
A Model-driven Perspective on the Rule-based Specification of Services

Maria-Eugenia Iacob
University of Twente

m.e.iacob@utwente.nl

Henk Jonkers
BiZZdesign

h.jonkers@bizzdesign.nl

Abstract

The focus in this position paper is on business rules

as a means to raise the level of abstraction (and
automation) at which business logic is incorporated in
model driven application design in the context of
service oriented architectures. More specifically, next
to providing a classification framework for business
rules and investigating the existing standards and
languages for the formal specification of business
rules, we propose a model-driven framework for the
rule-based design of services. We provide an example
to illustrate this framework and to demonstrate the role
business rules can play in the context of MDD of
SOAs. Furthermore, we also explore, in terms of
existing tool support, the extent to which, the model-
driven design process can be complemented and
combined with business rules written in nearly natural
language, which can become, at the platform specific
level, an executable way to specify business knowledge
and decisions.

Keywords: model-driven architecture, business rules,
service oriented architecture, service orchestration,
business rule standards

1. Introduction

Service-oriented architecture (SOA) and the idea of
“Software as a Service” are two current trends that
begin to lead to a fundamental change in the way in
which ICT applications are developed and used. The
central idea is that instead of building or buying
monolithic systems, in which the business logic is
hard-coded, applications should be assembled in a
flexible way, using well-defined software services that
may be distributed over the internet.

However, this new way of building applications
also requires a new way of approaching the
development of reusable services and the composition
of these services into end-user applications.

In this context, the model-driven development
(MDD) paradigm [16] is of great relevance. However,
although the number of practical applications of MDD
is growing, the current state-of-the-art is that platform-
specific code that is generated from platform-
independent models is still incomplete: in most cases,
code for specific business logic still has to be added
manually. One of the reasons for this is that there is no
suitable way to represent this business logic at the
higher modelling layers. In this paper we argue that
business rules (BR), aimed at these higher layers, are
very well suited to fulfil this role. Thus, the general
question we address in this position paper is how
business rules can be incorporated in a MDD process
as a means to raise the level of abstraction (and
automation) at which business logic is integrated in
application design in the context of SOA.

The paper is organised as follows: In Section 2 we
briefly discuss the problems we address in this paper.
In Section 3 we provide a classification framework for
business rules and we investigate the existing standards
and languages for the formal specification of business
rules. In Section 4 we present our vision for combining
business rules with model-driven design. The main
goal is to analyse in terms of method, specification
languages and tools the extent to which business rules
can be combined with design models in all Model
Driven Architecture (MDA) layers and become
eventually, at the platform specific level, an executable
way of specifying business knowledge and decisions.
Finally, in Section 5 we draw some conclusions and
point out future work.

2. Problem statement
In this section we will address the three main
paradigms central in this research and research issues
arising from their integration.

2.1. Model-driven development
In most traditional software application

development practices, the ultimate product of the
design process is “the realization”, deployed on

12th International IEEE Enterprise Distributed Object Computing Conference

1541-7719/08 $25.00 © 2008 IEEE

DOI 10.1109/EDOC.2008.24

75

12th International IEEE Enterprise Distributed Object Computing Conference

1541-7719/08 $25.00 © 2008 IEEE

DOI 10.1109/EDOC.2008.24

75

12th International IEEE Enterprise Distributed Object Computing Conference

1541-7719/08 $25.00 © 2008 IEEE

DOI 10.1109/EDOC.2008.24

75

12th International IEEE Enterprise Distributed Object Computing Conference

1541-7719/08 $25.00 © 2008 IEEE

DOI 10.1109/EDOC.2008.24

75

available realization platforms. In several model-driven
approaches, however, intermediate models are reusable
and are also considered final products of the design
process. These models are carefully defined such that
they abstract from details in platform technologies, and
are therefore called computation-independent (CIMs)
and platform-independent models (PIMs), in line with
OMG’s MDA [16][28]. MDA has emerged as a new
approach for the design and realisation of software and
has eventually evolved in a collection of standards that
raise the level of abstraction at which software
solutions are specified. Thus, MDA fosters a design
process and tools that support the specification of
software in languages such as UML rather than in
languages such as Java.

