
On Creating Industry-Wide Reference Architectures

Author:
Zhu, Liming; Staples, Mark; Tosic, V.

Publication details:
Enterprise Distributed Object Computing Conference, 2008. EDOC '08. 12th
International IEEE
pp. 24-30
978-0-7695-3373-5 (ISBN)
1541-7719 (ISSN)

Event details:
The 12th IEEE International EDOC Conference (EDOC'08)
Munich, Germany

Publication Date:
2008

DOI:
https://doi.org/10.26190/unsworks/397

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/38541 in https://
unsworks.unsw.edu.au on 2024-04-24

http://dx.doi.org/https://doi.org/10.26190/unsworks/397
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/38541
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

On Creating Industry-Wide Reference Architectures

Liming Zhu, Mark Staples, Vladimir Tosic

Managing Complexity Research Group – Sydney (ATP), NICTA
*
, Australia

School of Computer Science and Engineering, University of New South Wales, Australia

{Liming.Zhu, Mark.Staples, Vladimir.Tosic}@nicta.com.au

*
 NICTA is funded by the Australian Government as represented by the Department of Broadband, Communications and the Digital Economy

and the Australian Research Council through the ICT Centre of Excellence program.

Abstract

Many industries have been developing e-business

standards to improve business-to-business interopera-

bility on a mass scale. Most such standards are com-

posed of business data models with some message ex-

change patterns. Such data-only standards leave a

very large interpretation space for the implementation

stage at each individual organization. Thus, true in-

dustry-wide interoperability is still hard to achieve. In

this industry report, we describe our experiences in

creating and evaluating reference architectures for the

Australian lending industry. To achieve the right level

of prescriptiveness, our reference architectures are

deliberately non-structural. Instead, they are based on

a set of quality-centric architectural rules. We devised

new methods for analyzing interoperability and evalu-

ating such industry-level reference architectures. The

first reference architecture has now been adopted and

achieved positive effects. We also summarize several

other lessons we learned, such as the need to align

reference architectures with industry structures.

1. Introduction and motivation

Businesses continually seek to get work done faster,

better, and cheaper. Industries increasingly realize that

the optimization of efficiencies across organizations is

the key to the success. This puts distributed enterprise

computing in the context of industry-wide mass inter-

operation. Pair-wise and centrally coordinated integra-

tion effort will not scale to an exponentially connected

industry ecosystem.

In recent years, industry-specific standardization

bodies have been devising domain-specific e-business

standards, such as ACORD (Agent-Company Organi-

zation for Research and Development) for insurance,

MISMO (Mortgage Industry Standards Maintenance

Organization) for lending in North America, AUTO-

SAR (Automotive Open System Architecture) for

automobile, and HL7 (Health Level 7) for health in-

formatics. Many of them focus on the standardization

of business data and business message exchange pat-

terns with the hope that once this is defined, mass in-

teroperability will be automatically achieved within the

industry. However, this has not been the case [10, 27].

Costs of pair-wise integration are still prohibitively

high, even when both sides of the pair claim to be data

standard “compliant”. (Our own experiences from

working with the Australian lending industry confirm

this.) There are many social and technical reasons for

this, ranging from lack of alignment with industry

structures to heterogeneity of software architectures

that inhibits technical-level (as opposed to business

data level) interoperability.

For addressing these problems, a large number of,

usually uncoordinated, small technical notes are devel-

oped in conjunction with the data standard. Their pur-

pose is to explain mappings to technical implementa-

tions, the business processes involved, and different

standard interpretations. Many such technical notes are

often developed by technology vendors whose main

concern is about mapping from data standards to their

own technology products. Such biased and uncoordi-

nated efforts introduce even more problems in achiev-

ing genuine mass interoperation.

From a distributed enterprise computing point of

view, these problems are not new in terms of a particu-

lar integration among multiple parties. Some degree of

control and centralized coordination can alleviate many

of the problems. Making a system more evolvable, us-

ing service-oriented architecture (SOA) concepts, and

adopting associated technical WS-* standards can also

improve point-to-point interoperability.

