
Customizing Choreography: Deriving Conversations from Organizational Dependencies

Ayman Mahfouz, Leonor Barroca, Robin Laney, Bashar Nuseibeh

Computing Department, The Open University. Walton Hall, Milton Keynes, MK7 6AA, UK

amahfouz@gmail.com, {L.Barroca, R.C.Laney, B.A.(useibeh}@open.ac.uk

Abstract

Evolving business needs call for customizable

choreographed interactions. However, choreography

descriptions do not capture the problem-domain

knowledge required to perform the customization

effectively. Hence, we propose performing the

customization to models of organizational requirements

motivating the interaction. To facilitate the derivation of

the resulting choreography description, we propose an

alignment between conversations and organizational

dependencies. We employ the domain knowledge and

formal semantics of requirements models to find

customization alternatives and reason about them. Using

the alignment, we derive constraints on conversations

systematically from customized requirements models.

1. Introduction

A choreography description specifies the joint behavior

of a group of “roles” in an electronic interaction from a

neutral point of view [1]. Mutual obligations of the roles

are specified in terms of constraints on the sequences of

messages that can be exchanged between them [2]. Each

sequence of messages specified in a choreography

description constitutes a valid type of “conversation”.

Conversations taking place between actual participants

have to abide by the constraints specified on the behavior

of their corresponding roles. Ideally, a choreography

description will be deployed to a context that matches the

original context it was designed for. Realistically, a

deployment context will embody specialized business

requirements that have to be reflected as additional

constraints on the behavior of participants in that context.

It is naturally desirable to reuse the original choreography

description by customizing it for the new context rather

than creating one from scratch for every context.

Generally, for a particular context a number of

alternatives for representing the required customization

will exist. To choose the alternative that best satisfies the

additional requirements imposed by the context we need

to evaluate how well each alternative addresses the

stakeholders’ (i.e. participants) needs. However,

choreography descriptions are operational specifications

that do not capture problem domain knowledge necessary

for this kind of reasoning. In particular, physical activities

that the participants undertake during the interaction are

not necessarily reflected in choreography. To this purpose,

we propose an approach for performing the required

customization to models of organizational requirements

that motivate the interaction.

Organizational requirements models capture the

intentions of the interacting participants, the mutual

dependencies driving them to interact, and the activities

they undertake to fulfill their obligations, all of which are

essential knowledge required for performing the

customization. Hence, our approach uses the Tropos

framework [3] as it provides suitable notations for

representing and reasoning about this kind of problem-

level knowledge. We also make use of the formal

notations provided by Formal Tropos (FT) [4] for

describing and arguing about constraints that govern the

behavior of participants in the interaction.

We employ the formal semantics of FT in discovering

alternative ways for capturing specialized business needs

imposed by a deployment context. We put forward a

technique by which a systematic traversal of FT models

yields a set of potential alternatives for performing the

required customization. We then use problem-domain

knowledge embodied in Tropos models to reason about

the alternatives and select the one that best matches

stakeholders’ needs.

To obtain a customized choreography description, we

need to operationalize customizations made to

organizational requirements into constraints on

conversations. To enable automation and provide for

effective reasoning about correctness, we need means to

perform the operationalization systematically. For this

reason, central to our approach is a proposed alignment

between organizational dependencies and choreographed

conversations. The alignment allows us to derive

constraints on conversation from constraints specified in

the requirements models in a systematic way.

The rest of the paper is structured as follows: In section

2, we introduce the notion of choreography customization

and present the running example we use throughout the

paper. In section 3 we show how organizational

requirements are modeled in Tropos. Section 4 details our

proposal for aligning conversations with organizational

dependencies. Section 5 presents our proposed technique

for finding and reasoning about customization alternatives

to organizational requirements. We discuss related work

in section 6 then conclude and outline future work in

section 7.

2. Customizing choreographed conversations

A choreography description specifies a contract

between a group of interacting roles in terms of sequences

of messages they are allowed to exchange. For example,

consider an interaction between three roles: a patient, a

medical provider (MP), and an in insurance company

(IC). One potential interaction between these roles can be

choreographed as follows: A patient who needs to visit an

MP has to get an authorization from her IC first. When the

patient receives an authorization number from the IC, she

requests an appointment and provides her insurance

information to the MP. Before confirming the requested

appointment the MP verifies the patient info with the IC.

After getting the confirmation the patient visits the MP to

get examined by a doctor who later sends a prescription.

The MP then bills the IC and gets back an electronic

payment (Figure 1).

A choreography description represents a contract

between the interacting roles. Messaging between actual

participants that play the choreographed roles at runtime

has to abide by this contract

2.1. Choreographed conversations

The messaging sequence in a choreography description

is logically divided into conversations. A conversation is

“a set of communication events occurring at two or more

participants that all correspond to achieving the same

goal” where a “communication event” is a message sent or

received by a participant [5]. A particular event Es

initiates a conversation C while another event Ef signals

its termination. Other communication events belonging to

C may occur only in between Es and Ef. From the point

where it is initiated till it gets terminated C is said to be

“active”. For example, an “Appointment” conversation

involves four communication events; the patient sends a

request, MP receives the request, MP sends a

confirmation, and the patient receives it.