The central idea is that design models at different
levels of abstraction are derived from each other
through model transformations. More specifically,
different platform-specific models (PSMs) can be
derived (semi-) automatically from the same platform-
independent model, making use of information
contained by a platform model. More recently, MDA
has extended its focus to more business-oriented
concepts and languages, reflecting the growing
awareness that it is important to take into account
business considerations in software development
decisions. For this purpose, MDA has been extended
with a CIM layer. Nevertheless, we believe that
business-oriented concepts and languages may also
have correspondents at the PIM level (such as, business
process models describing the logical structure of the
processes) and at the PSM level (describing the
realisation and/or orchestration of processes in terms
of, e.g., BPEL4WS, WSFL, XLANG, WSCI, and
BPML specifications [1]). Also notice that UML,
originally developed as a standard for software design,
is probably not the most suitable language to express
business-oriented models at the PIM level; specific
business process modelling languages, such as BPMN
[4], EPCs (implemented in ARIS) [26] or Amber
(implemented in BiZZdesigner) [7] are better equipped
for this purpose.

2.2. SOA and business rules
The central idea of SOA is that a service denotes the

functionality that is relevant to the user of the service,
without burdening the user with irrelevant details on
how the service is implemented. SOA therefore holds
the potential of allowing the development on-the-fly of
flexible applications that can adapt rapidly to rapidly
changing business needs by combining and reusing
existing services. However, the technological state-of-
the-art with respect to SOA (i.e., Web service
technology [23]) so far only partly realizes the SOA

potential. Design approaches incorporating the
business view and with clear architectural guidelines
are to a large extent still a subject of research.

One way to incorporate the business view in SOA is
to express this view formally in terms of business rules
and integrate it in the design and composition of
services. Using business rules to achieve this has the
advantage of allowing the decoupling of the business
logic (expressed as business rules) from business
operations, such as business processes and their
supporting applications. Furthermore, the effects of
rapid changes of the business logic (e.g., new laws and
regulation, change of the internal business policy or a
new business strategy etc.) can be thus isolated,
affecting the business operations only to a limited and
controllable extent (since business rules can be stored
and maintained separately from process models). In
this way, it becomes possible for organisations to
explicitly manage and maintain business rules, which
are no longer hidden and hard-coded in processes and
applications [10], and to achieve higher business
process and software agility. Also, such an approach
would enhance the reuse of business rules.

In this paper we argue that business rules are very
well positioned to be combined with or incorporated in
the model-driven design of SOAs. The idea of
combining business rules with SOA (in particular in
relation to web service technology) has been already
around for a while (e.g., [8], [21]). Currently, several
commercial software platforms (e.g., the Oracle SOA
suite, BEA Aqualogic, Web Methods etc.) support the
use of business rules for controlling services and the
orchestration of services. Thus, combining business
rules with SOA is to some extent technically already
possible. However the BR specification languages used
by these tools are in most cases proprietary and have
significant limitations. Furthermore, it should be noted
that combining SOA and BRs is only possible at the
platform-specific level, which does not yet fulfil the
promise of SOA being an architectural style in which
software design is driven by and fully aligned with the
business needs. Fulfilling this promise would assume
that the (partial) specification of both applications and
business rules is possible independent of specific
implementation platforms in an intuitively
understandable manner, accessible to the primary
user/creator of these specifications: the non-technical
business person. The idea of developing means to
specify business rules in nearly natural language is
therefore essential. To raise the level of abstraction at
which business rules are specified, the availability of a
model-driven approach for business rules is a
prerequisite.

76767676

2.3. MDD, SOA and business rules
Recently, the idea of applying the principles of

model-driven design not only to software but also to
business rules has captured the attention of
standardisation bodies such as the OMG and W3C.
Work is currently done to finalise standards for BR
specification languages in all MDA layers of models
(e.g., SBVR[18], RIF [25], PRR [19]). Furthermore,
results have been reported with respect to the definition
of model transformations between BR specification
languages positioned in the different MDA abstraction
layers (e.g., [22]). However, although the two model-
driven approaches (for business rules and for software
design) follow the same principle, they seem to evolve
in parallel and somewhat independently from each
other. In this paper we argue that they must be
combined and that they will eventually converge into a
model-driven approach for SOA in which business
rules constitute the expression of business logic and
through which the decoupling of the business logic
from applications can be effectively achieved. Thus,
the goal of this position paper is threefold: firstly, we
aim to provide an overview regarding the theoretical
and technological state-of-the-art in the areas of BR,
SOA and MDD; secondly, we propose a framework for
the integration of the three aforementioned approaches;
and, thirdly, we outline some open research directions
that emerge as a consequence of this integration.

3. Business rules

Business rules have received a lot of attention lately
since they have been recognised as being the ideal
vehicle for capturing and encapsulating business logic.
One of the problems most commonly mentioned by
practitioners is that any change in the business logic
leads to complicated and costly software maintenance
issues because the business logic is currently hard-
coded in applications. This is why the idea that BRs
would facilitate the separation between the business
and the application logic, and thus, enhance their
maintainability and agility, makes BRs very attractive
for the software architecture community.