However, these problems are significantly different

in the context of a whole industry, which is effectively

an ultra-large-scale ecosystem. Establishing control and

centralized coordination, even in modest amounts, is

very difficult on the scale of a whole industry. Thus,

the enterprise computing solutions are often not appli-

cable in such circumstances. Too much prescription in

industry-wide standards is inappropriate because it

does not accommodate heterogeneity and competitive-

ness among industry members. While standardization

in addition to data standards is obviously needed, the

challenge is to determine what and how much more to

additionally standardize, so that a right balance be-

tween too much prescription and not enough prescrip-

tion can be reached.

In this industry report, we describe our experiences

in helping the Australian lending industry to tackle

these challenges. We created non-structural reference

architectures in the form of rules to influence (rather

than control) sound technical software architecture

derivation. We tailored existing architecture evaluation

methods to evaluate such reference architectures. We

extracted interoperability tactics and created an infor-

mal reasoning framework for more systematic analysis

of interoperability. During this project, we learned sev-

eral lessons transferable across vertical domains.

In the following section, we briefly review related

work. In Section 3, we describe the context of our col-

laboration with the Australian lending industry. In Sec-

tion 4, we describe our approach to industry-wide ref-

erence architectures and our evaluation tactics. In Sec-

tion 5, we discuss the lessons we learned. The final

section summarizes conclusions.

2. Related work

The difference of building a “software city” (an eco-

system of systems) from building a “software building”

(an individual system) has been argued for a long time.

The original speculative pieces were on models of

software development environments [21] and law-

governed systems [15, 16]. The recently re-ignited in-

terest in Ultra-Large-Scale (ULS) systems [18, 9, 24]

provided illustrations of these differences in health,

defense and space contexts. Although the problem

definitions have been refined overtime, the solution has

not been crystallized. Many research solutions for sys-

tems-of-systems, distributed systems and self-managing

systems [14] are very applicable to solving these prob-

lems. On the other hand, it has been argued that soft-

ware cities should not be “designed” in the traditional

way, but rather “planned” and “regulated” similarly to

urban planning. Business-IT alignment is also an active

research area, but only a few works [25, 26] study its

extension with a focus on inter-enterprise and complex

environments. However, they do not provide general

conclusions. Some work has been done on creating

industry-specific XML (Extensible Markup Language)

schemas [10, 23] and mapping them to SOA-based

implementations [1]. However, the inadequacy of stan-

dards based on data is widely recognized [17]. One

possibility for its improvement is through more flexible

process-intensive systems [6, 25].

3. Project context description

Lending Industry XML Initiative (LIXI,

http://www.lixi.org.au) is an Australian e-business

standardization body serving the consumer loan indus-

try. It covers different aspects of the lending chain,

such as:

• Loan product information dissemination: Lenders

(e.g., banks) communicate new/updated loan product

information to brokers, mortgage houses, borrowers.

• Loan origination and approval: Lenders accept loan

applications via various channels and execute a com-

plicated process to decide whether the loan applica-

tions are approved. During this process, the lender

interacts with many external parties, e.g., property

valuation firms, insurance companies, credit bureaus.

• Property valuations. Property valuation firms per-

form independent property value estimations for lend-

ers or borrowers.

• Mortgage insurance. Insurance companies provide

insurance to lenders for selected loans.

• Settlement: The settlement involves a number of

parties, including property buyers and sellers, financial

institutions, legal and government land title offices. A

good settlement process ensures transaction integrity.

Similarly to other industry standard organizations,

LIXI first developed a business data standard in the

form of a controlled vocabulary with corresponding

XML schema and message exchange patterns. How-

ever, the adoption of this standard was not as fast as

expected. The “build-once, interoperate with every-

body” slogan was not materialized in reality. Many

companies were asking for more standard implementa-

tion guidance. Essentially, the underlying causes were

the challenges we described in Section 1.

