposed ADVM 
In this paper we propose a different approach to building an 
ADVM. Subgraphs of edges and control nodes connecting 
"stable places" – output and input pins are "truncated" into 
explicit paths leading directly from output pins to input pins 
in our definition of ADVM. Each path has a condition – the 
guards of its edges "anded" together.  Pins in turn may be 
serviced by active elements – token engines. We introduce 
two different kinds - Push and Pull token engines.  
The same way, there are also two kinds of paths – push and 
pull paths. Push paths are those containing only Decision, 
Merge and Fork nodes (or no control nodes at all). A push 
path is "serviced" by a Push engine in its start node – the 
corresponding output pin. In our subset tokens from an output 
pin can be pushed via push paths independently from each 
other directly to their destinations – input pins, whenever path 
conditions permit it (see a formal justification for it in section 
VI). Thus token movement is very transparent in the push 
case. 
Pull paths are those containing at least one Join node (and 
Decisions and Merges, but no Forks in our subset!). Pull paths 
are serviced by a Pull engine at their destination – an input 
pin. According to the AD semantics, the movement of tokens 
along pull paths having a common destination must be 
coordinated – only an adequate set of tokens can jointly pass a 
Join node. When these tokens are object tokens, then 
according to the Standard they must jointly continue their 
travel. Therefore the concept of Token Group is introduced in 
our ADVM – it is the set of tokens, which is jointly pulled by 
a Pull Engine into its serviced input pin. It should be noted 
that the same input pin may contain groups with different 
structure – in case when pull paths contain merge nodes. In, 
addition, the pulled in groups must satisfy the join criteria – 
"anded" join specifications. For pure control tokens there are 
no groups – they are "collapsed" into one token according to 
the Standard semantics.  
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Thus, the pull engine is much more complicated than the push 
one – but such is the UML semantics. Pull engine is described 
in detail in section V.D. 
The Action engine is much simpler than its counterpart in the 
original semantics. Its sole task is to seize one token from each 
input pin (or whole one group, if this is a pull pin), when a 
complete set is present and to "consume" this set. Certainly, 
when the action invokes a subordinated activity it has to 
provide its input parameters and collect the output parameters. 
The main semantic difference between our and the standard 
action engine is that for our engine tokens (or groups) are 
moved (by token engines) independently to each input pin, 
while (as it was cited) the standard engine pulls them “all at 
once”. However, this cannot lead to serious differences in 
behavior, since real "races for tokens" by several actions are 
impossible in our subset – see more in section VI. 
Finally, the invocation, start up and termination of an activity 
are managed by the relatively straightforward Activity engine 
(ActivityR class).   
The rest of the paper is devoted to the formal description of 
the proposed ADVM, while the section VI provides a 
semiformal justification that the semantics formalized by the 
proposed ADVM is the same standard one (for the selected 
subset) – the action traces actually coincide.  
Thus, the goal of this research has been to provide a complete 
executable formalization of activity diagram semantics by an 
ADVM, which could both be analyzed theoretically and serve 

as a "prototype" for real AD execution (e.g., as a workflow 
engine). Authors hope that the provided ADVM is more 
usable for various kinds of formal analysis than the informal 
original semantics description. 

C. Metamodel extensions and model mapping 
In order to define an ADVM formally, the metamodel of AD 
must be extended. One solution is to add operations to the 
original metaclasses, but since our ADVM requires new 
concepts, a more natural solution is to build a special AD 
runtime metamodel containing appropriate classes with 
operations. Most of the new classes are "dynamic" 
counterparts of the corresponding "static" classes of AD 
metamodel. Fig.3 shows both metamodels combined - the 
original classes are light and the new ones dark. We remind 
that the AD metamodel is "flattened" with respect to the 
standard one in order to reduce its size.  Whenever possible, 
the corresponding classes in both metamodels are linked by 
special bi-directional associations (so called mapping 
associations, dashed lines). Only the main "internal" 
associations for both metamodels are depicted in Fig.3. 
For figure simplicity, compositions in Fig. 3 and Fig. 4 are 
drawn as trees, by merging the composition ends into a single 
segment, according to the Standard presentation options. 
Adornments on that single segment apply to all of the 
composition ends. Lines are joined only by "T" junctions, "X" 
junctions are simple line crosses. 
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Fig. 3 Subset of the UML activity diagram and relations to their runtime classes 

 
The main idea is that when an activity is invoked, the 
corresponding runtime class instances are created for the 
activity instance and all its components. Namely these 
instances act as the virtual machine executing the given 
activity. The creation of these runtime instances is singled out 
as a separate step in execution and described in section IV. 

Actually, the creation of runtime instances from activity model 
instances is a model transformation, where the source model is 
the Activity diagram definition, but the target model 
represents instances of the runtime classes. In that sense Fig.3 
represents a "general transformation schema", where the 
mapping associations have a formal semantics in this 
transformation. In the direction from a definition class to 
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runtime class it means, that in the transformation process for 
each instance of the definition class one instance of runtime 
class should be created. In the opposite direction it shows, 
from which definition instance the runtime instance is created. 
This information is used when new instances should be 
created with specific properties, which can be got only from 
the source model. 
To save space, multiplicities and role names are not shown for 
mapping associations, but they are 1 at the definition end 
and 0..1 at runtime end. Such associations are typical for 
model transformations. Formally we can say that these 
additional associations are coming from our transformation 
package, which is merged with a subset of the Standard 
Activity Diagram metamodel.  
In this paper the transformations are described by a mix of 
pseudocode and OCL postconditions. But they could be 
described as well by means of specialized transformation 
languages, such as MOLA [10] or QVT-Merge [11]. 

