
Model-driven development of a mediation service1

Dick Quartela, Stanislav Pokraeva, Rodrigo Mantovaneli Pessoab and Marten van Sinderenb
aTelematica Instituut

{Dick.Quartel, Stanislav.Pokraev}@telin.nl
bUniversity of Twente

{mantovanelir, M.J.vanSinderen}@ewi.utwente.nl

1 This work is part of the Freeband A-MUSE project (http://a-muse.freeband.nl), which is sponsored by the

Dutch government under contract BSIK 03025.

Abstract

Although service-oriented architectures offer real
benefits when pursuing application integration and
business flexibility, there are still no satisfactory solutions
for dealing with existing systems that need to cooperate
while their services have no perfect match. In the case of
incompatible services, a 'mediator' may be introduced
which resolves (semantic) interoperability problems by
intervening in the cooperation between systems. Building
mediators is currently often a manual process, resulting
in dedicated IT-driven solutions, with no concern for re-
use of process, models or code. This paper presents a
framework to guide the development of mediators, with
the following objectives: (i) uncover and capture the
actual interoperability problem that needs to be solved;
(ii) allow the involvement of non-IT (i.e., business)
experts in the development of the solution; (iii) support
evolution of the solution and re-use of results in case of
changing interoperability requirements; (iv) facilitate
automation of parts of the process. The framework is
based on service-oriented, model-driven and semantic
web techniques. Available tool support for the different
steps in the framework is indicated.

1. Introduction

Re-use and composability are considered as important
benefits of the service-oriented paradigm. These benefits
do however not come for free. Re-usable services need to
be identified, specified and, possibly, re-engineered. For
this purpose, standardization guidelines may be developed
that reflect best-practices and put general quality principles
like generality, orthogonality and parsimony into practice.
Composition techniques need to be able to apply
knowledge about existing services, in order to find
combinations of services that match some service request,
and select the best among alternatives. The idea behind

standardization of services is to facilitate the composition
process by reducing the search and solution space. The
realization of this idea is however difficult and takes time.
Instead, the composition and integration of services from
proprietary and legacy systems is currently common
practice for many companies.

Over the past years, service composition has emerged as
an active research area, which has resulted in various
approaches and techniques ([8],[25],[15],[1]). However,
the applicability of automated approaches is still limited
considering the kind of assumptions being made.
Furthermore, many approaches are defined at a
technology level and cannot easily be used with
alternative technologies.

This paper contributes to the area of service composition
by presenting a framework for service mediation. We
approach mediation as a service composition problem,
where two or more systems have to cooperate using non-
interoperable services. In order to resolve the differences
between these services, a mediator is designed. Two types
of mediation are considered: (i) data mediation to resolve
differences between the information models being used,
and (ii) process mediation to resolve differences between
the interaction protocols being assumed by the systems.

Nowadays, building mediators is mostly a manual
process performed by IT experts that consult business
domain experts only at the requirements elicitation phase.
Often, such projects fail due to miscommunication and
misinterpretation of these requirements, or the resulting
solutions come at a high price because of the manual labour
required to build and maintain them. To address these
issues we propose a framework for building mediation
solutions by using model-driven and semantic web
techniques. Model-driven techniques are used to lift the
design of the mediator from technology to (platform-
independent) model level, in order to clearly capture the
semantics of the problem and proposed solution, and
facilitate the involvement of business domain experts in the
design process. The use of semantic web technology allows

one to reason about the design and aims at finding (semi-
)automated techniques to construct the mediator.

This paper is further structured as follows. Section 2
analyses the mediation problem and describes an example
scenario. Section 3 presents our mediation framework,
including a method for composing mediators. Section 4
applies the method to the example scenario, with the
composition task being performed manually. Section 5
investigates ways to automate (parts of) the composition
task using semantic web technology. Section 6 discusses
related work. And section 7 presents our conclusions.

