An Aspect Oriented Model Driven Framework

Devon Simmonds
Department of Computer Science
Fort Collins, CO — 80523
{simmonds}@cs.colostate.edu

Arnor Solberg
SINTEF

P.O. Box 124 Blindern
N-0314 Oslo, Norway

Raghu Reddy, Robert France, Sudipto Ghosh
Department of Computer Science
Fort Collins, CO — 80523
{raghu, france,ghosh}@cs.colostate.edu

arnor.solberg@sintef.no

Abstract
In model driven development (MDD), specifying

normative for specifying view mechanisms. However,
diagram types (e.g., UML activity, class and state

transformations between models at various levels ofdiagrams) [4][8] only provide separation of struetand

abstraction can
transformations for pervasive system features tuat
tangled with other system features is particulatifficult
because the elements to be transformed are disddbu
across a model. This paper presents an aspect teden
model driven framework (AOMDF) that facilitates

be a complex task. Specifying behavior and do not inherently provide separatién o

crosscutting features. To better manage complexity
MDD framework should provide support for separating
crosscutting features.

Aspect Oriented Software Development (AOSD)
[9][10][11][22][13] supports horizontal separationf

separation of pervasive features and supports their concerns by providing mechanisms for encapsulating

transformation across different levels of abstranti The
framework is illustrated using an example in whigh
platform independent model of a banking applicatisn
transformed to a platform specific model.

Keywords: aspect-oriented software development,
distributed applications, middleware model driven
development, separation of concerns, UML

1 Introduction

Model driven development (MDD) shifts software
development from a code-centric activity to a medel
centric activity. Accomplishing this shift entails
developing support for modeling concepts at diffiere
levels of abstraction and transforming abstract etedb
more concrete descriptions of software. MDD aims to
reduce complexity in software development through
modularization and abstraction.

An MDD framework should provide mechanisms
supporting both vertical and horizontal separatimi
concerns. The model driven architecture (MDA) [1][2]
initiative of the OMG proposes a vertical separatain
concerns mechanism consisting of three differerdl$eof
abstraction: computation independent model (CIM),
platform independent model (PIM) and platform specif
model (PSM). For example separation of platform
independent and platform specific concerns occinesva
middleware independent model (a PIM) and a

crosscutting features usimgpectsin our aspect oriented
modeling (AOM) approach [20][21], crosscutting feat

are modeled as aspects and composed with the grimar
design model to form complete applications.

In this paper we present an aspect oriented model
driven framework (AOMDF) that enables vertical and
horizontal separation of concerns. The framework
illustrates how aspect based techniques can taeilihe
separation of concerns and ease the modeling and
transformation design. Vertical separation of consds
supported by providing techniques for transformthg
models from one abstraction level to another. Theets
are transformed using mappings that are defined
separately for the primary model and each of tipects.
Horizontal separation of concerns is realized byletiog
crosscutting features separately as aspect.

Section 2 provides background information on AOM
and model transformations. Section 3 describes the
framework. Section 4 presents the framework using a
scenario from a bank application. Section 5 disesiss
related work. Section 6 draws some conclusions and
outlines planned work on the framework.

2 Background

2.1 Model Transformation

Many model transformation approaches are based on
specifying mappings from source meta-model concepts
target meta-model concepts, as well as derivingetar

corresponding middleware specific model (a PSM) are patterns based on source pattern recognition [ZB][2

defined for a particular application.

Horizontal separation of concerns is typically iz=d
by modeling a system using views (e.g., the ISO @BP
framework [3]). A system view describes a certaicet of
the system (e.g., structure, behavior or distrdmti The
use of diagram types provided by a modeling languag

However, these meta-model mappings may not detiveer
desired results. For example, it may not be delgiréd
map all instances of a specific meta-model elerattie
PIM level the same way. Depending on the charatitesis
of the platform (e.g., deployment and distributiah)nay

be necessary to transform instances of the same3 The Aspect Oriented Model Driven

metamodel element differently. To derive a PSM,
mechanisms provided in the platform as well as
recommended patterns and practices should beegtiliz
For example, most middleware platforms provide gjgec
services for handling security, persistence, and
transactions. These services typically require ifipec
protocols to be followed. Using a generic mappirfg o
meta-concepts may not be appropriate when utilizing
platform provided services and protocols. Thesegsive
features need to be treated explicitely to obtaéndesired
result. The AOMDF facilitate PIM to PSM mappings in
which provided platform specific protocols are used

MOF 2.0 Query View Transformation (QVT[6][7] is
an ongoing standardization effort within the OMG.eTh
aim of this process is to standardize a language fo
specification of model relations and transformagion

We base our mapping specifications on the current
QVT submission. This has both drawbacks and benefit
A drawback is that the specification is a movingy¢a and
undergoing change. The specification also has ggape
and unfinished parts which makes it challengingise.
On the other hand the QVT will most likely be anstard
and many industries are involved in its developmalso
the joint submission specification is based on l=ggs
and tools already provided, e.qg., [30][31]

Currently there are a variety of model transfororati
approaches and tools available. Quite a few ofettzee
referenced in [27]. It is not clear to us how these
approaches and tools will support the standardizati
effort in the model transformation area.

Framework

Figure 1 shows the major activities and artifacisp®rted

in the AOMDF. The primary focus of the framework is
the transformation of aspect oriented models froarem
abstract forms to more detailed forms. The major
activities are partitioned into four categorissurce level,
mappings, target leveind model composition These
activity categories are described below.