IV. ACTIVITY CONSTRUCTION 

A. Activity Execution and Invocation 
According to the Standard there are two stages of activity 
performing – creation of the activity execution and activity 
invocation. Our ADVM assigns a precise meaning to them: 
1. Activity execution means creation of the activity runtime 

instance (ActivityR and its components) and its activation. 
In this stage only the necessary elements are created, but no 
tokens or parameters are passed. These operations are done 
using the ActivityFactory class and ActivityR.activate() 
operation. 

2. Activity invocation means activity starting using the 
invoke(Object[*]) operation of the ActivityR class. It could 
be invoked in the following ways: 
a) if the activity has an InitialNode, it is invoked without 

parameters. Then invoke() method puts control tokens 
into OutputQuee for all InitialNodes.  

b) if the activity has input parameters, it is started using 
parameters by invoke(Object[*]), which places data 
tokens with appropriate values into all inputParameter 
nodes (OutputQueues) of the activity. 

When the construction of an AD runtime instance is complete, 
it is activated using the activate() method. This method fires 
processes for token engines, actions, final nodes and activity, 
and they are ready for token processing, but no tokens are 
created in this method. Activity invocation only provides a 
new set of tokens inside an existing activity runtime instance. 
For activity creation we use a special ActivityFactory class 
(Fig. 4). There is only one instance of the ActivityFactory and 
it is used for creation of each new activity. Thus 
ActivityFactory plays the role of an entry point for ADVM.  
The operation createActivity(Activity) of the ActivityFactory is 
used for construction of the runtime instances. This operation 
checks, whether the activity has single or separate execution 
mode. If the execution mode is separate, a new activity 
runtime instance is always created. If the mode is single, the 
operation checks, whether an appropriate instance for this 
Activity already exists and creates a new instance only if it 
doesn't exist. The createActivity() operation returns a reference 

to the runtime (ActivityR) instance and further management of 
the activity execution is made through ActivityR operations.  
To clarify the sequence of ADVM construction, the creation 
process is separated into several steps, which are performed 
through gradual invocation of the factory create..() methods: 
createAction(), creteInputQueue(), creteOutputQueue(), 
createIntermediateNode() methods create runtime instances 
for the main elements of Activity – Actions, Pins and flow 
control nodes. createInitial(), createFlowFinal() and 
createActivityFinal() methods create runtime instances for 
these kinds of nodes and input/output queues for them. 
Using the formalParameter and returnResult associations, 
activity parameter nodes are fetched and  
createInput/OutputQueue() methods create appropriate 
input/output queues and runtime parameters (ParameterR) 
from them. The createEdges() method creates runtime 
instance for each ObjectFlow (using Activity.edge). 
ActivityEdge Guards in an AD model are transformed into 
Conditions for Edges. 
Then the “nontrivial elements” - paths and token engines are 
created using createPaths(), createTokenEngines() and 
createJoinCriteria() methods. These methods will be 
explained in details in section IV.D. If an activity has no 
ActivityFinal nodes, a boolean tag is set, which enables a 
process for checking whether all outputParameter nodes have 
tokens (an alternative way of completing the execution) . 
It should be noted, that only the main class instances are 
created using the factory class. Associated attributes and 
simple instances are created using local addNew() methods. 

ActivityFactory
createActivity(Activity): ActivityR
createAction(CallBehaviorAction)
createIntermediateNode(ControlNode)
createEdge(ActivityEdge)
createInputQueue(ActivityNode)
createOutputQueue(ActivityNode)
createInitial(IntitialNode)
createActivityFinal(ActivityFinalNode)
createFlowFinal (FlowFinalNode)
createPaths(ActivityR)
createPath(start, finish, isJoin, guard)
createTokenEngines(ActivityR)
createTokenEngine(Queue, engineType)
createJoinCriteria(PullEngine) 

 
Fig. 4 ActivityFactory class and its operations 

B. Activity Construction 
The following code shows process of the instance creation: 
public ActivityR createActivity(Activity actD) { 
  actR = ActivityR.addNew(); // create empty activity 
  for (element in actD.activityNode) { // for each 
ActivityNode 
    switch (oclIsTypeOf(element)) { case (InitialNode) { 
      createInitial(element); // create Inital node  
      createOutputQueue(element);} // and create queue for it 
   . . . /* similarly create runtime elements for 

CallBehaviorAction, InputPin, OutputPin, ForkNode, 
JoinNode, DecisionNode,  MergeNode */  

     case (FlowFinalNode) { 
      createFlowFinal(element); 
 // create FlowFinal or node and  
      creteInputQueue(element); } // create queue for it 
   . . . /* similarly for ActivityFinalNode */ 
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     case (ActivityParameterNode) continue; } 
 // skip ActivityParameterNodes 
  for (element in actD.formalParameter) { 
     creteOutputQueue(element); // create OutputQueues  
    actR.parameter.addNew(element.parameter);} 
 // and input parameters 
   . . . /* similarly for returned parameters */ 
  for (element in actD.edge)  
    createEdge(element);   // create edges 
  createPaths(actR);  // create paths 
  createTokenEngines(actR);  // create TokenEngines 
  if (actR.finalNode->select(oclIsTypeOf(ActivityFinal))-

>isEmpty()) actR.isFinal = False; // check for Final nodes 
  actR.activate(); // activate the Activity  
  return actR; }; // and return reference to this activity 
The returned reference to the activity runtime instance is used 
for further activity management. 