3.1. Definition, characteristics and

classification

According to the Business Rules Group1 a business
rule can be defined as:
“A statement that defines or constrains some aspect of
the business. It is intended to assert business structure,

1 see http://www.businessrulesgroup.org/defnbrg.shtml

or to control or influence the behaviour of the
business.”

Business rules have (as indicated in [5]) a number
of distinctive features that motivated us to put them at
the foundation of this research:
• Business rules are “by and for business people, not

IT people”
• Business rules must be specified in a declarative

way in (almost) natural-languages accessible for
the business audience.

• Business rules are decoupled from processes,
procedures and applications.

• Business rules are atomic.
The above definition and characteristics of business

rules cover a wide range of business rule types. We
identify two main categories:
1. Rules that influence the operational process:

• Derivation rules (deduction rules and
computation rules) that are used to establish
information that is used in a process.

• Action rules that establish when certain
activities should place. Two variants of action
rules can be distinguished: condition-action
rules (production rules) and event-condition-
action (ECA) rules.

2. Constraints, which impose certain limitations to
the structure, behaviour or information of an
organisation or system:
• Structural constraints (deontic assertions).
• State constraints.
• Process constraints.

Constraints can be either static or dynamic. Static
constraints may lead to additional requirements for a
design, while dynamic constraints can only be checked
at ‘runtime’.

Figure 1 positions the different types of business
rules with respect to the architecture of an enterprise by
indicating which of the architecture domains the
respective rule types may partly capture.

Application

Business

Information StructureBehaviour

Derivation

rules

Structural
constraintsAction

rulesState

constraints

Process

constraints

Application

Business

Information StructureBehaviour

Derivation

rules

Structural
constraintsAction

rulesState

constraints

Process

constraints

Figure 1. Classification of business rule types

To this purpose we have used a simplified version
of the ArchiMate architecture framework [14].

77777777

3.2. Business rules specification standards and
languages

Several business rules specification standards,
ranging from the higher business level to the execution
level, are under development. There are two main
standardisation streams [9]. The first one, driven
primarily by the semantic web community and
academia (and delivered via the W3C), is related to
ontology standards and entails standards such as
RuleML [26] and Semantic Web Rule Language
(SWRL) [11] - the combination of OWL & RuleML.
The second one, primarily driven by the business rules
community and dominated by software suppliers and
consultants, is working on standards, such as SBVR
and PRR that are delivered via the OMG.

Since our research is mostly concerned with the
relation between business rule specification and model-
driven development, we discuss the second group of
standards in somewhat more detail. However, for an
exhaustive discussion of business rule and business-
rule related standards we refer to [9].

Aimed at business users, the Object Management
Group (OMG) proposes the standard for Semantics of
Business Vocabulary and Business Rules (SBVR)[17].
This includes constructs to express business rules of
different types in semi-natural language. Specifically
for production rules, the Production Rule
Representation (PRR) is under development [19]. For
business constraints at the operational level, OMG’s
Object Constraint Language (OCL) is a possible
candidate [20], although its notation might be too
complex to meet the requirement that it is readable for
all stakeholders. It is still very much an open question
how these standards and languages can be derived
from each other (although the OMG claims that a
mapping from SBVR to PRR and OCL is possible, see
[22]).

Most business rule management systems, however,
do not currently support these standards and use their
own proprietary rule languages. Figure 2 roughly
positions a number of standards and languages in the
layers in the Model Driven Architecture (MDA)
framework.

4. Model-driven rule-based specification of
services

As we said, business rules provide an easy-to-
understand, yet executable way to specify business
knowledge and decisions. However, it is unclear how
business rules and different types of design models can
be used in an integrated way. In this section we will
explain how the integration of business rules in the
model-driven design of service-oriented architectures

can be achieved. Furthermore, in Section 4.1 and
Section 4.2 we point out several ways in which
business rules can intervene in service design and we
address the integration of business rule specification
languages with modelling languages. The model-
driven and rule-based approach we are proposing is
explained in Section 4.3 and illustrated by means of an
example in Section 4.4. In Section 4.5 we investigate
the tools that may support our vision and we identify
some gaps and integration issues.

CIM

PIM

PSM

CIM

PIM

PSM

SBVR

PRR

ILOG
IRL

Blaze
SRL ...