2.2. Choreography deployment context

A choreography description is deployed to a context

that binds a subset of the universe of possible participants

to the choreographed roles. Generally, a deployment

context may entail special business needs in addition to

what was originally specified. As a result, the original

choreography description needs to be customized to

impose additional constraints on the contract of the

interaction. For example, consider the need to customize

the medical interaction for a context that calls for

protecting MPs from slow-paying ICs. One possible way

to achieve this business need is by placing a limit on the

number of “Payment” conversations that can be active

between any IC-MP pair at one time. This may be

represented as a constraint on messaging where the MP is

disallowed from initiating any “Payment” conversations

with a particular IC if that IC reached their limit. It is hard

to rationalize this, or any other, choice for capturing the

customization without considering how well it satisfies the

business needs of the participants.

2.3. Choreography vs. requirements

To rationalize a customization, it is crucial to consult

problem-domain knowledge. However, choreography is

concerned with operational descriptions that embody little

of this knowledge. Choreography only addresses “how” an

interaction is realized in terms of message exchanges. On

the other hand, organizational requirements provide more

abstract descriptions that focus on the “why” and “what”

aspects of the interaction. Models of organizational

requirements motivating the interaction embody essential

knowledge about the problem domain including:

a) Motivations driving the participants to interact,

b) Inter-dependencies between the participants that

make it possible to achieve their goals from

interacting, and

c) Activities they undertake to fulfill their obligations

towards the interaction contract, including physical

activities not captured in a choreography

description.

This information is crucial to assessing and selecting

from among alternative ways for capturing the required

customization. Hence, we propose that customizations to

the interaction contract be made to models of

organizational requirements motivating the interaction,

rather than directly to the constraints on messaging.

Moreover, requirements models embody a precise

representation of participants’ behavior which allows for

formalized reasoning.

Patient

Insurance company

1. Request authorization

2. Authorize
treatment

3. Request appointment

6. Confirm appointment

4. Verify patient info

7. Prescribe medication

5. Verification
9. Payment

Medical provider

8. Bill

Figure 1. Choreographed medical interaction

3. Organizational requirements in Tropos

Tropos is a goal-driven, agent-oriented software

development methodology that covers a range of

representations including organizational requirements at

various levels of abstraction. Tropos provides a suitable

framework for representing the business context that

originates an interaction. Tropos models can be used to

capture goals of distributed actors, the mutual

dependencies that motivate them to interact, and the

activities they undertake to fulfill their goals. Furthermore,

the contract of the interaction can be captured using the

formal counterpart of Tropos, Formal Tropos (FT). The

behavioral obligations of participants can be specified in

FT using formal logic. First, we introduce Actor-

Dependency modeling in Tropos then we show how

behavioral dynamics of the model are described using FT.

3.1. Tropos – actor-dependency modeling

Tropos builds on the strategic dependency modeling of

the i* framework [6], originally intended to emphasize the

“why” aspect of requirements of distributed actors. At the

heart of i* are the concepts of actors, intentional elements,

and dependencies. i* Actor-Dependency (AD) diagrams

provide a notation for representing and analyzing the

organizational requirements motivating the interaction

between actors and the inter-dependencies that make the

interaction possible. Figure 2 is an AD diagram for the

high-level requirements motivating the medical

interaction. An actor is an active entity that performs

actions to achieve its goals. The patient, the MP, and the

IC are all actors. Intentional elements include goals,

softgoals, tasks, and resources. Intentional elements can

either be internal to an actor or define dependencies

whose fulfillment is delegated to other actors. An actor

may depend on another for fulfilling a goal, performing a

task, or making some resource available [7]. A goal is a

state of the world desired by one of the participants. For

example, the “Get Treated” goal represents the patient’s

desire to get cured from an ailment. A softgoal represents

an objective with no clear-cut satisfaction criteria. The

IC’s expectation that the patient does not abuse the

insurance is modeled via an “Honesty” softgoal. A task is

an abstraction of a course of action with well-defined pre-

and post-conditions. The activity performed by the patient

to visit the MP’s office is represented by the “Appear for

Exam” task. A resource is an informational or physical

entity. For example, the “Payment” resource represents

the compensation that the MP gets from the IC in return

for providing services to the patient.

 AD models can be successively refined into detailed

models that describe the interaction more concretely [8].