C. Detailed View of create…() Methods 
Each create..() method consists of several steps. At first, 
relevant definition instances are obtained via definition 
associations, then already existing runtime instances are got, 
then for the current definition its runtime instance is created 
and linked with existing runtime instances, and definition-
runtime associations are set. Due to size limitations, only the 
body for createEdge(ObjectFlow edgeD) method is shown: 
public void createEdge(ActivityEdge edgeD) { 
  edgeR = Edge.addNew(); // create new runtime Edge 
  if (edgeD.source.oclIsKindOf(ObjectNode)) 
    edgeR.source = edgeD.source.runtime; 

// if source is ObjectNode, set proper OutputQueue 
  if (edgeD.source.oclIsKindOf(ControlNode) and not 

edgeD.source.oclIsTypeOf(InitialNode)) 
    edgeR.source = edgeD.source.runtime; 
    // if source is ControlNode, set proper IntermediateNode 
  if (edgeD.source.oclIsTypeOf(InitialNode))  
    edgeR.source = edgeD.source.runtime.outputQueue; 

// if source is InitialNode, set proper OutputQueue of the 
runtime Initial node 

   . . . /* similarly set associations for targets */ 
  edgeD.runtime = edgeR; 
    // update runtime association for definition element 
  edgeR.definition = edgeD; }; 
    // update definition association for runtime element 
 

D. Path Construction 
Each activity diagram is a directed graph, thus we can use 
path with the same semantics as in the graph theory. In our 
case a path is a "transitive closure" of Edges and 
IntermediateNodes between Queues of StableNodes. This is 
realized in the createPaths() method. In our approach all 
constraints and conditions, coming from the relevant 
ActivityEdge Guards and ControlNodes are "concatenated" 
into the PassRule for each Path (e.g., order=approved AND 
sum>100). If a path has Joins, its attribute hasJoin is set to 
True, else it is False. The hasJoin attributes will be used for 
attaching paths to appropriate token engines. 

The following code shows, how paths are created for the 
ADVM. The traditional “wave-front” algorithm for graph 
processing is used: 
public void createPaths(ActivityR actR) { 
  for (snode in actR.stableNode) { // for each StableNode 
    for (oque in snode.outputQueue) { // for each OutputQueue 
      inodes[] = null; inodescond[] = null; // reset  
      start = oque; // start for path 
      edges[0] = start.outgoing;  // get 1st outgoing edge  
      for (i <= inodes.length) {  // for unprocessed inodes 
        for (edge in edges) { // for unprocessed edges 
          guard = edge.guard.expression + " AND " + 

inodescond[i - 1]; // concatenate conditions from edge 
and outgoing inode (for brevity -  empty element (or 
outside array) is True)  

          if (edge.target.oclIsTypeOf(InputQueue)) 
 // get target, if it is InputQueue,  
            createPath(start, edge.target, isJoin, guard); 

 // create new path 
          else { // if it is intermediate node 
            if (edge.targetNode.oclIsTypeOf(Join)) 
              isJoin = True; //  if path has join 
 // mark it, don't need more check for valid ADs  
            inodes[j] = edge.targetNode; 

 // store the next unprocessed inode 
            inodescond[j] = guard; // store "preconditions"  
            j++;}} // count next unprocessed inode 
        edges = inodes[i].outgoing; // get edges from inode 
        i++;}}}};// count next processed inode 

E. TokenEngines Construction 
The createTokenEngines() method creates TokenEngines for 
queues in VM in the following way: 

• if for an OutputQueue there exists at least one 
outgoingPath with hasJoin=False, then a PushEngine 
for this OutputQueue is created.  

• if for an InputQueue there exists at least one 
incomingPath with hasJoin=True, then a PullEngine 
for this InputQueue is created. 

The same restrictions for OutputQueue in OCL look the 
following way: 
context OutputQueue 
inv: OutputQueue.output->exists(hasJoin=False) 
  implies 
  OutputQueue.engine->one(oclIsTypeOf(PushEngine)) and 
  OutputQueue.pushEngine.path-

>exists(oclIsTypeOf(PushPath)) and 
  OutputQueue.pushEngine.path-

>select(oclIsTypeOf(PullPath))->isEmpty() 

The similar restrictions apply to InputQueues. The rules imply 
the following consequences: 

• PushEngines process only PushPaths, but 
PullEngines – only PullPaths. 

• Queues can be without TokenEngines and paths of a 
Queue can be processed by several TokenEngines. 

• Paths can have TokenEngines at both ends, but then 
these paths are processed by only one TokenEngine 
(either PushEngine or PullEngine). 
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Construction of PushEngines is simple, because for them all 
paths are independent (because of mutually exclusive guards 
for edges). Creation of PullEngines is more complicated, 
because for PullEngines additional conditions for path 
joinCriteria are necessary. The following code shows, how 
TokenEngines are created: 
public void createTokenEngines(ActivityR actR) { 
  for (snode in actR.stableNode) { // for each StableNode 
    . . . /*create PushEngines, and continue with PullEngines */ 
    for (ique in snode.inputQueue) { // for each InputQueue 
      for (path in ique.input) { // for each incoming Path 
        if (path.isJoin == True) { // if some path has Joins 
          if (ique.pullEngine.oclIsEmpty()) 
           engine=createTokenEngine(ique,"PullEngine"); 
 // create new PullEngine, if doesn’t exist yet  
           engine.pullPath.addNew(path); }} 