OCL

Schematron
XCML

OWL RuleML SWRL

RIF

BR as
business
documentation

BR as
executable
artefacts

Figure 2. Business rules standards and languages in

the different MDA layers

4.1. Types of integration
One obvious way to combine business rules and

SOA (also embraced by several of the SOA platform
vendors) is to use them for controlling services and for
the orchestration of services. Orchestration languages
(e.g., BPEL) contain conditional control structures that
determine how the orchestration further unfolds (e.g.,
by invoking alternative services), based on information
that is available at runtime. The condition associated
with such a control structure in the orchestration
definition can be captured in a business rule [6].
However, most orchestration languages have
significant limitations with respect to their support of
business rules. In order to resolve this shortcoming
there are two options to be considered: (a) the
integration of existing orchestration languages with
business rules languages as well as of their supporting
tools (e.g., BEA’s Aqualogic with iLOG’s JRules) and
(b) the extension of orchestration languages with rule
specification constructs. The first option can be
achieved through a so called “service design and
execution environment” in which tools supporting the
design, analysis, visualisation and execution of both
services and business rules are integrated. An example
of such a service-oriented approach for the integration
of a BPEL orchestration engine with a rule engine,
using an enterprise service bus is proposed in [21]. A
possible architecture of such an environment is
depicted in Figure 3 and builds upon the solution we
proposed in [2].

78787878

service designers service providers service usersexperts

metadesignmetadesign design env.design env.

Simulation
tools Design

repository

Business
Rule

Engine

Search
engine

Model
Transformation

engine
Run-time
repository

service mngt.service mngt.

user management
AAA

monitoring &
resource Mngt.

ArchiMate
UML, OWL,

DSLs
OCL,SBVR,PRR,etc.
service composition

metamodelling
transformation spec.
ontology definition

abstract platform definition
tool services composition

Service mngt.
repository

metadesign
front-end

service
mngt.

front-end

service
front-end

design
front-end

notification
service

search/
discovery

orchestration
service

routing
service

BR
Repository

tool service bus

service designers service providers service usersexperts

metadesignmetadesign design env.design env.

Simulation
tools Design

repository

Business
Rule

Engine

Search
engine

Model
Transformation

engine
Run-time
repository

service mngt.service mngt.

user management
AAA

monitoring &
resource Mngt.

ArchiMate
UML, OWL,

DSLs
OCL,SBVR,PRR,etc.
service composition

metamodelling
transformation spec.
ontology definition

abstract platform definition
tool services composition

Service mngt.
repository

metadesign
front-end

service
mngt.

front-end

service
front-end

design
front-end

notification
service

search/
discovery

orchestration
service

routing
service

BR
Repository

tool service bus

Figure 3. Architecture of a service design and

execution environment
The second option should be resolved on a higher

abstraction level through enhancement of existing
specification languages. An example of this, in the case
of BPEL, is the work done by BPMI.org for the
development of the Business Process Extension Layers
(BPXL) standard that could eventually complement
BPEL by supporting transactions, business rules, task
management, and human interactions.

Besides controlling the orchestration of services,
one other way to use business rules in the context of
SOA is to provide and invoke them in the form of
independent web services. Thus, rule engines may
expose the effect of business rules resulting in decision
or derivation (web) services as depicted in Figure 4.

4.2. Relating non-functional aspects, business
rules and service design

Current software development approaches have a
strong focus on functional properties. Non-functional
aspects, e.g., security, cost and QoS, are often added as
an ‘afterthought’. However, it becomes more and more
accepted that they should be integral part of the
development process, from global architectural
descriptions to detailed specifications [12]. Once a
design has been produced, performance problems, for
example, can seldom be fixed by adding functions and
generally the solution lies in redesign. In the context of
SOA, where applications are generally a composition
of distributed services involving multiple parties,
issues such as service levels and security are
particularly important, since quantitative aspects drive
the actual SOA design: if there are several services that
meet the functional requirements, the non-functional
aspects usually determine the choice between the
alternatives.

Rules
Engine

Rule-base

Rule
service

A1

A4

A3

Process

A2

Legacy-
applications

Web
service

Web
service

Custom-made
applications

Process
layer

Service
layer

Rules layer

Backend applications

Database
Repository

Figure 4. Business rules exposed as a service

At the technical level, a number of standards exist
to specify quality attributes of services in Service
Level Agreements, e.g., WSLA. However, there is still
no consensus on the question whether services offering
the same functionality, but at different quality levels,
should be considered the same: e.g., does a service that
sends a message with a delay of one second
fundamentally differ from a service that sends the same
message with a delay of two days? From the business
point of view this type of differences are essential. At
business level, ”service levels” are derived from and
constrained by business rules (expressed in natural or
nearly natural language) that define the boundary
conditions in which the business is supposed to
function. It is natural to expect that business rules may
play a similar role at the application level and that
service level agreements may be derived from and
constrained by formally expressed executable business
rules. Thus, the following related issues are open to
research: (1) to relate business rules to SLA
specification and to investigate the extent to which this
relation can be automated and (2) to raise the level of
abstraction at which this relation is established at the
PIM or even CIM level, which extends the idea
addressed in [12] that analysis of non-functional
properties is applicable at all levels, from high-level
architectural descriptions to detailed designs in the
context of the Model-Driven Architecture (MDA)
paradigm for software development.