Thus, LIXI asked for help from NICTA (old name:

National ICT Australia). Initially, it was identified from

a pure business point view that the natural missing part

in LIXI work was development of the business process

models accompanying the business data. Business

processes put business data into context and formally

capture control flows and parties involved. We evalu-

ated several specification languages and used the Busi-

ness Process Modeling Notation (BPMN) for docu-

menting a number of LIXI processes [27]. LIXI ex-

pects that these business process models will eventually

be mapped to software implementations through Web

service technologies, such as SOAP and Web Services

Business Process Execution Language (BPEL) [19].

However, we quickly realized that business data and

process models alone have limited power to achieve the

desired mass interoperability. Lack of agreement about

architecture and technical details has resulted in gaps

between business standards and particular implementa-

tions. We consequently proposed to devise reference

architectures and associated development guidelines to

supplement LIXI e-business standards.

For a whole industry, the role of a reference archi-

tecture is significantly different from the traditional

technical reference architectures, which only exemplify

a possible arrangement of structural components and

connectors. An industry-level reference architecture

can not prescribe too much structure as it may prevent

new business relationships/models among different

parties and adoption of new technologies. An ultra-

large-scale ecosystem also has a number of unique

characteristics compared to traditional large systems:

• Decentralization: Data, development, evolution

and operational control are all decentralized.

• Inherently conflicting requirements: Most parties

want complexity to reside in others’ parts of the over-

all system and want information to be shared, but do

not want to share their own information. Technical

solution companies provide/favor custom-built appli-

cations and intermediary gateways, while smaller

players typically want commoditized applications and

no intermediaries.

• Continuous evolution with heterogeneous ele-

ments: The whole ecosystem cannot be stopped and

re-engineered. Day-to-day lending activities have to go

on, and horizontal interactions with the larger financial

and government systems also exert constant influence.

• No clear people/system boundary: The scale of

involved companies varies widely. Some companies

have sophisticated systems that can automate most

tasks, while others still rely on fax and manual proc-

essing. Messages and activities in e-business standards

can map to systems or people depending on specific

parties and characteristics of individual transactions.

The LIXI ecosystem resembles the characteristics of

an ultra-large-scale system [18]. In order to address

both the business perspective and ultra-large-scale sys-

tem challenges, the reference architecture needs to bal-

ance consistency and variety, address competing needs

from different parties and consider trade-offs between

prescriptive guidance and an ability to evolve.

4. Our approach

Our approach consists of a rule-based reference ar-

chitecture for the whole (Australian) lending industry,

specific mappings to technologies and an architecture

evaluation method for rule-based architectures.

4.1. Rule-based reference architecture

We devised a set of quality-centric architectural

rules. An architectural rule is defined as principles that

need to be followed by structures within a system [4].

An architectural rule may be satisfied by several poten-

tial structural architectures. There are two major inputs

into our architectural rules. One is a set of design tac-

tics for achieving certain quality attributes [2]. The

other is the specific context of the Australian lending

industry, including problems, requirements, and indus-

try structures. Essentially, we instantiated quality-

specific design tactics in the context of LIXI.

Our rule-based approach is in line with other IT-

related industries. For example, Google OpenSocial’s

specification and APIs (Application Programming In-

terface) [8] are a form of technology-level guidance for

the social networking industry. This standard has both a

data focus and an API focus. An industry-wide refer-

ence architecture is implied in this specification, but

not explicitly outlined. In a way, we created an equiva-

lent of OpenSocial for the Australian lending industry.

The following are sample sets of rules from a list of

40 rules in the LIXI context [29], with commercially

sensitive information removed:

• Influence, but do not control others. Decentraliza-

tion is one of the main characteristics of LIXI. Also,

LIXI is a voluntary non-profit organization with no

standard-enforcement power. In such settings, influ-

ence (instead of control) is the main mechanism to

achieve interoperability and improve overall system

quality. Our rule set encourages influence through mi-

cro-format proposals and optional design alternatives.