 // add PullPath to PullEngine 
      createJoinCriteria(engine); }}} 

  // create joinCriterion for PullPaths of this PullEngine 
    
Fig. 5 shows significant cases, how token engines are created 
and how they are linked to queues and paths. If a queue has an 
engine, it is filled with color, and “Push” or “Pull” beside it 
means the engine type. Paths, which are processed by an 
engine, are shown in the engine’s color. If some edge is part of 
several paths, it is replicated in several colors. 
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Fig. 5. Examples of activities with Queues, Paths, PushEngines and 
PullEngines, and their relationship 

F. Creation of Join Criteria for Pull Paths 
As it was mentioned before, for PullPaths having a common 
target an additional joinCriterion must be created. The 
JoinCriterion has to check whether a group of supplied tokens  
(one from each selected OutputQueue, in a subset of all 
potentially available queues) can be jointly moved to the 
InputQueue according to AD semantics. The JoinCriterion is 
determined by PullPaths and their nodes, and the sequence of 
nodes determines the structure of the expression. If paths have 
a common Join node, then tokens from all incoming paths 
should be joined (AND), if paths have a common Merge, then 
token coming from any one path can be used (OR), and if 
paths have a common Decision node, it can be ignored, 
because it doesn't play a role in token joining. Thus the 
JoinCriterion is a boolean expression, which is obtained by 

going upstream from an InputQueue serviced by a PullEngine 
and adding AND operation for a Join, with incoming edges as 
its operands (similarly, OR for Merge), until we reach the 
output queues, which play the role of elementary variables in 
this expression. Certainly, only edges of PullPaths are used in 
this process. It can be easily seen that the fan of incoming 
PullPaths (presented in the natural way with common 
segments overlapping), in fact, is equivalent to a tree form of 
the corresponding JoinCriterion. 
Guard conditions for edges have already been included into 
passRules for paths, therefore only joinSpecifications of Join 
nodes must be added to joinCriteria.  
The createJoinCriteria(PullEngine) method creates 
JoinCriterion for an engine. It uses the “wave-front” algorithm 
(in a way similar to IV.D), but going upstream from the  
PullEngine’s InputQueue, over all PullPaths. When the tree 
form of the expression has been built, it is “translated” by 
traditional methods into a textual prefix form (which is used 
for evaluation on token sets during runtime). While there are a 
lot of technical steps in all this, the general idea is simple 
enough, so we do not provide more details of the method.  
From an example in Fig. 6 the following expression is created: 

OR(AND("p1.att2 = p2.att2", p1, p2), AND(p2, p3)) (1) 

where OR is for the Merge node, and two ANDs are for Join 
nodes. This is a “shorthand notation” for the expression, its  
semantics is defined by rewriting it to a detailed OCL 
constraint (also in the prefix form!): 

or (and (tokens->select(locus=p1).att2 = tokens-
>select(locus=p2).att2, tokens->exists(locus=p1), tokens-
>exists(locus=p2)), and (tokens->exists(locus=p2), tokens-
>exists(locus=p3))) (2) 
 

p2

a c
p3

p1.att2 = p2.att2

b

d

p1

[p2.att1=Flase][p2.att1=True]

 
Fig. 6. Examples for joinCriteria construction for PullPaths 

Here p1, p2, p3 are names of output queues (pins), which in 
this case represent the pin type. Use of pin names is 
convenient, because normally each pin has a type in our 
subset. Uniquely typed pins are used only for the example 
simplicity, a similar expression could be built, using pin 
names, but not types (unique pin names could be generated 
automatically during the runtime creation, if types are not 
unique within a “pull region”). 
The expression (2) is set as PullEngine.joinCriteria.Expression 
for the PullEngine of the action d. The use of JoinCriteria will 
be described in details in section V.D.  
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V. EXECUTION AND DETAILED SEMANTIC OF VIRTUAL 
MACHINE CLASSES 

Fig. 7 shows the metamodel of our ADVM. This diagram is 
another view of the same metamodel, which was shown in 

Fig. 3, but with more detailed runtime classes. It shows the 
complete set of classes, associations and operations, which are 
necessary for execution of ADVM. Runtime behavior of main 
classes will be described in details in the following sections.  
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Fig. 7. Metamodel of the Activity Diagram Virtual Machine 

 

A. Activity Starting 
Activity activation is done through asynchronous invocation 
of process() operations for all stable nodes and the activity, 
and these processes are running while the isActive flag for the 
activity is True. This operation is described using OCL: 
context ActivityR::activate() 
post: 
  ActivityR.isActive = True and  
-- activity is active and all process() methods are activated 
  ActivityR.process() and 
  ActivityR.stableNode->select(oclIsTypeOf(Action) Or 

oclIsKindOf(Final))->forAll(n | n.process()) 
 