4.3. Model-driven rule-based design

The combination of MDA with SOA design is an
area that has been extensively researched in the
Freeband A-MUSE project (http://a-muse.freeband.nl),
which has proposed and validated a design
methodology in this sense [3]. As sketched already in

79797979

the two previous paragraphs, new interesting areas of
research emerge from the combination of the two
aforementioned paradigms and business rules, which

could reuse and extent the Freeband A-MUSE results.
As we have shown, business rules may not just play a
role in designing services and designing/controlling the
orchestration of services, but they could also play a
role in specifying and controlling the non-functional
properties of the resulting composite service (e.g.,
performance). Furthermore, we argue that this should
be possible throughout the whole stack of MDA
models, from high level computation-independent
models to platform-specific models. In MDA, model
transformations play a central role. Transformations
are used to maintain relationships between models at
different abstraction levels in the MDA model stack.
Typically, one of the languages from OMG’s Query-
View-Transformation (QVT) standard [17] is used as
the language to specify these transformations. The left-
hand side of Figure 6 (which is a “service-oriented”
version of MDA) illustrates this.

As in these top-down transformations information is
added (i.e., the lower-level models are refinements of
the higher-level models), it is still unclear to what
extent these transformations can be performed fully
automatically.

In Figure 6 a distinction has been made between the
design space, with models expressed in design
languages such as UML, business process modelling
languages or architectural description languages, and
the business rule space, with rules expressed in
special-purpose specification languages (see Section
3.2). The integration of design models and rule

specifications can also be seen as a special type of
(horizontal) model transformations – model merging
[14].

As the Figure 6 suggests, there is a strong symmetry
between the design space and the rule space: for any
design model, there may be a corresponding rule set
specification. Furthermore, a rule specified at a higher
abstraction level may be refined (i.e., transformed) into
a rule (set) specification at a lower abstraction level.

Platform-
independent

BR

Platform-
independent

BR

BR in (semi-)
natural language

Platform-
independent

service design
model

Platform-
independent

service design
model

Service
architecture

Platform-
specific service
design model

Platform-
specific service
design model

Service
code

Service
code

Platform
independent

model

Platform
independent

model

Computation
independent

model

Platform-
specific
model

Platform-
specific
model

Application
code

Application
code

Service
orchestration

Service
orchestration

Platform-
specific /

executable
BR

Platform-
specific /

executable
BR

+

+

+

Platform-
independent

BR

Platform-
independent

BR

BR in (semi-)
natural language

Platform-
independent

service design
model

Platform-
independent

service design
model

Service
architecture

Platform-
specific service
design model

Platform-
specific service
design model

Service
code

Service
code

Platform
independent

model

Platform
independent

model

Computation
independent

model

Platform-
specific
model

Platform-
specific
model

Application
code

Application
code

Service
orchestration

Service
orchestration

Platform-
specific /

executable
BR

Platform-
specific /

executable
BR

+

+

+

Figure 6. A model-driven view on the integration of

service design enhanced and business rules
In summary, the following types of model

transformations are relevant (see Figure 6):
• Vertical model-to-model and model-to-code

transformations in the design space as identified in
the MDA.

• Horizontal model merging transformations
between design models and rule specifications,

Damage
Claim

Insurance
Policy

Damage
occured AcceptRegister PayValuate

Assess
damage

Handle Claim

Assessment
required?

if amount of DamageClaim is at least EUR 1000
then Assess_damage must be performed

Damage amount
calculation

(1) if AssessmentReport exists
 then damageAmount is amount of AssessmentReport;
(2) if AssessmentReport does not exist
 then damageAmount is amount of DamageClaim

Assesment
Report

Payment
calculation

(1) if damageAmount is less than ownRiskAccess of InsurancePolicy
 then payment is EUR 0.00
(2) if damageAmount is at least ownRiskAccess of InsurancePolicy
 then payment is damageAmount minus ownRiskAccess of InsurancePolicy

Data constraint

amount of AssessmentReport must be
at most amount of DamageClaim

Figure 5. Service architecture enhanced with BRs

80808080

either at the architectural, platform-independent or
platform-specific level.