In the process, goals are refined into sub-goals and

eventually into tasks. Tasks can be further refined into

sub-tasks that are either implemented by software or

carried out by a human agent. Softgoals don’t have clear-

cut achievement criteria and will still exist in the refined

model [4]. Figure 3 is a refinement of Figure 2 where

model elements internal to an actor are refined inside the

dotted circle corresponding to that actor. Each actor takes

responsibility for carrying out their internal tasks. For

example, the “Get Treated” goal was refined into tasks to

get an authorization from the IC followed by getting a

Patient

Get Treated

Get
Authorized

Obtain
Prescription

Make
Appointment

Visit
MP

MP

Appointment

Prescription
Prescribe
Treatment

Profit from
Treatment

Collect
Payment

IC

Authorization
Authorize
Treatment

Payment Compensate
MP

Verification

Verify
Patient Info

Schedule
Appointment

Verify
Authorization

Appear for
Exam

Examine
Patient

Facilitate
Treatment

Receive
Prescription

Treat
Patient

Honesty

Figure 3. Refined AD diagram for the interaction

Refines

Facilitate
Treatment

Payment Authorize
Treatment

Verify Info

IC

Actor Soft goal

Task Goal Resource

Depender Dependee Dependency

Patient MP

Appear
for Exam

Obtain Prescription

Honesty

Get Treated
Profit from
Treatment

Figure 2. AD diagram for medical interaction

prescription from the MP. The latter is further refined into

tasks for setting up an appointment followed by visiting

the MP and then receiving a prescription from the MP.

Ordering of tasks is not represented in the diagram to

reduce clutter. In addition to detailing the activities

involved in the interaction, the refined model details inter-

dependencies between activities. It can now be seen from

Figure 3 that “Make Appointment” task relies on the MP’s

“Schedule Appointment” for providing the “Appointment”

resource.

3.2. Formal Tropos – behavioral modeling

FT allows for extending AD models with formal

annotations for precisely describing the behavior of model

elements and the relations between them. Each task, goal,

and resource in the model is represented as an FT class, of

which many instances may be created during an

“execution” of the model. FT classes and instances are

analogous to classes and objects in object-oriented

languages. An execution of an FT model specifies a

possible progression of the corresponding choreographed

interaction at runtime. Figure 4 shows the FT specification

for the “MakeAppointment” task class and the

“Appointment” dependency class, parts of which can be

automatically obtained from AD diagrams by applying

some heuristics [4].

Each class has a list of attributes which hold the state

of instances of that class as well associations with other

instances in the model. For example, the “Appointment”

class has an “ailment” attribute that specifies the type of

ailment the patient suffers from and a “makAp” attribute

that references the associated instance of

“MakeAppointment” class. The special attribute “Actor”

associates an intentional element internal to an actor with

the actor who performs it. For example, the patient is the

actor for “MakeAppointment”. The special attributes

“Depender” and “Dependee” represent the two

participants in a dependency class.

FT classes declare constraints that describe valid

behaviors of the model using typed first-order linear-time

temporal logic. An invariant constraint must hold

throughout the lifetime of any instance of the class

declaring it. For example, the “Appointment” dependency

class specifies that its depender is always the same as the

actor in the associated “MakeAppointment” task. More

relevant to our purposes is that FT specifies the lifecycle

of intentional elements by defining circumstances in

which they arise and conditions that lead to their

fulfillment. Creation and fulfillment conditions of a class

define when an instance of the class is created

(instantiated) and when it becomes fulfilled. The creation

of the goal or a dependency is interpreted as the moment

at which the actor begins to desire the goal or need the

dependency to be fulfilled. For a task, creation is the

moment when the actor starts to perform the task. The

creation condition has to be satisfied for an instance of a

class to be created. For example, an “Appointment”

dependency will be created if there is an instance of

“MakeAppointment” task that needs to be fulfilled.

Fulfillment condition marks the end of the lifecycle of

an intentional element. The meaning of the fulfillment

condition depends on what class declares it. Fulfillment

condition should hold whenever a goal is achieved, a task

is completed, or a resource is made available. For

example, the “MakeAppointment” task is fulfilled when

the associated “Appointment” dependency has been

fulfilled (i.e. the appointment information was received by

the patient) whereas an instance of “Appointment” is

fulfilled when the MP has completed the task of

scheduling an appointment. Note that an instance may

refer to itself using the keyword “self” and may refer to

the intentional element of which it is a sub-element using

the keyword “super”.

4. Deriving conversations from requirements

Central to our proposal is an approach to derive

customizations of a choreography description from

customizations made to organizational requirements. In

order to achieve that systematically, we need to relate

requirements concepts to those of choreography. An

immediate observation on Figure 2 is that each actor in the

AD diagram is operationalized into a role in a

choreography description but other relations are not

readily obvious. In what follows we will argue that the

lifecycle of a choreographed conversation can be tied to

that of a corresponding organizational dependency

instance. This alignment allows for straightforward

derivation of choreography descriptions from the Tropos

models. But first, we will present a classification of

dependencies to help scope our discussion.

Dependency Appointment

Depender Patient

Dependee MP

Attribute

constant makAp: MakeAppointment

constant ailment: AilmentType

Invariant makAp.actor = depender

Invariant ailment = makAp.ailment

Creation condition ¬Fulfilled(makAp)

Fulfillment condition ∃ sa:SchedulApp

 (sa.actor = dependee ∧ ailment = sa.ailment ∧ Fulfilled(sa))

Task MakeAppointment

Actor Patient

Attribute constant ailment: AilmentType

Creation condition ¬Fulfilled(super)

Fulfillment condition ∃ a:Appointment

 (a.depender = actor ∧ a.makAp = self ∧ Fulfilled(a))

Figure 4. Sample FT specification

4.1. Classification of organizational dependencies

Dependencies can be classified in at least three ways:

according to the type of the corresponding intentional

element, the physical/logical nature of the dependency,

and the mode of fulfillment.