Source Level

Acquire
source models

Source
primary model

Source
aspect models

Mappings N ¥
pping Acquire aspect Acquire primary
mappings model mappings
Aspect mappings Primary model
mappings
Target Level

Apply aspect
mappings

Apply primary
model mappings

Target
primary model

Target
aspect models

Model Composition

‘ Aspect models ‘Primary model ‘

Specify bindings
(

Develop
composition directives | L

Composition
directives

Composed model

2.2 Aspect Oriented Modeling

There is ongoing research that investigates how to
apply AOSD techniques at the model level
[13][15][16.][201[.23]' The AOMDF Is based on an AOM Figure 1 Aspect oriented model driven framework
approach in which a design is expressed in termtheof) o .
following artifacts [20][21]: The source level includes activities for acquiriog

1. A primary modelhat describes the business logic of developing abstract aspect and primary modatsthis
the application. level, the aspect models are acquired from an &spec

Instantiate

Context-specific
aspect models

aspect models

Compose aspect
and primary models

2. A set ofgeneric aspect modelahere each model is ~ repository if one is available or they are devetbpg the
a generic description of a crosscutting feature. system architect. The primary model is developedhey

3. A set of bindings that determine Where in the pr'yna SyStem arChIteCt. The SyStem arCh|teCt deC|deS What
model the aspect models are to be Composed. features will be included in the pl‘imary model amaoich

4. A set of composition directives that influence how Will be treated as aspects. The decisions are based

aspect models are composed with the primary model functional and extra functional requirements. Extra
Before an aspect model can be Composed with afunctional requirements also called Qua“ty of v

primary model in an application domain, the aspectiel
must be instantiated in the context of the appbocat
domain. An instantiation is obtained by bindingnedats
in the aspect model to elements in the applicatmmain.
The result is called aontext-specific aspect model
Context-specific aspect models and the primary rnade
composed to obtain an integrated design view [20][2

(QoS) requirements, such as security and transactio
management are often pervasive. AOSD techniques are
used to separate features that address theseeamguis
from the primary business functionality.

The mappings category includes activities for
developing or acquiring the corresponding target
mappings for the aspect and primary model$ie
transformations between the source and the taeyeld

are defined by separate mappings for each aspdahan 1.
primary model.

The target level includes activities for applyirget
mappings to the source level primary and aspectetaod 2.
The target detailed design models are obtained by
applying the source to target transformations ta
specified in the mappings.

The model composition part includes activities for
instantiating and composing the aspect and primary
models using bindings and composition directives
[20][24]. Aspect models have to be instantiatedobef
they can be composed. Instantiation is performed by
binding the aspect model elements to the applicatio 4.
specific model elements. Once the instantiatiodase,
the model composition is performed using the
composition directives and a basic name matching5.
procedure [20]).

The source and target levels have a recursive eatur
Thus, the source level in one context may appedheas
target level in another context. The source lenel @rget
level are relative to another.

AOMDF has two major variation points that must be
fixed before the framework can be used. The two
variation points are (1) thieamework levelsand (2) the

3.

4

The framework allows developers to conceptualize,
describe, and communicate crosscutting concerns as
conceptual units at various levels of abstraction.

The horizontal separation of concerns as aspect
models and a primary model facilitate separate
specification of mappings.

The specification of the transformation of an aspec
or the primary model from source to target is less
complex than the specification of the transfornmatio
of an integrated source model to target model,esinc
the latter transformation is likely to have more
relationships and dependencies.

Changes to a crosscutting concern can be madeein on
place, and effected by composing the changed aspect
model with a primary model.

The aspects are often application independent, (e.g.
security and transaction). The aspect model and its
mappings can therefore be reused across multiple
applications and application domains once they are
defined.

lllustrative example
We illustrate the framework with a distributed biugk

application that offers electronic money transfaing
distributed transaction services.

level(s) at whiclcompositiorwill be done.

Using the MDA terminology, the two main abstraction
levels for models are PIM and PSM. The PIM and PSM
are relative to the chosen platform (e.g., middlewa
platforms like J2EE, CORBA and .Net). Fixing the

PIM Level

Acquire
source models

Source
aspect models

Source
primary model

platform one may still define a set of source aaddt

levels within the PIM and PSM context. For instarce i
may be desirable to perform transformations frorv Pl
architecture model to a PIM detailed design modedi a
likewise to have several abstractions within theMPS

Mappings

v V
Acquire aspect Acquire primary model
CORBA mappings CORBA mappings

CORBA Aspect CORBA Primary model
mappings mappings

level. Table 1 lists five different instantiatioypes of this
generic framework based on different combinationhef
variations points.

Instantiation types
1 2 3 4 5
Source level | pim pim| pim| pim psm
Target level | pim| psm| psm psm sm
Composition | pim | pim | psm | pimand psm psm
level(s)

Table 1: Potential framework instantiations

The composed model at the source level can be useq
for conformance checking of the composed modehat t

PSM Level

Apply CORBA aspect Apply CORBA primary
mappings model mappings
v v

CORBA CORBA
aspect models primary model

P Specify aspect bindings
And composition directives

Instantiate
aspect models
|| Context-specific | /

aspect models

> Composed model

Compose aspect
and primary models

target level. However, conformance checking is neyo
the scope of this paper.

The following is a list of the perceived benefitstioe
proposed framework:

Figure 2 PIM to PSM framework instance

In the example, the framework is instantiated as
follows:

Source and target models are at PIM and PSM
levels, respectively. The platform in question is
CORBA

* The model composition is performed only at the
PSM level.