• Use minimal service interface. The modern busi-

ness world is service-oriented. The technology world

has recently been catching up by introducing the “ser-

vice” concept, e.g., as SOAP-based Web services or

RESTful (REpresentational State Transfer) services. A

LIXI-compliant system should use message-centric

(rather than operation-centric) interfaces. That is, ser-

vice interfaces should not expose abstractions in the

form of remote procedures. Essentially, we advocate

the use of a single operation on a service (Proc-

essLIXIMessage), but allow more complicated inter-

faces to exist. Messaging behaviors are specified by

LIXI content structure and LIXI message exchange

protocols. This rule encourages maximum flexibility in

the face of constant evolution. Ever-changing shared

contexts are carried within LIXI messages. Message

processing logic can either be hidden behind the ser-

vice or exposed as protocol related metadata. This ap-

proach is related to other rules, e.g.: i) Use the LIXI

canonical message model on public interface as much

as possible; ii) Assume that LIXI services are autono-

mous. iii) Make LIXI services to share LIXI schemas

and contracts, but not implementation classes.

• Share metadata and context. Metadata is usually

described in service contracts. It can be related to poli-

cies (e.g. security requirements or encryption capabili-

ties), quality of service characteristics (e.g. required

response time), and semantic descriptions. Contexts

are more instance-specific. We encourage metadata

and contexts to be shared in all possible ways.

Through the sharing of metadata and context, interop-

erability can be achieved at both design-time and run-

time with little top-down prescriptive planning.

• Specify semantic alignment. LIXI standards have

provided an ontology vocabulary and associated XML

schemas for all defined messages. Semantic alignment

links technical implementation elements with seman-

tics. Interoperability between technical elements is

improved by consulting the LIXI-related meaning at

both design-time and run-time. There is still enough

flexibility for implementing technical elements. Se-

mantic alignment mechanisms minimize the effort

needed to integrate components built independently.

• Avoid explicit intermediaries. We do not intro-

duce the role of an intermediary explicitly in the refer-

ence architecture. However, we allow such intermedi-

aries to organically appear in the overall ecosystem.

This is very different from the existing e-business

meta-standards, such as ebXML, which have an ex-

plicit concept of central registry and repositories

through which companies post business processes,

capability profiles and collaboration protocol agree-

ments. Technically, this is appealing and simplifies

some business scenarios. However, we found very

difficult to introduce such a structure within LIXI be-

cause of complex business issues such as who the in-

termediaires should be, legal issues such as confiden-

tiality concerns, and practical issues such as the diffi-

culty of semi-automated agreement negotiation. Thus,

in our reference architecture, interacting directly with

another business party or through an intermediary is

treated as the same general mechanism. Local inter-

mediaries within certain areas can be introduced. Dy-

namic binding and proxy solutions can help achieve

various relationships in practice.

4.2. Mapping to implementation technologies

There are essentially two types of problems in LIXI.

One is transactional business activities, such as loan

application processing or property valuations. The

other type is non-transactional, e.g. loan product infor-

mation dissemination or back channel status updates.

For transactional scenarios, we further mapped [29]

the reference architecture to SOAP-based Web services

in order to leverage the sophisticated infrastructure

support on handling security, transactions and state.

BPEL-based workflow engine is used.

For non-transactional document exchange (such as

large scale secure data dissemination), we further

mapped the reference architecture to RESTful Web

services [7] and feed technologies (e.g. Atom [11]).

Products are modeled as REST resources and changes

in resources are communicated through Atom feeds.

4.3. Mapping to implementation technologies

For evaluating this type of rule-based reference ar-

chitecture, the existing architecture evaluation methods

(e.g. the Architecture Tradeoff Analysis Method -

ATAM [13]) for structural architecture can not be used

directly. We analyzed the 10 common techniques [12]

in architecture analysis and evaluation for their suitabil-

ity, and adapted them for rule-centric architectures. Our

method Evaluation Process for Rule-based Architecture

(EPRA) is shown in Figure 1. Its details were described

in [28]. There are four phases: I) business goals elicita-

tion, II) rule analysis, III) architectural tactics analysis

and IV) trade-off analysis. Each phase uses different

tailored architecture evaluation techniques.