The invoke() operation starts an activity using actual input 
arguments, which are passed by the caller (see V.E) and 
returns actual output parameters from this activity. invoke() 
works with generic data and knows nothing about tokens. We 
assume here that actual and formal input parameters (and also 
the relevant parameter nodes) are ordered the same way. The 
method is described by a pseudocode:  
 
public void invoke (Object[] data) {  
  params =  ActivityR.parameter->select(direction = "in"); 
  for (i < data.length) { 
      params[i].value = data[i]; i++;} 
 // set actual argument values in input parameters 
  setParams(); // transfer passed parameters to activity nodes 

  getParams(); // wait for results and get from activity nodes 
  params = ActivityR.parameter->select(direction = "out"); 
  for (i < params.length) { 
    data.addNew(params[i]);i++;}} // set output values at the 
end of input data  
The setParams() method passes activity input parameter 
values as new data tokens in appropriate input Parameter 
nodes. It is described by OCL: 
context ActivityR::setParams()  
post: 
  let 
    input : OrderedSet(ParameterR) = ActivityR.parameter-
>select(direction = "in"), 
-- set of parameters 
    cTokens : Set(Token) =  
ActivityR.initialNode.output.token@pre,   
-- existing control tokens in initial nodes 
    dTokens : Set(Token) =  
ActivityR.inputParameter.token@pre  
-- existing data tokens in parameterNodes 
  in 
  if input->isEmpty() and ActivityR.initialNode->notEmpty() 
then  
-- if activity is invoked without params, use initial nodes 
    ActivityR.initialNode->forall(n |    
-- set tokens for all Initial nodes  
        (n.output.token-cTokens).oclIsNew() and       
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-- new Token is created in OutputQueue of Initial node 
        (n.output.token-cTokens).oclIsTypeOf(Null))  
-- and its type is Null (control token) 
  else 
    input->forAll(ip | ActivityR.inputParameter-
>select(parameter = ip).oclIsNew()) and 
-- for each parameter, its parameterNode has new token  
      (ActivityR.inputParameter.token-dTokens).value =  
input.value -- values from parameters are set to data tokens, 
both ordered sets must be equal - elements are equally ordered 
  endif  
 

getParams() method is similar to the  setParams()  method 
with the only difference that it selects data tokens from 
outputParameter nodes of the activity and places values into 
output parameters, therefore it will not be described in detail. 
The process() method for an activity is running, if the activity 
has no final nodes. It works similarly as for a final node and 
stops the activity when all its outputParameter nodes are filled 
with tokens: 
context ActivityR::process() 
pre:  
  ActivityR.isActive and ActivityR.isFinal = False and   
-- activity is active and has no ActivityFinal nodes 
  ActivityR.outputParameter->forAll(token->notEmpty())  
-- and all outputParameter nodes are filled 
post: 
  ActivityR.isActive = False -- activity is finished 
The terminate() method is necessary for termination of 
subordinate activities. It terminates an activity without any 
conditions. 
context ActivityR::terminate() 
post: 
  ActivityR.isActive = False and -- activity is stopped and 
  ActivityR.stableNode.queue.token->isEmpty(); 
-- all tokens are deleted 

B. TokenEngines 
TokenEngines are working continuously and they move 
tokens from OutputQueues to InputQueues.  
Each time when a new token appears, the evaluation of 
canPass(Token) is performed for this token and all relevant 
paths. For PullEngines additionally canJoin(Token[*]) is 
reevaluated for all token subsets which can be formed from 
those located in relevant OutputQueues. 

C. Push Engine 
For Push engines, each token can be processed apart from any 
other token, and results depend on nothing more than the 
token itself. If the token passes the passRule of at least one 
PushPath, it is put on all the appropriate InputQueues 
immediately and removed from the OutputQueue. Because our 
model doesn't support global activity parameters, if a token 
can pass no PushPaths, it doesn’t need to be checked again 
and sticks in the OutputQueue forever, if there are no any 
other paths and pull engines which can process this 
OutputQueue. 
The following OCL code shows work of the PushEngine:  
context PushEngine::process() 
pre: 
  PushEngine.action.activity.isActive and  -- Activity is active 

  PushEngine.outputQueue.token->select(t | 
t.locus.output.canPass(t))->notEmpty()  
--  token is in OutputQueue, which can pass at least one Path 
post: 
  let prevToken : Token = 
PushEngine.outputQueue.token@pre-
>select(token.locus.output.canPass(token))->first() in   
 -- get 1st token from available 
    let queues : Set(InputQueue) = 
PushEngine.outputQueue.output-
>select(canPass(prevToken)).end in   
 -- get set of InputQueues, for "passed Paths" 
      let existTokens : Set(Token) = queues.token@pre in -- get 
set of tokens, which were in available InputQueues before 
        PushEngine.outputQueue.token->select(token = 
prevToken)->isEmpty() and   
 -- now this token doesn't exist in OutputQueue and        
        (queues.token-existTokens)->forAll(t | t.oclIsNew()) and  
 -- in available InputQueues are new tokens  
        (queues.token-existTokens)->forAll(token.value = 

prevToken.value)   
      -- and each new token has the same value as previous 
 

D. Pull Engine 
PullEngines exhibit the complicated semantic of token 
management. Similarly to the PushEngine, each token from 
each OutputQueue should be validated against the passRule of 
the relevant PullPath. If the token passes the passRule, it is 
marked as passedToken and can be processed further. If the 
token passes no passRule it doesn't need to be checked again 
and will stick in the OutputQueue forever, if there are no any 
other paths and engines which can process this OutputQueue.  
In contrast with PushEngine, a PullEngine has more than one 
OutputQueue and any token should be moved in dependence 
from other tokens in respective OutputQueues. 
Each time, when a new token appears in some OutputQueue, 
the engine's process() operation checks this token using  the 
canPass() method for its PullPath, and, if the token passes, it 
is added to passedToken list. Then the process() operation 
invokes the checkTokens() method, which scans all subsets of 
the passedTokens set and tests them against the relevant 
JoinCriterion (by means of the canJoin() method, which 
evaluates the criterion). As soon as a valid subset is found, it is 
stored in the selectedToken list and the scan is terminated. 
Then the process() operation joins the newly found set into the 
InputQueue. Tokens are joined in the following way: 

• If all tokens are control tokens, then one control 
token is posted in the InputQueue. 