According to the type of intentional element

dependencies can be classified into: goal, task, and

resource dependencies [7]. Goal dependencies are

abstractions that get successively refined into task

dependencies and/or resource dependencies, where the

fulfillment of the operational dependency contributes to

that of the goal. For example, the “Obtain Prescription”

goal of Figure 2 was refined into “Appointment” and

“Prescription” dependencies in Figure 3. Since

choreography is concerned with operational descriptions,

which include only task and resource dependencies, we

will focus on relating conversations to these two types.

The relation of conversations to goal dependencies may

then be inferred from examining how the goals are

refined, which we do not address here.

A dependency can also be classified as being either of

a physical or an informational nature. From the point of

view of the depender, a task or resource dependency is

said to be fulfilled when the depender detects a transition

in the state of the world at which a certain condition (i.e.

dependency fulfillment condition) becomes true. How the

depender detects the transition depends on the nature of

the dependency. A physical dependency is satisfied when

the depender has observed a physical occurrence that

indicates the fulfillment of the dependency. A patient

arriving at the MP’s office for examination is an example

of a physical occurrence that indicates fulfillment of

“Appear for Exam” dependency.

On the other hand, an informational dependency is

fulfilled when some required information has been made

available to the depender by the dependee. In a message-

oriented realization of the requirements, the information

becomes available when a message sent by the dependee

carrying the required information is received by the

depender. For instance, the “Authorization” dependency is

fulfilled when the patient receives a message containing

an authorization number thereby indicating treatment was

authorized. Similarly, the MP receives a message from the

IC verifying the patient info thereby indicating that

“Verify Patient Info” task was completed.

Physical activities that participants perform in the

course of the interaction are not necessarily reflected in

the choreography description in a direct way. Practically,

one cannot require a patient to send some electronic

message when she starts her car (or hops on a bus) to go

visit the MP! Since choreography specifies only electronic

messaging and not physical activities we only need to

consider informational dependencies for alignment with

conversations.

Finally, dependencies can be characterized by a

“mode” [4] which can be either “achieve” or “maintain”.

The lifecycle of an “achieve” dependency ends when it is

fulfilled, whereas that of a “maintain” dependency extends

over many conversations and possibly also over many

instances of the choreographed interaction. In what

follows we will only address the “achieve” dependencies

and leave the discussion of “maintain” dependencies for

later work.

4.2. How dependencies motivate conversations

Intuitively, a participant initiates a conversation when

interaction with another participant is required in order to

satisfy some business need. By initiating a conversation

the depender requests that the dependee perform some

task or provide some informational resource. When the

dependency has been fulfilled, the conversation terminates

as it has served the purpose it was initiated for. To argue

for this alignment we pose and answer these four

questions:

4.2.1. Can a dependency be fulfilled without a

conversation? By definition, an informational

dependency is fulfilled when the depender receives the

required information via a message sent by the dependee.

Without receiving that message, the depender would not

get the required information and the dependency will not

be fulfilled. That message delivers the required

information and terminates the conversation. Therefore,

the fulfillment of informational dependencies has to be

associated with an exchange that involves sending and

receiving at least one message, and hence a conversation.

4.2.2. Can a dependency be fulfilled without having

the depender initiate a conversation? Participants in a

choreographed interaction are independent entities. There

is no single control point and no globally-held state and

each participant is responsible for their own state and

internal flow control. Only the participant who requires

some resource to be furnished or a task to be performed

would know the point in time where this needs to happen.

Hence, it is normally the depender who has to initiate a

conversation. Furthermore, the depender typically has to

provide information to the dependee without which the

dependee cannot fulfill the dependency. For example, the

MP provides the patient info to be verified when

verification is requested from the IC.

4.2.3. Is there a reason other than the need to fulfill a

dependency that motivates initiating a conversation?

Every conversation is initiated to fulfill a certain business

need that requires exchanging information between

participants. In absence of such a need a participant

proceeds as an independent entity and does not interact

with others as there is no requirement motivating message

exchange.

4.2.4. Would a conversation terminate for a reason

other than that the dependency was fulfilled? A

conversation may terminate abnormally if one of the

participants fails to fulfill their obligations by providing a

wrong response or not providing the response in a timely

manner [9]. A conversation may also terminate if the need

to achieve the objective ceases to exist, i.e. the

dependency has been fulfilled in some other way or the

dependency is no longer required to be fulfilled, all of

which we consider to be “exceptional” conditions.

Otherwise, if a conversation was initiated to fulfill a

business need it terminates when the need has been

fulfilled. By definition, a conversation terminates when

the last communication event relevant to achieving its

objective has occurred.