We now give an example of how we applied EPRA

Phase III for interoperability analysis. A number of

papers and technical reports (e.g.,[5, 22])have docu-

mented current approaches for achieving interoperabil-

ity. However, currently there are no large collections of

interoperability tactics. By analyzing the above-

mentioned reference architectural rules (during Phase

II), we extracted many architectural tactics for interop-

erability. Some example architectural tactics, organized

into more general categories, are:

• Tactics for increasing common understanding

1. Use technical standards to increase interoperability

on technical level.

2. Use a canonical model on the public interface.

3. Annotate technical elements with common seman-

tics using a bottom-up approach.

4. Annotate information with expiry time.

5. Treat local optimization as constraints, not goals.

6. Use format indicator in messages.

• Tactics for advertising and finding capabilities

1. Use a service discovery mechanism for advertising

and finding service capabilities.

2. Publicize capability profiles accessible to others.

3. Give mechanisms for propagating needs and offers.

4. Provide mechanisms for managing intentions and

expectations.

In addition to the two general categories of tactics

described above, we have also extracted tactics in the

following general categories: tactics for predicting end-

to-end outcomes, tactics for supporting participant

flexibility, tactics for influencing/controlling others and

tactics for reducing costs of interoperability.

A critical analysis activity in this phase is to use a

reasoning model for quality attributes to determine if a

proposed rule or tactic improves or hinders important

quality attributes. Formal reasoning models for archi-

tectural interoperability (the main quality attribute we

investigate) do not yet exist, and thus we had to invent

an informal model with informal issues (rather than

well-defined parameters) for our evaluation. Our in-

formal reasoning model is intended to reduce the de-

velopment that is required to achieve interoperability.

It considers issues in two dimensions:

• Interface element dimension: operations, data and

events. This is adapted from the abstract architectural

model representation for service divergence evalua-

tion, developed in [3]. That is, a divergence between

two service interfaces can be further divided into op-

eration divergence, data divergence, event divergence.

• Syntax-semantics dimension: syntax and seman-

tics. For interface elements of each kind (operation,

data or event), interoperability concerns can relate

primarily either to syntactic or semantic issues.

For each rule or tactic, the two dimensions form a

matrix where each cell represents a type of interopera-

bility issue that can be affected by the rule or tactic and

consequently impact the overall interoperability of the

system. For example, rules about annotating Web ser-

vice messages with LIXI message schema and vocabu-

lary will have a positive impact on semantic data inter-

operability issues. Another example is that not defining

a service operation in the reference architecture in-

creases the flexibility of individual systems, but de-

creases both syntactic and semantic operation interop-

erability. Using this simple matrix approach, we were

able to analyze each rule and tactic systematically.

5. Lessons learned

In addition to the overall methodological contribu-

tion to enterprise computing at an industry level, we

have learned many important lessons during this work:

1) Industry-specific interoperability standards

should address not only syntax and semantics of

exchanged data and business processes, but also

reference software architectures. Different aspects of

interoperability need to be governed through different

mechanisms. When a “standard” data schema is used in

the field, variations are inevitably introduced and sub-

sequently used for ad-hoc, point-to-point and non-

repeatable integrations. Due to the high costs for such

integrations, standard adoption rate is low. This is not

because organizations do not have capabilities and

willingness to implement these standards once or twice.

It is because the costs of variations and repetitive point-

to-point integrations are prohibitively high. This usu-

ally ends up with large players dictating one particular

schema variation in a hub-spoke fashion, similar to the

experiences with EDI (Electronic Data Interchange).

Industry-wide mass interoperation among small and

medium players remains missing. Adding semantics

helps. Normalized reference business processes at or-

ganization edges help. However, an important issue is

also providing technology-level guidance at the right

prescriptive level with the right form. Reference soft-

ware architectures can provide such guidance.