Figure 2 shows the instantiated framework. Mappings
are defined for a CORBA transaction aspect and gnone
transfer scenario. They are applied on the PIMsbtaio
the PSMs. The primary model is tagged to show wirere
the primary model the aspects are composed. Oree th
primary model is tagged, the composition is done as
described in our previous work [20][21][24].

4.1 Acquire Source Models

We present a simple banking scenario and a traoeact
aspect as interaction diagrams to illustrate tiséaimiated
framework.

4.1.1 Primary model

The bank consists of a set of accounts. The busines
functionality includes operations to open and close
accounts. Withdrawal and deposit of specific ameuit
money are provided for accomplishing money transfer
The transfer of money requires transaction contwbich
is modeled as an aspect. The money transfer soenari
shown in Figure 3 is the primary model used in this
example.

sd Money transfer J

-acc’ String
-acc2 String
-amoun! Rea

T
moneyTransfer(acct accz amoun) |

TransferClient Account Account

T
‘ |
withdraw(amount; !
|
|
|
|

deposit(amount; |

Figure 3 Banking scenario primary model

4.1.2 Transaction aspect

A transaction is an indivisible collection of optoas
between servers and clients that remains atomio éve
some clients and servers fail. An atomic operatsan
operation that is free of interference from conentr
operations performed by other threads in a system.
Transactions are required to manifest the “ACID'
properties [25]. While different middleware may yide
different transaction models, a generic transactmuel
that captures the essence of distributed transectian be
specified at the PIM level. The generic model camnthe
transformed based on the specific protocol for each
middleware.

sd Transaction

+Tid:String
+Pid:String

+<<enumeration>> transProtocol{onePhaseCommit, twvoPhaseCommit}
+t:transProtocol
+transactionAborted, timeOut, decisionAbort, decissionCommit:Boolean

theParticipants:

I:Transclient I:Participant Participant[1.."] :TransactionManager
operatipn(... ‘
openTransaction(t: Ttype)
Tid
Loop [(1,numberOfOperationsinTransaction)])

loperation(Tid,...) “J_‘

opt

[joined=false]

join(Tid,Pid)

|

addParticipant
—

[DoOperation(Tid,...)

closeTransaction(Tid)

alt

[t=2phaseCommit]

initiateVotingPhase
—

par

Loop [noVoteExist or yesFromAll])

<<multicast>>
<~

canCommit(Tid)
<<multireceive>>

YesNo

initiateCompletionPhase
—y

opt)

abortTransaction

opt —
timeOut
=

break [transactionAborted

or timeOut])

initiateCompletionPhase

—

|
H
[t=1phaseCommit]

1PhaseCommit

[decisionCommit]

processCommit

decision(commit)

<<multicast>

—
processCommit
[J=—

doCommit

[decisionAbort]

processAbort

decision(abort

<<multicast>

rollback

doAbort

— 1

|

Figure 4 shows a distributed transaction feature Figure 4 Transaction aspect

modeled as an aspect. The transaction aspect loescri
one-phase and two-phase commit distributed traiosact
protocols. The one-phase and two-phase commit guotsto
are as alternates in the figure.

The transaction aspect has three main roles:

* A Transaction Client initiates the transaction and
performs a collection of operations for the specifi

transaction.

A Participant provides some service required by the
Transaction Client. Figure 4 shows a collection of
Participants representing the set of Participants
involved in the transaction.

A Transaction Manager is responsible for

coordinating and managing transactions.

The Transaction Client initiates the transaction by
sending theopenTransaction When the Transaction
Manager receive®penTransactionmessage, it opens a
transaction and returns a transactionTial), This Tid is
sent as a parameter in all subsequent operatioms. T
Transaction Client then performs the collection of
operations of the transaction. When a Participactives
an operation request it checks whether it is aljread
member of the particular transaction. If not, iinpthe
transaction before it performs the requested ojoerat

Two-Phase Commit Protocol: When the transaction
client requests to close the transaction, the Heitn
Manager starts the commit protocol according to the
chosen transaction protocol type. The diagram guifei 4
shows the details of the two-phase commit protdoahe
first phase Yoting phasg the transaction manager polls
the participants to determine if they are readgdmmit.

In the second phaseclgsing phasg the Transaction
Manager decides to abort or commit the transaciite.
decision is multicast to all participants. At atigne
during the transaction, the transaction clients resjuest

to abort the transaction or the transaction manaugsr
timeout. Both requests result in the initiation thfe
completion phase. The Transaction Manager will then
eventually decide to abort and all participants| \wi¢
informed. Participants will then roll back the tsaction
individually.

4.2 Defining an Interaction Metamodel

QVT transformation specifications are metamodel
based, and thus, to specify transformations, thececand
target meta-models are needed. Both the sourcelsiode
our example (the primary model and the transaction
aspect) are specified using UML 2 interactions. The
interactions metamodel is specified in the UML 2
standard[8]. However, the metamodel for interactias
specified in the UML 2 is fragmented, and the fragtee
are tied together via several other metamodel mpska
like the UML 2 kernel, the basic actions, and thseiba
behaviors. The mapping specifications would havenbe
unnecessarily complex if we had used the UML 2
metamodel specifications directly. We have derivaed
simplified interaction metamodel including the lgasi
concepts of interactions and their relationship&isT
model is shown in Figure 5.