4.3. The proposed alignment

From the discussion above, we deduce that an

informational task/resource dependency whose mode is

“achieve” can be systematically operationalized into a

single conversation which is initiated when the

dependency is instantiated and terminates when the

dependency has been fulfilled.

As an example, consider the operationalization of the

“Appointment” dependency into a conversation depicted

in Figure 5 using a service-oriented extension of

Tropos[8]. “Make Appointment” and “Schedule

Appointment” tasks at the ends of the dependency from

Figure 3 are each operationalized into tasks for sending

and receiving messages. In order to complete “Make

Appointment” task the patient performs “Request

Appointment” to send an “Appointment Request” message

then performs “Receive Confirmation” task to receive the

“Appointment Confirmation” message. Similarly, for

every appointment the MP schedules they have to perform

“Receive Request” followed by “Confirm Appointment”.

Note that solid arrows represent dependency rather than

message flow, so the “Receive Confirmation” task

depends on “Confirm Appointment” for receiving the

“Appointment Confirmation” message.

From the diagram and the associated FT fragments the

alignment between the dependency and the conversation is

manifested as follows. First, the instantiation of “Make

Appointment” triggers the instantiation of both an

“Appointment” dependency, as shown in Figure 4, as well

as a “Request Appointment” task. The instantiation of the

latter results in instantiating (and sending) an

“Appointment Request” message. Therefore, sending the

message that initiates the conversation causally follows

the instantiation of the dependency. Second, the

conversation terminates when the “Appointment

Confirmation” message is received, which also fulfills the

“Receive Confirmation” task. At the same time, when

“Receive Confirmation” is fulfilled the patient has

received the information necessary for fulfilling the

“Appointment” dependency. Therefore, dependency

fulfillment causally follows the termination of the

conversation. Similar diagrams and FT specification can

be constructed for other conversations.

The general pattern of alignment is that once a

dependency is instantiated the depender will initiate a

conversation C by sending a message representing Es of C.

Eventually a message containing the information required

for fulfilling the dependency is received by the depender,

where the message represents Ef that terminates C.

In the general case, it takes more than a single

request/response to fulfill a dependency. Realistically, in

response to a request for an appointment the MP will

provide a list of available time slots. By the time the

patient selects a time slot and sends a request to reserve it

the time slot may have already been taken. The patient

will then have to request another time slot and it may take

several messages back and forth before the dependency is

fulfilled. Discussing conversation refinement possibilities

is outside the scope of this paper.

Precedes

Patient MP

Make
Appointment

Request
Appointment

Receive
Confirmation
appointment

Appointment
Request

Appointment
Confirmation

Message

Schedule
Appointment

Receive
Request

Confirm
Appointment

Task MakeAppointment
Actor Patient
Fulfillment condition

∃ rc: ReceiveConfirmation

(rc.super = self ∧ Fulfilled(rc))

Task RequestAppointment
Actor Patient
Super MakeAppointment

Creation condition ¬Fulfilled(super)

Fulfillment condition ∃ ar:AppointmentRequest (Sent(ar))

Task ReceiveConfirmation
Actor Patient
Super MakeAppointment
Fulfillment condition

∃ ac:AppointmentConfirmation (Received(ar))

Figure 5. Appointment messaging tasks and associated FT fragments

Figure 6 relates Es and Ef of each of the conversation

types in the example to the instantiation and fulfillment of

dependencies respectively. The lifetime of each

dependency is represented by a horizontal line where the

start of the line represents the instantiation of the

dependency and its end represents dependency fulfillment.

An arrow pointing upwards represents a message sent and

an arrow pointing downwards is a message received, both

from the point of view of the depender in each

dependency. The horizontal axis represents time and the

dotted arrows show the causality between events.

Note that all conversations in our medical interaction

take place sequentially. If the patient was allowed to

request available appointment time slots before getting an

authorization, the “Appointment” and “Authorization”

conversations may then take place concurrently. We plan

to formalize this possibility in future work.

5. Customizing the requirements model

Having proposed an alignment between conversations

and dependencies we can now perform customizations to

the requirements model and use the alignment to derive

resulting constraints on the choreographed conversations.

The class of customizations to the requirements model we

cover here are incremental modifications to the FT

specification that further constrain the behavior of

participants.

Performing the customization at the requirements-level

benefits from the formality of the specification as well as

from problem-domain knowledge captured in the

requirements. We employ the formal semantics of the FT

specification for systematically finding alternatives for

representing the customization. On the other hand, we use

the domain knowledge, including physical activities not

captured in choreography, to guide the selection among

the alternatives.

Revisiting the example where it is required to protect

an MP from a slow-paying IC, we can now state the

required customization in stakeholder-friendly problem-

domain terms. At the requirements-level we can specify

that it is required to “limit the number of outstanding

payments” rather than “limit the number of active payment

conversations” which we had to deal with at the

choreography-level. An “outstanding payment” refers to

an instance of the “Payment” dependency that has not

been fulfilled.