Figure 1. Evaluation process for rule-based architectures

2) Rule-based reference architectures achieve

much better balance between prescriptiveness and

flexibility than structure-based architectures. Indus-

try standards should guide industry members towards

interoperation. However, industry members are hetero-

geneous and mutually competitive. Too much prescrip-

tion in industry standards usually deters industry mem-

bers from adopting the standard (particularly when

standard adoption is optional). A balance between pre-

scriptiveness and flexibility is needed. It is specific to

an industry (and even problem domain) and depends

more on social and business issues than technical is-

sues. A balance can be usually achieved in more than

one point (e.g., within a range). A rule-based reference

architecture containing governing quality-centric rules

(rather than structural prescriptions) with the right

technology binding exemplars is a good way to such

balance. The traditional structure-based reference ar-

chitectures are too prescriptive on the industry-wide

scale. Within a rule-based reference architecture, sug-

gestive structural architectures can be provided as ex-

emplary reference implementations to demonstrate spe-

cific technology bindings. When a rule-based reference

architecture is developed, it is crucial to consider the

trade-off and balancing nature of the rules.

3) Both technical issues and business issues

should be the main concerns of a reference archi-

tecture. In particular, reference architectures should be

aligned with industry structures. There are many factors

in industry structures, such as business models, eco-

nomic incentives, business relationships and IT invest-

ment capabilities. Without a full understanding of these

issues, a sound technical solution may stifle new busi-

ness models, contradict adoption incentives, hinder

business relationships and mismatch IT capabilities.

For a to-be ecosystem owned by nobody, it is very dif-

ficult to “plan” who will pay for which part of the sys-

tem and shared infrastructure and how fast the paying

party can recover their investment. Adoption incentive

mechanisms and loosely specified architectures are

often better than forced compliance and dictated struc-

tures. For example, we observe that many technical

gateways that bridge a cottage sub-industry with big

players are often one-sided and try to optimize the

business process for the big players at the expense of

the small players. It is not surprising that the big play-

ers subsidize the development of the gateway and want

to push one-sided gateway solution into the reference

architecture. Our reference architecture avoids such

intermediaries, but allows different types of gateways

to appear organically. Different types of gateways also

take into considerations the IT capabilities of each side

and incentive mechanisms.

4) Systematic evaluation of rule-based architec-

tures requires new methodologies. Existing architec-

ture evaluation methods are designed for structure-

based architectures. However, rule-based architectures

have significantly different organization and mecha-

nisms. We analyzed existing architecture analysis and

evaluation techniques and concluded that they were not

appropriate for rule-based architectures. There are also

additional issues for evaluation of industry-wide refer-

ence architectures. For example, systematic evaluation

against business goals and industry structures is needed

for industry-wide rule-based reference architectures.

Our Evaluation Process for Rule-based Architecture

(EPRA) [32] adapted existing architecture analysis and

evaluation techniques for rule-centric architectures.

5) Research of ultra-large-scale systems is im-

portant for next-generation enterprise computing.

We find some of the software engineering and enter-

prise computing techniques [9, 20, 26] invaluable in

creating reference architectures. However, others are

not designed with the industry-wide scale in mind. This

is particularly the case with architecture evaluation

methods, interoperability analysis, and quality issues.

In the industry-wide scale, social and business issues

are often much greater “pain points” than purely tech-

nical issues. Enterprise computing technologies need to

adapt to very large, decentralized “systems of systems”

for mass interoperability and economic concerns.

Rather than re-inventing everything, many existing

techniques can be adapted to solve the challenges. The

approaches researched in Ultra-Large-Scale (ULS)

systems [18] are particularly relevant to creating indus-

try-level reference architectures. Some examples of

these approaches are using design rules and design

spaces, harnessing economics to promote good designs,

and designing across socio-technical levels.