NamedElement

CombinedFragment (from Kernel)

interactionOperator:
InteractionOperator

name:String
visibility:VisibilityKind 0.1
+/signature,

+sendEvent
0.1

MessageEnd P()‘j

Lifeline }——/0“1
<<enumeration>>
InteractionOperator
seq
alt
opt
break

0.1

Interaction
Fragment

| Message

+receiveEvent '

messageSort:
MessageSort

Type 0.
name:String

0.1 +argument

Parameter |1
(from Kernel)
name:String ‘

*J ValueSpecifcation
ifi From Kernel

name:String

par
strict
loop
critical
neg
assert
ignore
consider

<<enumeration>>
rt

synchCall
asynchCall
asynchSignal
reply

Figure 5 Simple interaction metamodel

4.3 Acquire Primary Model Mapping

One possible CORBA mapping for the primary model
is to derive a PSM sequence diagram showing the
CORBA object interactions. Stereotypes can be used
indicate the kind of CORBA objects. This is a
straightforward mapping where CORBA stereotypes are
added and primitive types are converted if they are
different. The result is shown in Figure 6.

sd CORBA moeny transfer J
+acc” string
<<CORBAImpl>> | [<<CORBAImpl>> <<CORBAImpI>>
TransferClient Account Account
T T
I
I

+accz string
I
I
I
I
i

+amouni double

moneyTransfer(acc accz amount)| | withdraw(amount)

7 deposii(amount

e

Figure 6 PSM sequence diagram

Another mapping, is to derive an IDL representation
based on the specified source model. From thifsstu
skeletons and helper classes can be generated asing
IDL compiler. A QVT specification for mapping
interaction diagrams to CORBA IDL is shown in Figut.
The UML profile for CORBA [37] is used as the target
metamodel. This representation is compliant witHRIn
representation and may serve as the source foDhan |
compiler.

Two mappings are defined in Figure 7. The upper
mapping derive the CORBA interfaces with operations
the lower add directed associations. The left hside
describes a pattern that should be matched in ¢odéne
mapping to execute. The pattern is an instantiadiothe
interaction metamodel. The header of the package
specifies input and outputifeline and CORBAInterface
respectively). These are the anchors of the strestof
the left hand side and right hand side respectivAly

Lifeline has a set of zero or more receive MessadsEn
Sets are indicated with the multiplicity star. Acoding to
the interaction metamodélifeline, Type, Messageand
MessageEndhave names. These are not explicitly shown
in the source patterns, but are used to derivetatget
structures.

Lifeline2Corbalnterface_p1(l
:Lifeline, ci:CORBAInterface

[LLifeline | * e.m Erd ci:CORBAInterface
- name=lt.name
+receiveEvent
It:Type
mt:Type m:Message | D o:Operation
+receiveEvent name=m.name .
p:Parameter type=mt.name -

visibility=m.visibility

Lifeline2Corbalnterface_p2(
m:Message, as:Association

m:Message

as:Association -
+associationEnd

ae2:Property
+assocationEnd
| aet:Property |

rme:M End || sme:M

geEnd

*\ +receiveEvent *| +sendEvent

[M:Lifeline | [12:Lifeline | ci1:CORBAInterface
name=I1t.name
Mt:Type 12t:Type

ci2:CORBAInterface
name=I2t.name

{ae2.isNavigal
e()=true}

It 1
{when}
Lifeline2Corbalnterface_p1(I1,ci1) and Lifeline2Corbalnterface_p1(12,ci2)

Figure 7 QVT primary model mapping specification

4.4 Acquire Aspect Mapping

When developing the aspect mapping we want tozatili
the transaction service provided by CORBA. The
mappings to transform the PIM transaction aspectvsho
in Figure 4 must include all interactions that ilweothe
TransactionManagerand all transactional interactions
betweenParticipantsand Transclient These are grouped
into six sets of mappings as follows:

1. The openTransactionmessage Transclient to

TransactionManager.

2. The join message from Participant to
TransactionManager.

3. The closeTransactionmessage Transclient to
TransactionManager.

4. The abortTransaction message Transclient to
TransactionManager.

5. The canCommit message from
TransactionManager to Participants.

6. Other mappings involving

decisionCommit(commit), decisionAbort(abort),
doCommit and doAbort.

We describe the aspect mappings first using anriatipe
style and we then give examples of how they can be
expresses using QVT.

The mappings produce @ORBAInterfacefor each
lifeline type having the same name as the lifelipge
name. For every receive MessagEnd a correspondin
operation is added. The parameter specificationsire
the same in both source and target. This assuragshi
primitive types of source and target are equag alsype
mapping would be needed. The different members®f t
patterns are referred using their names. Accorthbnthe
QVT specification the names are also used to decid
whether to create new elements or edit existing oRer
example if theCORBAInterfacealready exists, only new
operations are added.

An imperative pseudo code specification for this
mapping is as follows:

create Transclient Interface;

add moneyTransfer(.fpo Transclient Interface;

create Account Interface;

add withdraw(amountjo Account Interface;

add deposit(amountjo Account Interface;

add directed association betwe&ransclient andAccount

The resulting CORBA specification is shown in Figur
15

/I openTransaction pseudo code mapping specification:

replace TransactionManager by {ORB; CurrentHelper;
Current}

replace openTransaction message from Transclient to
TransactionManageby {

resolve_initial_references(“TransactionCurrent”) from

Transclientto ORB

narrow(..)from Transclientto CurrentHelper;

}

add set_timeout(timejnessagérom Transclientto Current,
add begin()messagérom Transclientto Current;

/l'join pseudo code mapping specification:
replace TransactionManageby {Control; Coordinator;}

replace join(Tid, Pid)
TransactionManageby {

message from Participant to

get_controfrom Participanto Current;
get_coordinatdirom Participanto Control;
register resource(Pidirom Participanto Coordinator

}

deleteadd_participant messaffem TransactionManageto
TransactionManager

/I closeTransactiopseudo code mapping specification:

replace closeTransaction message from Transclient to
TransactionManageby commit()from transClientto Current.