One way to enforce this requirement is to customize

the FT model by constraining the creation of a “Payment”

when the specified limit has been reached. But better

alternatives for enforcing this requirement may exist. We

propose a technique for systematically finding and

selecting from among alternatives for performing this kind

of customization.

5.1. Finding customization alternatives

Several alternatives for constraining instantiation of a

dependency may exist. We present a technique for finding

these alternatives by traversing the FT model in a

systematic way. Furthermore, we use the problem-domain

knowledge captured in Tropos models for assessing the

viability of each alternative.

Assume X is the dependency class whose instantiation

is to be constrained. Assume the creation condition of X is

Cr(X) and the fulfillment condition of X is Fi(X). Let Θ

be the condition that needs to be true for the instantiation

of X to be allowed. Let S be the set of all possible

modifications to the FT model that enforce Θ, where

enforcing Θ implies prohibiting the instantiation of X

when Θ is false. We apply the following steps for

traversing the FT specification to populate S:

• Add to S the alternative in which the original Cr(X) is

modified to be Cr(X) ˄ Θ

• If the fulfillment of an instance of a class Y is

required for Cr(X) to be true, add to S the alternative

where the original Fi(Y) is modified to be Fi(Y) ˄ Θ

• Repeat the above for every class Z of which an

instance is referenced in Cr(X)

5.2. Selecting a customization alternative

The viability of each alternative we add to S is

assessed in light of available domain knowledge. The

following factors are considered when assessing an

alternative:

• Capability of participant: The participant responsible

for enforcing Θ must have at their disposal the

information required for detecting a violation.

• Risk to stakeholders: A participant P who would be

negatively affected if Θ is violated requires strong

Authorization

Prescription

Appointment

Verification

Payment

A
u
th
o
rizatio

n
 R

eq
u
ested

T
reatm

en
t A

u
th
o
rized

A
p
p
o
in
tm

en
t R

eq
u
ested

V
erificatio

n
 R

eq
u
ested

In
fo
rm

atio
n
 V

erified

P
rescrip

tio
n
 Issu

ed

 P
ay

m
en

t R
eceiv

ed

V
isit

P
ay

m
en

t R
eq

u
ested

A
p
p
o
in
tm

en
t C

o
n
firm

ed

Figure 6. Conversation-Dependency Alignment

assurance that the condition is always enforced. This

favors alternatives where the responsibility of

enforcement lies on P rather than on another

participant.

• Early detection: Alternatives that detect a violation

early are obviously advantageous.

• Rationale: Alternatives that are easier to rationalize to

stakeholders should be favored. We are currently

working to make the rationalization less subjective.

5.3. Applying the technique

Applying our technique to the example at hand, X is

“Payment” and Θ is WithinPaymentLimit(), which

denotes that the IC has not yet reached the allowed

number of open payments. FT fragments for the relevant

elements of Figure 3 are given in Figure 7.

Applying our technique for traversing the FT model

fragments the first alternative we find is to modify

Cr(“Payment”) to be:

¬Fulfilled (cp) ˄ WithinPaymentLimit(this.dependee)

Even though this customization does prohibit the creation

of “Payment”, it is inappropriate from the point of view of

the MP. This customization allows prescriptions to be

issued for which the IC will not be billed (since no

payments will be instantiated). The second step yields an

alternative involving modifying Cr(“Collect Payment”)

which suffers the same problem. The next alternative

involves modifying Cr(“Prescribe Treatment”) which is

still not satisfactory for the MP as it results in a model

where a doctor wastes his time performing the “Examine

Patient” task. The next alternative involves prohibiting the

Cr(“Examine Patient”) which is not satisfactory to the

patient since she will have already completed “Appear for

Exam” task. At that point in the interaction the patient has

already arrived physically at the MP’s office and denying

her the exam is unfair.

Continuing the traversal recursively we find several

other unsuitable alternatives. In particular, all alternatives

that lay the responsibility of keeping track of the number

of outstanding payments on the patient are clearly rejected

as this information is only known to the MP and IC.

Fully traversing the model yields three potentially

suitable alternatives:

1) Modify Fi(“Verification”) to prohibit the fulfillment

of “Verification” dependency,

2) Modify Fi(“Appointment”) to prohibit the fulfillment

of “Appointment” dependency, and finally

3) Modify Fi(“Authorization”) to prohibit the fulfillment

of “Authorization” dependency.

Alternative #3 is superior to #1 in that it brings the

interaction to an end earlier, thereby saving the patient’s

time by avoiding the wasted messaging involved in both

#1 as well as #2. It can also be argued that alternative #3

is easier to explain to the patient. Getting rejected from

the MP after being authorized for treatment by the IC,

which is the case in alternatives #1 and #2, is harder to

rationalize. On the other hand, alternative #2 can be

argued to be superior because it lays the responsibility of

enforcement on the main stakeholder of the customization,

i.e. the MP. The MP will be negatively affected if the

payment limit is exceeded and therefore it is desirable to

have them be responsible for detecting the violation and

ending the interaction.