• Vertical transformations in the rule space going
from (and refining) rules expressed in near-natural
language to executable rule specifications.

4.4. Example

In order to illustrate our vision we consider the
example of a car damage claim handling service within
an insurance company. At the CIM level a service
architecture model is proposed (see Figure 5), using the
ArchiMate design language [14] that has been
supplemented with the business rule concept and
specializations hereof (for a summary of the notation
see Figure 8).

Or junction

Business
object

Business
event

Business
service

Business process

accesstriggering

Architecture modelling concepts (ArchiMate)

Business
constraint

Derivation rule

Action rule

Rule modelling concepts

Figure 8 Selection of ArchiMate notation extended

with BR concepts
At this level, business rules are specified in a near-

natural language. Note that the chosen example
contains both rules for controlling the orchestration of
services (action rules, e.g., Assessment required?) and
rules that can be implemented and used as independent
rule services (derivation rules, e.g., Damage amount
calculation, and constraints, e.g., Data constraint).

At the PIM level the service architecture has been
refined and transformed into:
• A behaviour model expressed in the BiZZdesign

modelling language Amber [7] which has been
annotated with rules specifications (see Figure 7)

• A class diagram also annotated with a data
constraint rule expressed as an OCL condition (see
Figure 9).

amount
Damage Claim

policyNr
ownRiskExcess
customerID

Insurance Polity

amount
Assessment Report

0..*

1

1
0..1

ocl:: AssessmentReport.amount <= DamageClaim.amount

Figure 9. Rule-annotated class diagram

Finally, at the platform-specific level, the previous
service design models can be transformed into the
BPEL specification, a fragment of which is depicted in
Figure 10 and realized using the Oracle SOA suite that
integrates among others a BPEL engine with a BR
authoring tool, engine and repository. Please note that
the decisions points in the process have been
externalised so-called decision services (e.g.,
“AssesmentDecisionServicePL”) wrapping business
rules stored in dictionaries in a rule repository (e.g., for
the abovementioned service see the “aboveLimit” rule
depicted in Figure 11).

register

reject

DamageClaim
incomplete

register

accept

accept

assess
damage

assess damage

valuate (not
assessed)

damageAmount =
DamageClaim.amount

valuate
(assessed)

damageAmount =
AssessmentReport.amount

valuate

pay

payment = damageAmount -
InsurancePolicy.ownRiskExcess

reject

damageAmount
<= ownRiskExcess

pay

DamageClaim.amount
>= EUR 1000

Handle claim

damage
occurred

DamageClaim AssessmentReport

InsurancePolicy

Figure 7. Rule-annotated behaviour

81818181

4.5. Gaps and integration issues in the tool
support for model-driven service-oriented and
rule-based design

It has been suggested in Section 4.1 that the vision
presented in this paper could be achieved through a
service design and execution environment in which
tools supporting the model-driven design (i.e.,
modelling and model transformation specification) and
execution of both services and business rules are
integrated.

We have conducted a survey in order to explore the
extent to which the existing technological state-of-the-
art could support the realization of the presented
approach. In the remainder of this section the main
conclusions of this survey (also summarised in [13])
are briefly presented.

In the design space:
• For the design of CIM-level models several

architecture modelling tools, such as BiZZdesign
Architect, Casewise, Metis etc. are available and
could be used;

• Also the design of PIM-level models is fairly well

covered by business process modelling (BPM)
tools, such as BiZZdesigner, Aris, etc.

Figure 11. Rule specified using the Rule Author

• At the PSM level several SOA development
platforms that incorporate process/service
orchestrations engines are also available on the
market. Few examples hereof are Oracle SOA
suite, Websphere, Cordys, etc.

Figure 10. BPEL screenshot fragment

82828282

• Finally, there are several so-called MDA tools
covering both the PIM and PSM levels, which
could be used to support the automated generation
of code and the specification of model
transformations: AndroMDA, OptimalJ, Arcstyler,
IKV++ Medini, etc.