6. Conclusions and future work

In this industry report, we described our approach

for creating reference architectures for the Australian

lending industry. We went beyond the normal data

standard and structural reference architecture and in-

troduced rule-based architectures and architecture

analysis methods. We considered both technical issues

(interoperability, flexibility, evolvability) and business

issues (incentive mechanisms and IT capabilities of

industry participants). The resulting architecture is less

structurally prescriptive to better support evolution, and

points to a number of further research directions.

The first reference architecture (accompanied with

derived technology exemplar bindings) that we devel-

oped was for property valuation aspects of lending

[29]. It has now been adopted in the Australian lending

industry and achieved positive effects. We have re-

cently published another reference architecture for

lending product information dissemination [30]. Both

reference architectures help individual organizations

extend their enterprise computing practices towards

industry-level mass interoperation. Additional refer-

ence architectures will be developed in the near future.

As systems become more complex, it is impossible

to understand them through component-level interac-

tion analysis. Macro-level measures are useful concepts

for understanding the overall system. For further un-

derstanding of ultra-large-scale IT systems, we need to

find macro-level metrics to indicate the overall quality

of the system and we need methods for analyzing these

new metrics. The analogy with urban planning and city

building is just the first step.

7. References

[1] A. Allam and A. Tost, Developing a Web Service Using

an Industry-Specific Messaging Standard, IBM, 05 July

2007; http://www.ibm.com/developerworks/webservices/

library/ws-soa-messagingstandard/index.html.

[2] F. Bachmann, L. Bass, and M. Klein, Deriving Architec-

tural Tactics: A Step Toward Methodical Architectural De-

sign, CMU/SEI-2003-TR-004, SEI, CMU, 2004.

[3] S. Bhattacharya and D. Perry, "Architecture Assessment

Model for System Evolution," Proc. 6th Working IEEE/IFIP

Conf. Software Architecture (WICSA'07), IEEE, 2007, p. 8.

[4] J. Bosch, "Software Architecture: The Next Step," Soft-

ware Architecture: 1st Euro. Work. (EWSA 2004), LNCS

3047, Springer, 2004, pp. 194-199.

[5] D. Carney, D. Fisher, E. Morris, and P. Place, Some Cur-

rent Approaches to Interoperability, SEI CMU/SEI-2005-

TN-033, SEI, CMU, 2005.

[6] R. Dijkman, "A Classification of Differences between

Similar Business Processes," Proc. EDOC 2007, IEEE, 2007,

pp. 37-50.

[7] R.T. Fielding and R.N. Taylor, "Principled design of the

modern Web architecture," ACM Trans. Internet Tech.

(TOIT), ACM, vol. 2, no. 2, May 2002, pp. 115-150.

[8] Google, "OpenSocial," accessed 27 June 2008;

http://code.google.com/apis/opensocial/.

[9] A. Hess, B. Humm, M. Voss, and G.A.E.G. Engels,

"Structuring Software Cities A Multidimensional Approach,"

Proc. EDOC 2007, IEEE, 2007, pp. 122-129.

[10] S. Hinkelman, D. Buddenbaum, and L.-J. Zhang,

"Emerging Patterns in the Use of XML for Information Mod-

eling in Vertical Industries," IBM System Journal, IBM, vol.

45, no. 2, 2006, pp. 373-388.

[11] IETF, The ATOM Syndication Format, RFC 4287, Dec.

2005; http://www.ietf.org/rfc/rfc4287.txt.

[12] R. Kazman, L. Bass, and M. Klein, "The Essential Com-

ponents of Software Architecture Design and Analysis," J.

Systems and Software, Elsevier, vol. 79, no. 8, Aug. 2006, pp.

1207-1216.

[13] R. Kazman, M. Klein, and P. Clements, ATAM: Method

for Architecture Evaluation, CMU/SEI-2000-TR-004, SEI,

CMU, 2004.

[14] J. Kramer and J. Magee, "Self-Managed Systems: An

Architectural Challenge," Proc. Future of Software Eng.