Hence, it can be argued that an alternative that

combines #2 and #3 is the best choice. This choice has the

benefit of ending the interaction early while still allowing

the MP to protect against an IC that does not fulfill their

obligation of ending the interaction when payments limit

is reached. In general, alternatives in S are not mutually

exclusive and the desired customization can be achieved

by applying one or more of the alternatives.

5.4. Deriving constraints on conversations

Having customized the requirements model we need to

operationalize the customization to obtain a customized

choreography description. Applying the alignment

between dependencies and conversations we can deduce

how the customization made to the requirements model is

operationalized into constraints on conversations:

• Dependency creation to conversation initiation: A

condition constraining the creation of a dependency

prevents the depender, i.e. the participant responsible

for initiation the corresponding type of conversation,

from initiating a conversation.

• Dependency fulfillment to conversation termination: A

condition constraining the fulfillment of a dependency

prevents the dependee, i.e. the participant who sends

the last message in the corresponding conversation

type, from sending that message.

Dependency Payment

Attribute constant cp: CollectPayment

Creation condition ¬Fulfilled (cp)

Task CollectPayment

Creation condition ∃ pt:PrescribeTreatment

(super = pt.super.super ∧ Fulfilled (pt))

Task ExaminePatient

Creation condition

 ∃ afe:AppearForExam (patient = afe.patient ∧ Fulfilled (afe))

Task PrescribeTreatment

Creation condition ∃ ep:ExaminePatient

(super = ep.super ∧ Fulfilled (ep))

Figure 7. FT fragments used in traversal

Applying the first rule to alternative #3 above we

derive the additional constraint on the choreographed

interaction: if the IC receives an “Authorization Request”

when WithinPaymentLimit() is false the IC must not reply

to the patient until the condition becomes true, i.e. until

some payments have been made. Practically, rather than

leaving the patient waiting indefinitely for a reply, the

choreography specification may require the IC to provide

some “rejection” reply when WithinPaymentLimit() is

false, either immediately or after some specified timeout.

6. Related work

Choreography is drawing more attention especially in

the areas of representation[10], generation of process

skeletons [11], and verifying that the collective behavior

of a set of distributed processes is compliant with a

choreography description [2]. However, choreography

customization has not been adequately addressed. Early

work [12] on propagating changes in private interacting

processes gives choreography a second-class treatment

and also lacks the support for considering stakeholders

requirements for selecting among alternatives.

The Nile System [13] promotes customization of

choreographed interaction by capturing reusable semantic

constraints on the interaction in a knowledge base.

However, the whole approach is specific to RosettaNet

and its applicability is limited to XML representations.

Most of the work addressing customization of service

interactions has focused on adapting business process

orchestrations rather than choreography descriptions.

Rule-based approaches were suggested including [14], but

such descriptions have been found to be hard to

operationalize [15]. An aspect-oriented approach was

used to make processes easily adaptable [16] but, as most

other approaches are, it is closely tied to WS-BPEL.

More importantly, these approaches focus on design

and implementation technologies of the interaction. Little

attention is given to the business needs of the participants

and the organizational dependencies motivating the

interaction, which are crucial for reasoning about the

customization. Hence, we chose Tropos for our approach.

Its organizational requirements models provide formality

not found in current choreography technologies such as

WS-CDL [17]. UML activity diagrams, although a

popular choice for representing interactions, also lack the

formality [18] and the capacity to represent stakeholders’

intentions.

Tropos has been used to represent and validate

requirements for service-oriented interactions [8] but the

systematic derivation of choreographed conversations

from requirements models has not been addressed. The

techniques for finding and arguing about customization

alternatives are also unique to our approach.

Finally, whereas our approach bridges two levels of

abstraction, the approach in [19] maps between a business

constraints language and a choreography language that are

both operational event-based descriptions. Neither of the

two languages is suitable for representing or arguing about

stakeholders’ goals.

7. Conclusions and future work

The need to apply a choreography specification in

different contexts calls for systematic techniques for

performing the required customizations. Several

alternatives for achieving the desired customization will

exist and we have to rationalize the selection from among

them. To ensure the selected alternative meets the needs

of the participants we have to consult problem-domain

knowledge. As choreography is limited to operational

messaging specification, we proposed performing the

customization to organizational requirements models

motivating the interaction. Organizational requirements

embody essential problem-domain knowledge, including

specification of physical activities not captured in

choreography, which we used for reasoning about the

customization alternatives in stakeholder-friendly terms.

Moreover, we employed formal behavioral

descriptions of FT for systematically finding alternatives

to represent certain kinds of customizations. Through a

traversal of the FT model, our proposed technique yields a

set of potential modifications that can be applied to

capture the customization. We will investigate how the

proposed traversal can be improved in order to make the

resulting set of alternatives more complete.