/I abortTransaction pseudo code mapping specification

replace abortTransaction message from Transclient to
TransactionManageby rollback() from Transclientto Current.

/I canCommit pseudo code mapping specification:

replace canCommit messagefrom TransactionManagerto
Participantsby prepare()from Currentto Participants

/I Other pseudo code mapping specification:

delete decision(commitimessagdrom TransactionManageto
Transclient.

delete decision(abort) messagefrom TransactionManageto
Transclient.

replace doCommit message from TransactionManagerto
Participantsby commit()from Currentto Participants..

replace doAbort message from TransactionManager to
Participantsby rollback() from Currentto Participants..

sd Transaction

I:Transclient

/:ORB

[I:CurrentHelper

operatior(...)

resolve_initia _references(txnString) J

tObj
r arrow(tObj)
-

cur

cur:Current
sel_timeout(time)
kegir()

Figure 9 Open transaction CORBA counterpart

Figure 8 shows the source part of the mappingtfer t
open transaction. The pattern defined in the figisre
basically to recognize theopenTransactionmessage
between thdransclientand thelTransactionManager

The derived target of the open transaction is shiown
Figure 9.

The mapping used to derive the CORBA target model
is shown in FigurelO. The target model is obtained in
three steps. The first two steps produce the
operation/return message pairs;

The initiateVotingPhase and initiateCompletionPhase resolve_initial_references(txnStringand narrow(tObj)
messages have no CORBA equivalents. They are eetain The mapping specification for these are shown & th
in the model to provide logistical information to upper part of FigurelO. The specification of the

developers, however, no mappings are applied to.the

openTransaction2Co
rbaOpenTransaction(
i, i_c:InteractionMM)

izInteraction

\ te:Lifeline \ \ tm:Lifeline \

\

tct:Type tmt:Type
name=’Transclient’ name="Transaction
Manager’

me_s:MessageEnd me_r:MessageEnd

+sendEvent +receiveEvent

‘ m:Message
\ name=’openTransaction’

Figure 8 source part of the QVT aspect model
mapping for the “openTransaction” operation

set_timeout(timeand thebegin() operations are shown in
the lower part of the figure.

Figure 11 shows the source part of the QVT mapfong

openTransaction2CorbaOp
enTransaction(i, e
i_c:InteractionMM) the]Oln message'
i_c:Interaction join2CorbaJoin(i,
i_c:InteractionMM)
tc_c:Lifeline ‘ ‘ orb:Lifeline
tc_ct:Type orbt:Type izInteraction
name=tct.name name="orb’
\ p:Lifeline \ \ tm:Lifeline \
me1:MessageEnd ‘ ‘ me2:MessageEnd \
+sendEvent i
itTepe +receiveEve pt:Type tmt:Type
Name.=’COR m1:Message name="Participant’ name="Transaction
BA.object’ name="resolve_intila_ref Manager’
erences’
me3:MessageEnd messageSort="synchCall’ me4:MessageEnd
+receiveEvent [miatType || mia:Values.. +sendEvent meSei:MessageEnd meSet:MessageEnd
name="String’ | | name="txnStrin N
9 9 +sendEvent +receiveEvent
m2:Message
name="tObj’ B
messageSort="reply’ ‘ m:Message
name=’join’
+argument
tc_c:Lifeline ch:Lifeline pI:Type — a:VaIueSpecification
name= String name="tid'
tc_ct:Type cht:Type
name=tct.name name="CurrentHelper’

Figure 11 Source part of the QVT aspect model
mapping for the “join” operation

The pattern defined in Figure 11 essentially reczam
the join message between the Participant and the

TransactionManager.
The derived target of thpin transaction is shown in

me5:MessageEnd ‘ ‘ me6:MessageEnd
+sendEvent +receiveEvent

m3t:Type

Name="Current’ m3:Message

name=’narrow’
geSort="synchCall’

me8:MessageEnd

me7:M geEnd
+sendEvent i
+receiveEvent m3at:Type | m3a:ValueS.. Flgure 12.
name=’.C0t2 name="tObj’ sd Transaction
BA.object cur:Current
namzf‘::l\::‘ssage I:Farticipant
messageSort="reply’ T ctrl:Control
O
tc_c:Lifeline cur:Lifeline oined=falsel .\ contro cor:Coordinator
¢t -
tc_ct:Type curt:Type gei_coordinator
name=tct.name name="Current’ I U
register_resource (Pid) o
[L

me9:MessageEnd ‘ ‘ me10:MessageEnd
+sendEvent +receiveEvent

Figure 12 join transaction CORBA counterpart

The corresponding mapping specification for the
CORBA target Model is shown in Figure 13
As the example illustrates the mapping specificetio
meft:MessageEnd | me12:MessageEnd of both the open transaction and the join are cempl
HreceiveEvent This is because these specific messages needtteabed
explicitly in order to utilize the CORBA transaatio

service and follow the required protocols.

m5:Message

signature=’set_timeout(time)’
messageSort="synchCall’

m6:Message

signature="begin()’
messageSort="synchCall’