In the rule space most of the existing Business Rule
Management Systems, such as ILOG JRule, Corticon,
MicrosoftBizTalk, Rule Burst, InRule, PegaRule, etc.,

can be positioned at the PSM level in our framework.
An extensive survey of these tools led us to the
following observations that are documented in [13]:
• most of these tools use proprietary BR

specification languages;
• the BR specification standards positioned in CIM

and PIM levels are not supported by tools, which
might be explained by the fact that they have been
just recently adopted or are under development;

• a lot of attention is paid recently to the integration
of BRMS tools with SOA tools (e.g., Oracle
Application Server or the combination Aqualogic -
iLOG);

• there is almost no support for expressing rules in
near-natural language;

• there is a strong focus on production rules.
When exploring the extent to which these tools

could be integrated to build a comprehensive service
design and execution environment we have identified
the following gaps:
• although both BRMS and BPM tools are both

capturing business knowledge, surprisingly

enough very limited attention has been paid to
their integration;

• integration between (a) MDA tools and SOA tools
and (b) between BPM tools and SOA tools
platforms is practically inexistent;

• and integration between modelling tools and BR
specification tools/standards at the CIM and PIM
level is extremely scarce.

5. Conclusions

In this paper we have presented our vision on what
is needed in order to be able to design service-oriented
applications in a model-driven and rule-based way.

This research also pointed out a number of areas
having significant research potential. In particular, we
believe more work is needed in the area of integration
between design languages and BR specification
languages in all layers of the MDA stack. Furthermore,
we argue that business rules could play a significant
role in the specification and analysis of non-functional
properties of services. Also, it has been suggested that
current MDA, SOA, BRMS and other modelling tools
can be used to partly support the model-driven
approach presented in this paper. However, several
integration issues and gaps have been identified that
lead us to two important conclusions: software
supporting the (model-driven) specification standards
of business rules is still missing and integration
between design and BR specifications has been only
partly realised, and only at the platform-specific level.
Finally, one important issue to be addressed is the
extent to which automated model and BR

Platform-
independent

BR

Platform-
independent

BR

BR in (semi-)
natural language

Platform-
independent

service design
model

Platform-
independent

service design
model

Service
architecture

Platform-
specific service
design model

Platform-
specific service
design model

Service
code

Service
code

Platform-
independent

model

Platform-
independent

model

Computation-
independent

model

Platform-
specific
model

Platform-
specific
model

Application
code

Application
code

Service
orchestration

Service
orchestration

Platform-
specific /

executable
BR

Platform-
specific /

executable
BR

+

+

+
Oracle AS,

Websphere,
Cordys,

BEA Aqualogic,
Etc.

Oracle AS,
Websphere,

Cordys,
BEA Aqualogic,

Etc.

ILOG JRule,
Corticon,

MicrosoftBizTalk,
Rule Burst,

InRule,
PegaRule,

Etc.

ILOG JRule,
Corticon,

MicrosoftBizTalk,
Rule Burst,

InRule,
PegaRule,

Etc.

AndroMDA,
OptimalJ,
Arcstyler,

Medina,
Etc.

AndroMDA,
OptimalJ,
Arcstyler,

Medina,
Etc.

BiZZdesign Architect,
Casewise,

Metis,
Etc.

BiZZdesign Architect,
Casewise,

Metis,
Etc.

BiZZdesigner,
ARIS,

Etc.

BiZZdesigner,
ARIS,

Etc.
?

?

?

?

Figure 12. Tool coverage: gaps and integration issues

83838383

transformations within and between the MDA layers
are possible.

Acknowledgments

The work presented in this paper is part of the
Freeband A-MUSE project (http://a-muse.freeband.nl),
which is sponsored by the Dutch government under
con-tract BSIK 03025.

References

[1] Aalst, W.M.P. van der , “Don’t go with the flow: Web

services composition standards exposed”, Trends &
Controversies Jan/Feb 2003 issue of IEEE Intelligent
Systems Web Services - Been there done that?

[2] Almeida, J.P.A., Iacob, M.-E. Jonkers, H., Lankhorst,
M., and Leeuwen, D. van, “An integrated model-driven
service engineering environment”, in Proc. 2nd
Interoperability for Enterprise Software and
Applications Conferernce (I-ESA'06), Bordeaux, France,
22-24 March, 2006.

[3] Almeida, J.P.A., Iacob, M.-E., Jonkers, H. & Quartel,
D., “Model-driven development of context-aware
services”, In: Frank Eliassen, Alberto Montresor (Eds.)
Distributed Applications and Interoperable Systems: 6th
IFIP WG 6.1 International Conference, DAIS 2006
Lecture Notes in Computer Science, Volume 4025,
pp.213-227, 2006, ISSN: 0302-9743, Springer-Verlag.

[4] BPMN, http://www.bpmn.org/.
[5] Business Rule Group, Business Rules Manifesto,

retrieved on April, 6-th, 2008 from
http://www.businessrulesgroup.org/brmanifesto/BRMan
ifesto.pdf.