Performing the customization to problem-level

concepts has the side benefit of hiding peculiarities of the

underlying choreography language. Nevertheless, there is

a need to operationalize customizations made to the

requirements model into constraints to be added to the

choreography description. For this reason, we proposed an

alignment between organizational dependencies among

actors in a Tropos model and conversations between roles

in a choreography description. We concluded that

conversation initiation/termination corresponds to

dependency instantiation/fulfillment. We applied the

alignment to derive constraints on conversations from

constraints on the lifecycle of corresponding

dependencies. We presented a classification of

dependencies that allowed us to limit the scope of our

discussion in this paper to classes of dependencies that are

most relevant to choreography. We are currently

expanding the scope of the alignment to cover a wider

range of relations between organizational requirements

and conversations. In particular, we are currently

addressing:

• How dependencies whose mode is “achieve” relate to

conversations.

• How to determine from the FT specification that

some conversations may take place concurrently.

• How failure semantics [9] of conversations affect

stakeholders’ goals.

• Whether the pattern for a conversation, e.g. request-

response; iteration; negotiation; etc. can be deduced

from the organizational requirements.

References

[1] C. Peltz, "Web Services Orchestration and Choreography,"

IEEE Computer, vol. 36, pp. 46-52, 2003.

[2] H. Foster, S. Uchitel, J. Magee, and J. Kramer, "Model-

Based Analysis of Obligations in Web Service Choreography,"

presented at AICT-ICIW’06, Guadeloupe, French Caribbean,

2006.

[3] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J.

Mylopoulos, "Tropos: An Agent-Oriented Software

Development Methodology," Journal of Autonomous Agents

and Multi-Agent Systems, vol. 8, pp. 203-236, 2004.

[4] A. Fuxman, L. Liu, J. Mylopoulos, M. Pistore, M. Roveri,

and P. Traverso, "Specifying and analyzing early requirements

in Tropos," RE Journal, vol. 9, pp. 132-150, 2004.

[5] A. Barros, G. Decker, M. Dumas, and F. Weber,

"Correlation Patterns in Service-Oriented Architectures," in

Fundamental Approaches to Software Engineering (FASE),

2007, pp. 245-259.

[6] E. Yu, "Towards Modeling and Reasoning Support for

Early-Phase Requirements Engineering," presented at 3rd IEEE

Int. Symp. on Requirements Engineering, Washington D.C.,

USA, 1997.

[7] E. Yu and J. Mylopoulos, "Understanding “Why” in

Software Process Modelling, Analysis, and Design," presented

at 16th International Conference on Software Engineering

ICSE'94, Sorrento, Italy, 1994.

[8] R. Kazhamiakin, M. Pistore, and M. Roveri, "A Framework

for Integrating Business Processes and Business Requirements,"

presented at Enterprise Distributed Object Computing

Conference (EDOC'04), Monterey, California, USA, 2004.

[9] F. Cristian, "Understanding fault-tolerant distributed

systems," Commun. ACM, vol. 34, pp. 56-78, 1991.

[10] X. Zhao, H. Yang, and Z. Qiu, "Towards the Formal Model

and Verification of Web Service Choreography Description

Language," presented at 3rd International Workshop on Web

Services and Formal Methods (WS-FM'06), Vienna, Austria,

2006.

[11] J. M. Zaha, A. P. Barros, M. Dumas, and A. H. M. t.

Hofstede, "Let’s Dance: A Language for Service Behavior

Modeling," presented at OTM (1), Montpellier, France, 2006.

[12] S. Rinderle, A. Wombacher, and M. Reichert, "On the

Controlled Evolution of Process Choreographies," presented at

22nd International Conference on Data Engineering (ICDE’06),

Atlanta, GA, USA, 2006.

[13] D. Trastour, C. Preist, and D. Coleman, "Using Semantic

Web Technology to Enhance Current Business-to-Business

Integration Approaches," presented at EDOC'03, Brisbane,

Australia, 2003.

[14] B. Orriëns and J. Yang, "A Rule Driven Approach for

Developing Adaptive Service Oriented Business

Collaborations," presented at IEEE International Conference on

Services Computing (SCC), Chicago, Illinois, USA, 2006.

[15] W. M. P. v. d. Aalst and M. Pesic, "DecSerFlow: Towards

a Truly Declarative Service Flow Language," presented at 3rd

International Workshop on Web Services and Formal Methods

(WS-FM'06), Vienna, Austria, 2006.

[16] A. Charfi and M. Mezini, "Aspect-Oriented Web Service

Composition with AO4BPEL," presented at The European

Conference on Web Service (ECOWS'04), Erfurt, Germany,

2004.

[17] A. Barros, M. Dumas, and P. Oaks, "Standards for Web

Service Choreography and Orchestration: Status and

Perspectives," presented at Business Process Management

Workshops, Nancy, France, 2006.

[18] V. Vitolins and A. Kalnins, "Semantics of UML 2.0

Activity Diagram for Business Modeling by Means of Virtual

Machine," presented at EDOC'05, Enschede, The Netherlands,

2005.

[19] A. Berry and Z. Milosevic, "Extending Choreography With

Business Contract Constraints," International Journal of

Cooperative Information Systems (IJCIS), vol. 14, pp. 131-179,

2005.