Figure 10 Target part of the openTransaction mapping

joinzCorbadoin(,
_¢ InteractionMM)

_¢ Interaction

cur Lifeline

\

p_ct Type ‘ curt Type ‘

[mame=ptname | | name="Cur
rent’

p_c Lifeline

| me19 MessageEnd | [me20 M End
+sendEvernt +receiveEve
m10(Type
Name="Cont m10 Message
rol name="get_control'

M =’ hCall’
me21 '~ synchta me22 MessageEnd

+sendEvent
+receiveEvent

m11 Message
name=’ctrl’
MessageSort="reply’

_c Interaction

p_c Lifeline ctri Lifeline

‘ p_ct Type ‘ ctrit Type
name=pt name \ name="Control’

‘ me23 MessageEnd \ ‘ me24 MessageEnd
+sendEvent 4receiveEven
m12{ Type
Name="Coordin m12 Message
ator'

name="get_coordinator

M Sor=’ hCall
= t='synchta me26 MessageEnd

+sendEvent

4 receiveEvent m13 Message

name="cor’
MessageSort="reply’

_c Interaction

p_c Lifeline cor Lifeline

‘ p_ct Type ‘ cort Type

name=pt name name="Coordin

ator'

‘ me27 MessageEnd \ ‘ me28 MessageEnd
+ sendEvent 4 receiveEvent

M1 Type

m14 Message

name="register_resource’
MessageSort="synchCall’

[

| m10f Type | m122 ValuesS.
name="Parti

cipant

name="Pid’

sd Transaction

Narrow(tObj)

+Tid:String
+Pid:String
+<<ent ion>> transPI {onePhaseCommit, twoPhaseCommit}
+t:transProtocol
+transactionAborted, timeOut, decisionAbort, decissionCommit:Boolean
‘ [:Transclient ‘ ‘ I:Participant ‘ t,[‘eP.a'f“c'p?ntf]: /:ORB
Participant[1..
operation(....) i Resolveinitial_references(txnStrin
- 7 — (9 I:CurrentHeIper—‘
tObj T
i
T
i

|

cur:Current

Set_timeout(time)

Begin()

Loop [(1,numberOfOperationsinTransaction)])
operation(Tid,...) ‘ ctrl:Control
opt i
foned=false] cor:Coordinator

get_control

il
get_coordinator
cor

| register resource(Rid)

[doOperation(Tid,...)

commit()

alt H [t=2phaseCommit]

T
par) Loop [noVoteExist or yesFromA\I])

<<multicast>>

prepare
<<multireceive>>
|

o VES/NO

opt)

rollback(TRUE;

opt
timeOut
break [transactionAborted or timeOuty —‘
initiateCompletionPhase

[t=1phaseCommit]

1PhaseCommit

alt [decisionCommit]
<<multicast>

commit()

—
[processCommit
f——!
[decisionAbort]
<<multicast>
rollback

processRollback
-~ U

Figure 13 Target part of the QVT aspect model

mapping for the “join” operation

However, since transactions are application indeeet
the mapping specification is highly reusable. Ire th
example there is a repeating pattern that is useddier to
specify the derivation of the target. It may begig to
obtain more powerful mapping specifications through

parameterized patterns.

Figure 14 CORBA transaction PSM

4.5 Apply Mapping

Figure 15 shows the CORBA IDL interface generated b
applying the PIM to PSM mappings specified in section
4.2 to the primary model. Figure 17 presents the
composed sequence diagram that results from ajgpdyin
the aspect mappings to the PIM transaction aspeegtrsh
in Figure 4.

<<CORBAlInterface>>
TransferClient

<<CORBAInterface>>
Accouni

withdraw(amount double)
deposii(amount double)

moneyTransfer(acc1 string, acc2 string,
amount double)

Figure 15 Generated Interfaces based on UML profile
for CORBA

4.6 Specify Aspect Bindings & Instantiate

Aspect Models
Before composition, the primary model is taggedetine

where in the primary model the aspects are composed

The aspect tagging is based on AOP waving meamanis
Figure 16 shows the banking scenario and how thieulp
aspect and the transaction aspect should be weated
the model. The lookup aspect is another aspecthtfat
defined similar to the transaction aspect. The peets>
stereotype is used to model aspect tags. Subsetputme
incomingmoneyTransfemethod call the lookup aspect is

performed twice to get the handle of the accounts
is a stereotyped
combined fragment that encompasses the transalkctiona

involved. The transaction aspect

method calls. Combined fragments are constructsebf
for interaction diagrams in UML 2.

sd Money transfer J

-acc” String

-accz String

-amouni Rea

<<enumeratior >> transProtoco {onePhaseCommil twoPhaseCommit}
+tp transProtoco = twoPhaseCommit

+tname String="moneyTr’

<<CORBAImpl[>> <<CORBAImpl>> <<CORBAImpl>>
TransferClient &~ Account &2 Account

T T

moneyTransfer(acc” accz amoun!] }
|

|

|

| ‘

<<aspect>>

LookupAccount_zg
]

‘(acc=acc”)
|
|
|
|

—
<<aspect>>

lookupAccouni_zgZ(acc=accz)
|

<<aspeci{>> Transaction(tp tnamey

withdraw(amount) }

‘deposi‘ (amount)

T
|
=}

Figure 16 Primary model tagged with aspects

Once, the primary model is tagged with the aspdhts,
aspects and primary model are composed using th
bindings and composition directives to obtain an
integrated design view referred to as the compaosedel
[20]. This is shown in Figure 17.