• If some of the tokens are data tokens, then all data 
tokens are posted in the InputQueue and they are 
grouped in a new TokenGroup. 

To explain better the general principles of PullEngine 
behavior, the same operations are described in both ways – 
using pseudocode and OCL expressions: The following 
pseudocode shows the dynamic sequence of method 
invocation for PullEngine: 
public class PullEngine { 
public process() { 
  while (PullEngine.activity.isActive) { 
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    if (PullEngine.inputQueue.input.start.token->exists(t | 
t.oclIsNew())) { // if new token is in any OutputQueue 
      thisToken = PullEngine.inputQueue.input.start.token-
>select(t | t.oclIsNew())->first(); // take it and  
      if (PullEngine.PullPath.canPass(thisToken)) {  

 // check it against passRule 
        passedToken.addNew(thisToken);  
 // if passed, update passedToken list 
        if (checkTokens() <> Null) { 
          if (selectedToken->forAll(type=Null)) { 
            PullEngine.putToken(InputQueue,Null); 

// if all are control tokens, create on control token 
            (for token in selectedToken) 
PullEngine.delToken(token.locus, token);} 
 // and delete processed control tokens form OutputQueues 
          else { // if data tokens 
            (for token in selectedToken->select(type<>Null)) { 
               group=TokenGroup.addNew();  
 // create new token group 
               PullEngine.moveToken(inputQueue, token);  
 // move all data tokens to InputQueue 
               token.group = group;}}}}}} 
 // and add them to the same group 
 
public Token[] checkTokens() { 
  while (selectedToken.length > 0) {  
// while a new subset of passedToken set exists 
    selectedToken = nextComb(passedToken); // get next  
    if (canJoin(selectedToken)) // and check for joinCriteria 
      return selectedToken}} // if can join, return  
 
public Boolean canJoin (Token[] selectedToken) { 
  return PullEngine.joinCriteria.evaluate(selectedToken) { 
  // uses PullEngine.joinCriteria.Expression and 
selectedToken, 
 }}} // and returns True or False  
 
public class Condition { 
public Boolean evaluate (Token[] tokens) { 
// returns evaluation of expression, where tokens are 
referenced as variables (by pin names) 
  return eval(expression, tokens);}} 
 
The following OCL expression shows the token movement 
principles for PullEngine: 
context PullEngine::process() 
pre: 
  PullEngine.action.activity.isActive and -- Activity is active   
  PullEngine.checkTokens()->notEmpty()  
 -- there are tokens which can be joined 
post: 
  let ique = PullEngine.inputQueue,  -- engine's InputQueue 
    prevTokens : OrderedSet(Token) = 
PullEngine.checkTokens@pre (),  -- processed tokens  
    existTokens: OrderedSet(Token) = 
PullEngine.inputQueue.token@pre, -- other existing tokens 
    existGroups: OrderedSet(TokenGroup) = 
PullEngine.inputQueue.tokenGroup@pre  
-- other existing TokenGroups in InputQueue 
  in  

    (ique.input.start.token-prevTokens)->isEmpty() and  
-- now these tokens are removed from OutputQueues 
    if prevTokens->reject(oclIsTypeOf(Null))->notEmpty() 
then  -- if there were object tokens 
      (ique.tokenGroup-existGroups).oclIsNew() and  
 -- new tokenGroup is created 
      (ique.token-existTokens)->forAll(t | t.oclIsNew()) and  
 -- new object tokens exist in InputQueue 
      (ique.token-existTokens) = prevTokens-

>reject(oclIsTypeOf(Null)) and  
      -- with data from prevTokens (comparing as ordered sets) 
      (ique.token-existTokens).tokenGroup = ique.tokenGroup-
existGroups  -- and they are included in the same new group 
    else  -- if all were control tokens 
      (ique.token-existTokens).oclIsNew() and  
          -- one control token is created in the InputQueue 
      (ique.token-existTokens).oclIsTypeOf(Null) 
    endif 

E. Action 
Actions have processes running all the time (for checking 
tokens in  their InputQueues) and they consume tokens from 
their InputQueues and provide tokens in OutputQueues. 
Tokens are checked again, when a new token appears in any 
InputQueue. An Action will only start execution, if all its 
InputQueues are filled. 
Tokens from InputQueues are consumed when all 
InputQueues have at least one token (an Action works as  an 
implicit join). If a token has no TokenGroup, one token from 
this InputQueue is consumed; else all tokens from this group 
are consumed. The consumption means that the action engine 
extracts data from data tokens and stores these data as the 
actual argument list for invocation. Then it executes the 
ActionBody using execute(Object[*]), if it is an opaque 
behavior, or creates and invokes another activity using the 
createActivity() and invoke(Object [*]) operations. If 
isSynchronous = True, the action waits for output, and the 
actual results are placed as data tokens into OutputQueues. 
Else, control tokens are placed into OutputQueues 
immediately after the execution/invocation. The following 
pseudocode shows the behavior of the action: 
public class Action { 
public process() { 
  while (Action.activity.isActive) { // activity is active 
    if (Action.input->forAll(token->notEmpty())) { 