2. Mediation problem and scenario

This paper addresses the problem of integrating
existing systems, in particular business processes and
enterprise applications. Following the service-oriented
paradigm, we assume that such systems are defined in
terms of the services they provide to and request from
their environment, e.g., using WSDL. Furthermore, we
assume these services can not be changed.

2.1. Definition and approach

Unless systems have been designed with cooperation
in mind, it is unlikely that their services will match
perfectly. We distinguish two types of mismatches:
• data mismatches, which occur when systems use

different information models (vocabularies) to
describe the messages that are exchanged by their
services;

• process mismatches, which occur when systems use
services that define different messages or different
orderings of message exchanges.

Service mediation aims at resolving these mismatches.
Webster’s defines mediation as “to act as intermediary
agent in bringing, effecting, or communicating” and “to
interpose between parties in order to reconcile them”.
Correspondingly, we define service mediation as “to act
as an intermediary agent in reconciling differences
between the services of two or more systems”. The need
for an intermediary, further on denoted as mediator, is
imposed by the assumption that the mediated services can
not be changed. The definition abstracts, however, from
whom will perform the mediator role, e.g., some of the
existing systems or a ‘third’ system.

We approach the design of a mediator as a
composition problem: each service that is requested by
some of the involved systems has to be composed from
one or more services that are provided by the other
systems and, possibly, by the same system. This
corresponds to fixed public process composition as
described in [5], with the composition (integration)
process acting as a mediation broker.

Figure 1 illustrates our approach for the case of two
systems. Mediator M offers a mediation service that
matches requested service S1 of system A by composing
services S3 and S4 that are offered by system B. The
mediator should provide such a mediation service for
each service that is requested by systems A and B.

Figure 1. Service mediation as service composition

A mediation service as defined above provides
interoperability for each individual service that is
requested by some system. This may however not
guarantee interoperability in scenario’s where multiple of
these requested services have to cooperate. Therefore, our
approach allows one to model this cooperation and
validate whether it satisfies the goals for integration.

2.2. Scenario

To illustrate our approach we present a scenario based
on the Semantic Web Service (SWS) Challenge [27]. This
challenge provides a standard set of problems, based on
industrial specifications and requirements.

A manufacturing company called Moon uses two
back-end systems to manage its order processing: a
Customer Relation Management (CRM) system and an
Order Management (OM) system. Moon has signed an
agreement with a customer, called Blue, to exchange
purchase order messages in RosettaNet PIP 3A4 format.
Currently, the back-end systems of Moon use a
proprietary data model and interaction protocol that differ
from the ones used by RosettaNet. Figure 2 depicts the
scenario.

Send
POR

Receive
POC

Receive
POR

Send
POC

Create new
order using

ICID

Send
line item

Receive
line item

confirmation

Request
identification

Send
close order

Identify
customer

Receive
new order

request

Receive
line item

Receive
close order

Send
line item

confirmation

Moon CRM

Moon OMMediator

(M6) order id

(M10) item no

POR = Purchase Order
 Request
POC = Purchase Order
 Confirmation

Blue

(M1) RosettaNet
PIP3A4 POR

(M2) ack

(M13) RosettaNet
PIP3A4 POC
(M14) ack

(M3) search string

(M4) customer
object

(M5) customer id

(M7) line item
(M8) ack

(M9) order id

(M12) ack

(M11) line item
confirmation

ICID = Internal Customer ID
Figure 2. Mediation scenario

The interaction between both systems is initiated by
Blue who sends a PIP 3A4 Purchase Order Request

message (M1). PIP 3A4 enables a buyer to issue a
purchase order and to obtain a quick response from the
provider that acknowledges which of the purchase order
product line items are accepted, rejected, or pending. For
brevity we only show excerpts of some messages, in this
case of M1:

<?xml version="1.0" encoding="UTF-8"?>
...
<fromRole>
 <PartnerRoleDescription>
 <ContactInformation>
 <contactName>
 <FreeFormText>Mr Blue</FreeFormText>
...
<PurchaseOrder>