sd Transaction

+Tid:String

+Pid:String

+<<enumeration>> transProtocol{onePhaseCommit, twvoPhaseCommit}
+t:transProtocol

+transactionAborted, timeOut, decisionAbort, decissionCommit:Boolean

‘ I:TransferClient H a1:Account H a2:Account H /:ORB ‘

'_Er(at a2, amount)

moneyTranst
- 7 resolve_|j

I:CurrentHelper
initial_references(txnString P

narrow(tObj) 1)

cur

cur:Current

set_timeout(time)
begin()

e

withdraw(a1, amount)r

[joined=false] get_control

ctrl

[ctrl:Control

cor
register_resource(Pid) |
]
oOperation(Tid,...)
withdraw(a2, amount)
>
deposit(a2, amount)

L ToOperationZ(Tid‘...

commit()

deposit(a1, amount)

alt [t=2phaseCommit]

par)

Loop [noVoteExist or yesFromAII])
L <<multicast>>

prepare
<<multireceive>>
- SN

Yes/No

opt)

rollback(TRUE

opt

timeOut
=

break [transactionAborted or timeOut])

initiateCompletionPhase
—
=

[t=1phaseCommit]

1PhaseCommit

alt [decisionCom

<<multicast>

m

commit()

il
processCommit
L f—

[decisionAbort]
<<multicast>

rollback

processRollback
—

eFigure 17 PSM Composed Model

5 Related work

Several researchers has done work on developing
transformation languages and tools. ArcStyler [32],
EXMOF [29], Objecteering [33], and Tarzan/XMorph
[34] are some of some transformation engines availa
TopMdl [35] is an international open-source initiati
launched to provide an extensible framework for etod
driven experimentation. Most of the tools/languages

domain-specific and are either imperative or detiae.

instance since we need to obtain specific mappofgs

The proposed framework shown in the paper uses bothspecific operations.

declarative and imperative languages for transftons
and hence can be used in wider scope.
Jacobson [17][18] describes the development ofgdesi

Currently we are working on techniques to resolve
conflicts that can occur if more than one aspect is
composed with the primary model. Verifiable comfiosi

aspects based on use cases, which are then comyosed techniques that discharge proof obligations during
create different views of the system. The work maps composition are being developed.

directly to program level aspects, using the coritioos
techniques originally developed for AspectJ [5]eMork
does not explicitly give details about transformatiof
models, rules of composition, structural relatiaets,

In the future, we plan to apply different middlewar
mappings to the same transaction and determine the
feasibility of the approach. Also, we plan to cecat
repository of the most common middleware concerns.

Reina et al. [16] propose the use of meta-models an References

UML profiles for separation of concerns at the PIMlan
PSM levels. The problem with this approach liessmg
different meta-model for every new concern. In the

(1]

aspect-oriented modeling approach proposed by €lark [2]
al. [23], a design called a subject is created dach
system requirement. A Comprehensive design is a
composition of subjects. Subjects are expressddMis 3]

model views, and composition merges the views plexvi
by the subjects. The approach does not consider any4
middleware aspects. 141

Kulkarni et al. [19] present a model driven
development approach for separation of concernsy Th
use an abstract template to separate system caredetire [5]
model and code levels. This is similar to our AOM [6]
approach. The AOM approach uses parameterized UML
to specify aspects. In addition, AOM uses pararizser
OCL to perform verifiable composition [22].

[7]

6 Conclusion and Further Work

Modern systems are complex. Separation of concerns i [g]
recognized as a key principle to cope with compjeixi
software development. In this paper, we have rezbon
that both vertical and horizontal separation of cgwns
should be provided, for managing complexity in adelo
driven development.

Aspect-oriented technologies can be used to support
horizontal separation of crosscutting concerns faiher
functionality. The AOM approach emphasizes
separation and modularization of crosscutting coreé

9]

the

OMG MDA™ Guide
http://www.omg.org/docs/omg/03-06-01.pdf

Soley, R.M, Frankel, D.S.,Mukerji, J.,Castain, E.Model
Driven Architecture - The Architecture Of ChoicerFa
Changing World, OMG 2001.
http://www.omg.org/mda/Soley,

ISO/IEC 10746: (1995): Basic reference model foerop
distributed processing

v1.0.1,

OMG, Unified Modeling Language (UML™) 1.5
Specification, Object Management Group, Document
formal/03-03-01, 2003

Eclipse AspectJ projedtitp://eclipse.org/aspectj/

MOF™2.0 Query/View/Transformation RFP, OMG
Document:ad/2002-04-10
Revised submission for MOF2.0

Query/Views/Transformations RFP (ad/2002-04-10),
QVT-Merge Group 1.8, OMG document ad/2004-10-04.

www.omg.org

umML™ 2.0,
http://www.omg.org/technology/documents/modelingcsp
catalog.htm#UML

Aspect Oriented Software Development. AOSD Webpage.
URL http://aosd.net/2005.

[10] G. Kiczales, J. Lamping, A. Mendhekar, C. MaedaVC.