// -- for each InputQueue exists a token 
      for (token in Action.input) { 
        if (token.tokenGroup->notEmpty()) {//if tokens are 
grouped in a group 
          for (gtoken in token.tokenGroup) // get them from the 
group 
            intokens.addNew(gtoken); // store them in a list 
        else intokens.addNew(token); // else get only this token 
          indata = intokens->select(type<>Null).value; // get data 
from all data tokens 
      if (Action.isSynchronous = True) { // if synchronous  
        if (Action.behavior->notEmpty()) { // if it invokes 
another activity  
          activity = 
(ActivityFactory.createActivity(Action.behavior)); 
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 // create the activity runtime 
          activity.invoke(indata); // invoke the activity 
/* we assume order of pins conform to order of parameters */  
          outdata = activity.parameter->select(direction = 
"out").value;}  // get returned arguments, which are stored in 
output parameters 
        else { // if it is opaque behavior 
          action.execute(indata) // execute it  
          outdata = Action.ActionBody.parameters-
>select(direction = "out").value;}  // and get returned 
arguments 
        for (i < outdata.len) { 
        token.addNew(locus = Action.output[i], type = 
outdata.type, value = outdata);}}; 
// set tokens in OutputQueues with right type and value  
      else { // if invocation is asynchronous   
        if (Action.behavior->notEmpty()) // if refers to activity 
(AcytivityFactory.createActivity(Action.behavior)).invoke(in
data); // invoke it asynchronously 
        else action.execute(indata); // or action asynchronously 
        for (output in Action.output) // put control tokens 
          putToken(output,Null);}}}}}} // in all OutputQueues  

F. Activity Finishing 
Final nodes also have running processes, which process 
tokens. FinalNodes simply delete tokens from their 
inputQueues: 
context FlowFinal::process() 
pre: 
  FlowFinal.activity.isActive and  -- Activity is active and   
  FlowFinal.input.token->notEmpty()  -- at least one token is in 
input queue 
post:  
  FlowFinal.input.token->isEmpty() -- this token is deleted 
 

If a token reaches an ActivityFinal node, all tokens, excluding 
those which are in output parameters of the activity are deleted 
and all actions are stopped; invoked activities are stopped and 
their tokens are deleted without any conditions. 
public process() { 
  while (ActivityFinal.activity.isActive) {  // activity is active 
    if (ActivityFinal.input.token->notEmpty()) { 
      ActivityFinal.activity.isActive  = False; // stop activity 
    for (token in (stableNode.queue - 
ActivityFinal.activity.outputParameter).token) 
      token.delete(); // delete tokens except in outputParameter 
nodes 
      activities[0] = ActivityFinal.activity; 

// get first activity 
      for (i <=activities.length) { // for each invoked activity 
        action = activities[i].action; // get action in next activity 
        for (action in actions) 
          if (action.behavior->notEmpty()) // if action invoked 

another activity 
            activities.addNew(action.behavior); // add it to list 
      activities[i].terminate;  // terminate current activity             
      i++; }}// go to next activity 
 

As it was mentioned before in section V.A, if the activity has 
no final nodes, it can also be finished, when all its 
outputParameter nodes are filled.       

VI.   PROOF OF ADVM EQUIVALENCE 
In this section we provide a semiformal proof of the 
equivalence of the original semantics (ADVM) of UML 
activity diagrams [1] with the one provided in this paper. We 
remind that the original semantics is based on token offering 
(visibility), control nodes acting as distributed switches and 
actions pulling tokens “all at once” (see III A).  
We assert that the essential event trace – starts of action 
executions and the token sets consumed and produced by these 
actions are the same for both virtual machines on any 
activity diagram in the subset described in section II. The 
events in this event trace occur in the same order and in the 
same time moments. Moreover, each individual token 
traverses the same path according to both machines, but the 
ordering of these token movements in time may differ. In 
general, in our VM tokens will reach their destinations earlier 
than in the original VM. 
At first, we will show that there is no real race for tokens by 
actions in the selected subset. More precisely, no token can be 
potentially delivered via several alternative paths by several 
token engines. Certainly, such conditions cannot appear for 
push paths – because using push engines we deliver each 
token along all of the paths from an output queue, where 
guards permit. These could be only pull paths where (forward) 
branch points occur (merge points backward from the pull 
engine prospective). 
We prove that no token in an output queue may be serviced by 
(be in the valid token set for) more than one pull engine (but 
the same output queue may be). 
Let us analyze where the (forward) branch points in a path 
may occur: 
• If multiple edges leave the same action or object node 

(implicit fork).  In our subset it is not allowed, each 
output pin has exactly one outgoing edge and each edge 
leaving an action starts from an output pin. Object nodes 
and central buffer nodes, which allow competing outgoing 
edges, are not included in our subset. 

• When a fork appears in some path. But there may be no 
forks in a path leading to a pull engine in our subset 
(because there must be an explicit join in a pull path). 

• When Decision allows a token to traverse through several 
edges. In our subset any token can traverse only one edge 
(because of mutually exclusive guards, only one guard is 
true). So, though several pull engines may have a 
common source (output queue), for each token only one 
path is enabled – that where the guards on the path to it 
are true. 