 <ProductLineItem>
 ..
 <LineNumber>1</LineNumber>
 <OrderQuantity>
 <requestedQuantity>
 <ProductQuantity>1</ProductQuantity>
 </requestedQuantity>
 </OrderQuantity>
 <ProductIdentification>
 <GlobalProductIdentifier>00614141000012</GlobalProductIdentifier>
 </ProductIdentification>
 <requestedUnitPrice>
 <FinancialAmount>
 <GlobalCurrencyCode>EUR</GlobalCurrencyCode>
 <MonetaryAmount>1067.54</MonetaryAmount>
 </FinancialAmount>
 </requestedUnitPrice>

The Purchase Order Request message must be
synchronously confirmed by an Acknowledgement of
Receipt message (M2). According to the RosettaNet
standard a Purchase Order Request is sent using a single
message. However, in order for Moon to be able to
process a purchase order, several steps have to be made.

First, the customer needs to be identified by sending a
search string to Moon’s CRM system (message M3),

<SearchCustomer>
<searchString>Blue Company</searchString>
</SearchCustomer>

which replies by sending a customer object that matches
the search string (message M4).

<SearchCustomerResponse>
<customerId>1</customerId>
<roleCode>Buyer</roleCode>
<contactName>Mr John Smith</contactName>
<email>john@example.org</email>
<telephone>+31 1234567890<telephone>
<businessName>Blue Company<businessName>
<postalCode>1234AB</postalCode>
<city>Amsterdam<city>
<street>Blue street 12</street>
<countryCode>Netherlands</countryCode>
</SearchCustomerResponse>

Next, the creation of a new order is requested by
sending the customer id (message M5) to Moon’s OM
system, which returns the id of the newly created order
(message M6). After a new order is created, Moon’s OM
system expects all order lines to be added one by one
(message M7).

<addLineItem>
<LineItem>
<orderId>123</orderId>
<item>
<articleId>456</articleId>
<quantity>1</quantity>
</item>
</LineItem>
</addLineItem>

These messages are acknowledged synchronously
(message M8) by sending the order id and an item id.
Once all order lines have been added, Moon OM is
requested to close the order (message M9), and returns the
number of items that has been received (message M10).
Subsequently, Moon’s OM system confirms the status of
each order line (message M11), which is acknowledged
synchronously (message M12) by the mediator.

After all order lines have been confirmed a RosettaNet
PIP3A4 Purchase Order Confirmation message (M13) is
sent to Blue and confirmed synchronously by an
Acknowledgement of Receipt message (M14).

3. Mediation framework

As part of the A-Muse project [2], a mediation
framework is being developed to support the design,
implementation and validation of mediation services. This
framework consists of the following elements:
• a conceptual framework for modelling and reasoning

about services, called COSMO [22];
• languages to express service models using COSMO,

which currently include ISDL [11],[24], OWL [14],
SPARQL [20] and Java;

• techniques to analyse the interoperability and
conformance of service models [23];

• transformations from service design to service
implementation level [7], [21], and vice versa;

• tools supporting the editing, analysis and
transformation of service models [21]; and

• a method for developing mediation services.
This paper focuses on describing and illustrating our

method for service mediation. The method uses and
relates the other elements of the framework listed above,
which are only explained here as far as required for a
proper understanding of the paper. This includes a brief
description of how services are modelled in the second
part of this section.

3.1. Method

Figure 3 illustrates the steps that constitute our method
for service mediation. For convenience, the integration of
two systems is considered, but the same steps apply to the
case of multiple systems.