Lopes, J.-M. Loingier, and J. Irwin. Aspect Orighte
Programming. In Proceedings of the European Comndere
on Object-Oriented Programming (ECOOP), Springer
Verlag LNCS 1241, Finland, June 1997.

design units (aspects). The AOMDF provides additiona [11] H. Ossher and P. Tarr. Using multidimensional satjar

support for specifying transformations. The AOMDF
allows us to separate out the mapping specificafion
pervasive features from the mapping specificatibithe
primary model. The aspect mapping specificatiomthe
becomes reusable and the mapping specificatiorhef t
primary model becomes simpler

The paper illustrates the transformation of afptat
independent distributed transaction aspect to Hopfa
specific transaction aspect. We also describe
integration of the transaction aspect in the cdné®a net
banking application. The example illustrates thiage t
mapping of pervasive services can be complex, for

the

of concerns to (re)shape evolving software. Commun.
ACM, 44(10):43/50, 2001.

[12] J. Kienzle and R. Guerraoui. Aop: Does it make serike

case of concurrency and failures. In Proceedingshef
16th European Conference on Object-Oriented
Programming (ECOOP, pages 37-61. Springer-Verlag,
2002.

[13] I. Ray, R. France, N. Li, and G. Georg, "An AspBetsed

Approach to Modeling Access Control Concerns”, dalr
of Information and Software Technology, 46(9), p@5-
587, July 2004.

[14] D. C. Schmidt, A. Gokhale, B. Natarajan, S. Neefha, [27] Czarnecki.K.,Helsen S., Classiciation of Model

Bapty, J. Parsons, A. Nechipurenko, J. Gray antVaing. Transformation Approaches, Proceedings Workshop on
CoSMIC: A MDA tool for Component Middleware-based Generative Techniques in the Context of Model-Drive
Distributed Real-time and Embedded Applications. Architecture, OOPSLA'03
Proceedings of OOPSLA Workshop on Generative |51 R Hubert. Convergent Architecture: Building Model
Techniques for Model-Driven Architecture, SeattiA [28] Driven J2EE Systemg with UML. John Wiley & S?)ns
USA, November 2002.]) i

. . . [29] EXMOF - Queries, Views and Transformations on Medel

[15] R. Silaghi, F. Fondement, and A. Strohmeier. Towaad using MOF, OCL and EXMOF, Joint 2nd revised

MDA-Orl'ented UML Profile _for Dlsj[nbutlon. In_ submission. Compuware Corp., SUN Microsystems.
Proceedings of the 8th IEEE International Entegpris ad/2004-10-03
Distributed Object Computing Conference, EDOC,
Monterey, CA, USA, September 2004. [30] Tata MasterCratftittp://www.tata-

mastercraft.com/index1.asp

[16] A. M. Reina, J. Toress, and M. Toro. Towards devielp]]
generic solutions with aspects. In proceedings e t [31] Atlas Transformatino Language, www.tni-

Workshop in Aspect Oriented Modeling held in software.com/?p=mda
conjunction with UML 2004, October 2004. [32] ArcStyler http://mww.io-
[17]1. Jacobson. Case for Aspects - Part I. Software software.com/products/arcstyler_overview.jsp
Development Magazine, pp 32-37, October 2003. [33] Objecteering/Introduction User Guideersion 5.3 -
[18] I. Jacobson. Case for Aspects - Part Il. Software CODOBJ 001/001. www.objecteering.com
Development Magazine, pp 42-48, November 2003. [34] K. Duddy, A. Gerber, M.J. Lawley, K. Raymond, Jedt
[19] Vinay Kulkarni, Sreedhar Reddy. Separation of Conge Model Transformation_: A Declarative, Reusa_ble Rage
in Model-driven Development. IEEE Software 20(5):64 Approach. In Proceedings 7th IEEE International
69, 2003. Enterprise Distributed Object Computing Conference

(EDOC 2003), pp 174-185
[20] R. B. France, I. Ray, G. Georg, and S. Ghosh. Arcts o .
oriented approach to design modeling. IEE Procgmsdin [35] P.A. Muller, P. Studer, J.M Jézéquel. Model-driven

Software, Special Issue on Early Aspects: Aspeatrded generative approach for concrete syntax composition
Requirements Engineering and Architecture Design, workshop on Best Practices for MDSD (OOPSLA2004),
151(4), August, 2004. October 2004
cutting requirements concerns. In Proceedings @& th Transparent Software Development & The MDA," In
International Conference on the UML, October 2004. Proceedings of the WiSME Workshop in Software Model
Springer, 2004. Engineering at UML'2003, San Francisco, October3200
[22] E. Song, R. Reddy, R. France, |. Ray, G. Georg, R. [37] UML™ Profile for CORBA™ version 1.0, April 2002,
Alexander. Verifying Access Control Properties gsin formal/02-04-01.

Aspect Oriented Modeling. Accepted in 10th ACM
Symposium on Access Control Models and Technologies
(SACMAT), Scandic Hasselbacken, Stockholm, June 1-3
2005.

[23] S. Clarke, W. Harrison, H. Ossher, and P. TarraSsmg
concerns throughout the development lifecycle. In
Proceedings of the ' ECOOP Aspect-Oriented
Programming Workshop, Lisbon, Portugal, June 1999.

[24] Greg Straw, Geri Georg, Eunjee Song, Sudipto Ghosh,
Robert France, and James M. Bieman, "Model
Composition Directives”, in proceedings of the TiNIL
Conference, Lisbon, Portugal, October 10-15, 2004.

[25] George Coulouris, Jean Dollimore and Tim Kindberg.
Distributed Systems Concepts and Design (3rd EdgeP
471. International Computer Science Series, Addison
Wesley/Pearson Education, USA, 2001.

[26] Revised submission for MOF 2.0
Query/Views/Transformations RFP (ad/2002-04-10),
QVT-Merge Group 1.8, OMG document ad/2004-10-04.

www.0mg.org