It has to be proven also, that there may be no races between 
push and pull paths. In other words, if a token is delivered by 
one or more push paths (and then removed from the source 
queue), it may not be “useful” for a pull path starting from the 
same queue. Indeed, it is so because the passRule may be true 
for only one path, if this path contains no forks, and pull paths 
do contain no forks. Similarly, if a token is “pulled” by a pull 
path, it is “of no interest” for any push path. Thus, our subset 
is race free. 
Hence follows that each token can be delivered to only one 
destination (or several ones for push paths). The two 
preceding sections where our VM was described in detail 
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actually provide an assurance that this target is the same as in 
the original activity diagram semantics.  
Since or VM delivers tokens along push paths as soon they 
appear in an output queue, and each pull engine independently 
pulls a token (or a group of tokens) into its input pin as soon 
as they are available on relevant outputs, in general any token 
will be delivered to its destination in our VM not later than in 
the original VM. In fact, frequently it will be earlier, since the 
original VM always transports a group of tokens into all input 
pins of an action simultaneously. 
It remains to show that our simplified action engine which 
takes tokens or groups of tokens directly from input pins, 
cannot be activated earlier than the original one which takes 
the tokens from output pins. Our rule asserting that all input 
pins must have at least one token (or an appropriate group of 
tokens, if this is a “join pin”) for the action to start assures that 
actually it is exactly the same situation where the original VM 
would have finally collected all the offered tokens, which are 
required for the start of the action. The original principle of 
offering tokens via an edge downstream (as it was already 
noted in section III) actually means that tokens are made 
visible to the outgoing edge of a control node. Since finally 
this visibility is required for all input pins of the action, the 
moment for this action to fire is when the last token becomes 
available in the corresponding output pin. But it is exactly the 
same moment when our corresponding token engine (push or 
pull) would fill the last required input pin, and in the same 
moment our action engine would fire too. 
This completes the proof of equivalence. 

VII. CONCLUSION 

A. Extensions and Practical Usage 
The subset of the UML activity diagrams has been chosen to 
cover the basic needs for business process management and 
workflow systems. The goal was to show that AD notation can 
be given a precise enough "natural" semantics, so that a 
workflow engine can be based on it. From the graphical syntax 
point of view, according to [2] AD is an acceptable and at the 
same time well-known notation for the workflow definition. 
Another usage of ADVM could be for an AD simulator – a 
tool important for workflow validation.  
Certainly, some elements from the Complete (or even 
Complete structured) level are of high value for workflow 
definitions. Many of these features actually could be dealt 
with by the methodology proposed in this paper. Events and 
even interruptible regions could be treated much the same 
way. A more serious problem is the use of context attribute 
values in guards. Treating them as specified in [1] would lead 
to a continuous recheck, when a token is offered to an edge, 
but rejected by the guard. A solution is to assume that guards 
are evaluated for the current "snapshot" of the context and any 
context changes are modeled as explicit events. This solution 
could be easily implemented in our ADVM. 
A technical issue is the exhaustive search (among all token 
subsets) for joinCriteria, which was used only for the 
simplicity of description, for real systems it can be made 
efficient by converting a join criterion to disjunctive normal 
form (DNF) and checking only tokens in each AND-term. A 

CentralBuffer (DataStore) with one outgoing edge can be 
included as another type of StableNodes without model 
changes. If several outgoing edges and concurrency is 
necessary, a more complicated approach is required, but this 
case is not typical for workflow definitions.  

REFERENCES 
[1] Object Management Group (OMG), Unified Modeling Language: 

Superstructure, version 2.0, 2004, http://www.omg.org/cgi-
bin/doc?ptc/2004-10-02 

[2] Stephen A. White, Process Modeling Notations and Workflow Patterns, 
March, 2004, http://www.omg.org/bp-corner/pmn.htm  

[3] Object Management Group (OMG),  UML 2.0 OCL Specification, 2004, 
http://www.omg.org/cgi-bin/doc?ptc/2003-10-14   

[4] Rik Eshuis, Roel Wieringa, Comparing Petri Net and Activity Diagram 
Variants for Workfow Modelling – A Quest for Reactive Petri Nets, 
2003, http://is.tm.tue.nl/staff/heshuis/pnt.pdf  

[5] Harald Störrle, Jan Hendrik Hausmann, Towards a Formal Semantics of 
UML 2.0 Activities, 2004, http://www.pst.informatik.uni-
muenchen.de/~stoerrle/V/AD-11-Limits.pdf   

[6] Harald Störrle, Semantics and Verification of Data Flow in UML 2.0 
Activities, 2004,http://www.pst.informatik.uni-
muenchen.de/~stoerrle/V/AD2b-DataFlow.pdf 

[7] Rational Software Architect, http://www-
306.ibm.com/software/awdtools/architect/swarchitect/    

[8] Conrad Bock, “UML 2 Activity and Action Models Part 4: Object 
Nodes”, in Journal of Object Technology, vol. 3, no. 1, pp. 27-41. 
http://www.jot.fm/issues/issue_2004_01/column3  

[9] Conrad Bock, “UML 2 Activity and Action Models Part 2: Actions”, in 
Journal of Object Technology, vol. 2, no. 5, pp. 41-56. 
http://www.jot.fm/issues/issue_2003_09/column4   

[10] A.Kalnins, J. Barzdins, E.Celms.  Efficiency Problems in MOLA 
Implementation.  19th International Conference, OOPSLA’2004, 
Vancouver, Canada, October 2004 
http://melnais.mii.lu.lv/audris/OOPSLA_MOLA.pdf 

[11] QVT-Merge Group. MOF 2.0 QVT RFP, Revised submission, version 
1.0. OMG Document, ad/2004-04-01, http://www.omg.org/cgi-
bin/doc?ad/2004-04-01  

 