(FOSE'07) at ICSE 2007, IEEE, 2007, pp. 259-268.

[15] N.H. Minsky, "Law-governed Software Processes,"

Proc. 5th Int'l Software Process Work. Experience with Soft-

ware Process Models, IEEE-CS, 1989, pp. 98-100.

[16] N.H. Minsky and D. Rozenshtein, "A Software Devel-

opment Environment for Law-Governed Systems," ACM

SIGPLAN Notices, ACM, vol. 24, no. 2, 1989, pp. 65-75.

[17] B. Mutschler, J. Bumiller, and M. Reichert, "Why Proc-

ess-Orientation is Scarce: An Empirical Study of Process-

oriented Information Systems in the Automotive Industry,"

Proc. EDOC 2006, IEEE, 2006, pp. 433-440.

[18] L. Northrop, R. Kazman, M. Klein, D. Schmidt, K.

Wallnau, and K. Sullivan, Ultra-Large Scale Systems: The

Software Challenge of the Future, SEI, CMU, 2006.

[19] OASIS, Web Services Business Process Execution Lan-

guage Version 2.0, OASIS Standard, 11 Apr. 2007; http://

docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

[20] OMG, UML Profiles for Enterprise Distributed Object

Computing (EDOC), updated 12 Dec. 2007;

http://www.omg.org/technology/documents/formal/edoc.htm

[21] D.E. Perry and G.E. Kaiser, "Models of Software Devel-

opment Environments," Proc. 10th Int'l Conf. Software Eng.

(ICSE'88), IEEE-CS, 1988, 60-88.

[22] D. Quartel and M. v. Sinderen, "On Interoperability and

Conformance Assessment in Service Composition," Proc.

EDOC 2007, IEEE, 2007, pp. 229-240.

[23] M. Roth, M.A. Hernandez, P. Coulthard, L. Yan, L.

Popa, H.C.-T. Ho, and C.C. Salter, "XML Mapping Technol-

ogy: Making Connections in an XML-Centric World," IBM

System Journal, IBM, vol. 45, no. 2, 2006, pp. 389-410.

[24] R. Sterritt, C. A. Rouff, M.G. Hinchey, J.L. Rash, and

W. Truszkowski, "Next Generation System and Software

Architectures: Challenges from Future NASA Exploration

Missions," Science of Computer Programming, Elsevier, vol.

61, no. 1, June 2006, pp. 48-57.

[25] A. Tao and J. Yang, "Context Aware Differentiated Ser-

vices Development with Configurable Business Processes,"

Proc. EDOC 2007, IEEE, 2007, pp. 241-252.

[26] R.S. Tapia, M. Daneva, and P. v. Eck, "Validating Ade-

quacy and Suitability of Business-IT Alignment Criteria in an

Inter-Enterprise Maturity Model 202," Proc. EDOC 2007,

IEEE, 2007, pp. 202-213.

[27] L. Zhu, L. Osterweil, M. Staples, U. Kannengiesser, and

B.I. Simidchieva, "Desiderata for Languages to be Used in

the Definition of Reference Business Processes," Int'l J. Soft-

ware and Informatics (IJSI), Chinese Academy of Sciences,

vol. 1, no. 1, 2007, pp. 37-66.

[28] L. Zhu, M. Staples, and R. Jeffery, "Scaling Up Software

Architecture Evaluation Processes," Making Globally Dis-

tributed Software Development a Success Story: Int'l Conf.

Software Process (ICSP'08), LNCS 5007, Springer, 2008, pp.

112-122.

[29] L. Zhu and B. Thomas, LIXI Valuation Reference Archi-

tecture and Implementation Guide 1.0, LIXI, 2007;

http://www.lixi.org.au/ri.html.

[30] L. Zhu and B. Thomas, LIXI Visible Loans: A Pub-Sub

based Service, LIXI, Mar. 2008;

http://www.lixi.org.au/medrel/visibleloans.html.