[6] Charfi, M. Mezini, “Hybrid web service composition:
business processes meet business rules”, in Proc. 2004
International Conference on Service-Oriented
Computing (ICSOC’04), Nov. 2004, pp. 30-38.

[7] Eertink H., W. Janssen, P. Oude Luttighuis, W. Teeuw
and C. Vissers, “A business process design language” ,
in Proc. 1st World Congress on Formal Methods,
Toulouse, France, 1999.

[8] Geminiuc, K., “A Services-Oriented Approach to
Business Rules Development”, SOA Best Practices: The
BPEL Cookbook (Oracle white paper), retrieved on
April, 6-th, 2008 from
http://www.oracle.com/technology/pub/articles/bpel_co
okbook/geminiuc.html.

[9] Hall, J., “Developments in Business Rules Standards”,
Presentation at the 6th European Business Rule
Conference, 18-20 June, 2007, Dusseldorf, Germany,
retrieved on April, 6-th, 2008 from
http://www.ebrc2007.com/Uploads/Files/Hall_2c_20J_2
0presentatie.pdf.

[10] Hermans L., Lemahieu W., Vanthienen J., “Real agility
and transparency requires a combination of BPM/SOA,
EDA and BRA”, In Proceedings of the 6th European

Business Rules Conference, Düssseldorf (Germany),
Jun. 18-19, 2007.

[11] Horrocks, I., Patel-Schneider, P.F.,Boley, H., Tabet, S.,
Grosof, B., Dean, M., SWRL: A Semantic Web Rule
Language Combining OWL and RuleML, W3C Member
Submission 21 May 2004, retrieved on April, 6-th, 2008
from http://www.w3.org/Submission/SWRL/.

[12] Iacob, M.-E., Jonkers, H., "Quantitative analysis of
service-oriented architectures", International Journal of
Enterprise Information Systems, vol. 3, no. 1, Jan.-Mar.
2007, pp. 42-60.

[13] Jonkers, H., Doest, H. ter, Business rules voor
BiZZdesign, Technical report, Telematica Instituut,
Enschede, 2007.

[14] Kolovos, D.S., Paige, R.F., and Polack, F.A. C.,
“Merging models with the Epsilon Merging Language
(EML)”, Lecture Notes in Computer Science, Springer
Berlin / Heidelberg, Volume 4199, 2006, p. 215-229.

[15] Lankhorst, M. et al., Enterprise Architecture at Work -
Modelling, Communication, and Analysis, Springer,
2005.

[16] Miller, J. and J. Mukerji (eds.), MDA Guide Version
1.0.1, Object Management Group, Document Nr:
omg/2003-06-01, June 2003.

[17] Object Management Group, Meta Object Facility
(MOF) 2.0 Query/View/Transformation Specification,
Final Adopted Specification ptc/05-11-01, Nov. 2005,
http://www.omg.org/docs/ptc/05-11-01.pdf (1-2-2008).

[18] Object Management Group, Semantics of Business
Vocabulary and Business Rules Specification, OMG
Adopted Specification, 2006.

[19] Object Management Group, Production Rule
Representation: Request for Proposal, br/2003-09-03,
Sept. 2003. http://www.omg.org/docs/br/03-09-03.pdf.

[20] Object Management Group, UML 2.0 OCL
Specification, ptc/03-10-14, Oct. 2003.
http://www.omg.org/docs/ptc/03-10-14.pdf.

[21] F. Rosenberg, S. Dustdar, “Business Rules Integration
in BPEL – A Service-Oriented Approach”, in Proc. 7th
IEEE International Conference on E-Commerce
Technology (CEC’05), Munich, Germany, July 2005.

[22] Linehan, M.H., Semantics in Model-Driven Business
Design, IBM T.J. Watson Research Center, New York,
2006.

[23] Papazoglou, M. P., Web services: principles and
technology. Harlow: Pearson Prentice Hall, 2008.

[24] Raj, A., Prabhakar, T. V., Hendryx, S., Transformation
of SBVR business design to UML models, In
Proceedings of the 1st conference on India software
engineering conference, Pages 29-38, 2008.

[25] RIF Working group,
http://www.w3.org/2005/rules/wiki/RIF_WorkingGroup

[26] RuleML, http://www.ruleml.org/.
[27] Scheer, A.-W., Business Process Engineering:

Reference Models for Industrial Enterprises, Springer,
Berlin, 2nd ed., 1994.

[28] Soley, R. and the OMG Staff Strategy Group, Model
Driven Architecture, Object Management Group White
Paper, Draft 3.2, Nov. 2000.

84848484