Figure 3. Method for service mediation

In general, the services of systems that have to be
integrated are described at implementation (technology)
level, e.g., using WSDL. The method starts with “lifting”
these service descriptions to design level, by abstracting
from implementation specific information. Such
information may unnecessarily complicate the design of
an integration solution, and therefore hinder the
participation of business domain experts that are
knowledgeable about the integration requirements at
business level, but don’t (want to) know how these
requirements are implemented at IT level. In terms of the
MDA (Model Driven Architecture) this means that we
transform the service PSMs (Platform Specific Models)
of the systems being integrated to their respective service
PIMs (Platform Independent Models).

Subsequently, the service PIMs may be semantically
enriched by adding information that could not be derived
(automatically) from the service PSMs. For example, a
service PSM may be complemented with some text
document that describes part of the service in natural
language. Alternatively, interviews or even code
inspection may be used to obtain information that is
missing from the service PSMs. The purpose of
semantical enrichment is to make models precise and
complete, which in turn is necessary to enable formal
reasoning about and, potentially, the (semi-) automated
generation of the integration solution.

The next steps represent the design, validation and
implementation of the integration solution, i.e., the
mediator PIM. The design step can be split into two parts:
(i) the design of an information model, and (ii) the design
of a behaviour model for the mediator. The purpose of the
information model is to enable data mediation, by
defining a mapping between the vocabularies of the
systems being integrated. The purpose of the behaviour
model is to enable process mediation by defining a
mapping between the services that are requested and the
services that are provided by the systems being integrated
(see section 2.1).

The validation step is used to analyse whether
interoperability is obtained by the proposed integration
solution. This step could be omitted in case one would
support the automated composition of mediators. But for
now this seems an ideal that can not been realized yet.

In the final step, the mediator PIM is transformed to an
implementation, the mediator PSM.

3.2. Service modelling

We define a service as the establishment of some
effect (or value) through the interaction between two or
more systems. The COSMO framework defines concepts
to support the modelling, reasoning and analysis of

services. These concepts are structured along three axes
as depicted in Figure 4.

Figure 4. The COSMO framework

The horizontal axis distinguishes four aspects, i.e.,
information, behaviour, structure and quality,
representing categories of service properties that need to
be modelled. This classification corresponds to aspects
found in frameworks for enterprise architectures like
GRAAL [9] and ArchiMate [13].

The vertical axis distinguishes three global abstraction
levels at which a service can be modelled:
• a goal models a service as a single interaction, where

the interaction result represents the effect of the
service as a whole;

• a choreography refines a goal by modelling a service
as a set of multiple related, more concrete
interactions;

• an orchestration implements a service using a central
coordinator that invokes and adds value to one or
more other services.

We note that these abstraction levels should not be treated
as absolute levels, but can again be considered in more or
less detail, resulting in sub-levels of abstraction.

The diagonal axis distinguishes the roles of the
systems involved in a service: the user, provider and
integrated role. The integrated role abstracts from the
distinction between a user and provider by considering
interactions as joint actions, thereby focusing on what the
user and provider have in common.

This paper mainly considers choreographies and
orchestrations from the behaviour and information aspect,
and by distinguishing between a user and provider role.
Furthermore, services are modelled close to the level at
which they are described using WSDL, while abstracting
from technology details. Therefore, and for brevity, we
only explain COSMO’s operation concept below and its
notation using ISDL. For an explanation on concepts
supporting the modelling and design of services at more
abstract levels we refer to [22].

Figure 5(i) and (ii) depict the operation concept and its
interpretation in terms of a flow chart-like notation,
respectively. An operation represents a composition of
three instances of message passing: the sending (invoke)

and receipt (accept) of an invocation, followed by either
the sending (reply) and receipt (return) of the invocation
result, or the sending (fault) and receipt (catch) of a fault
message. The use of the reply-return and the fail-catch
message passing instances are optional, i.e., either one or
both parts may be omitted; e.g., to model one-way
operations.

Figure 5. Operation concept

Figure 6 depicts an example ISDL model of an order
handling choreography consisting of four operations
(inspired by the scenario of section 2.2): create represents
the creation of an order, addItem represents adding an item
to the order, close represents closing the order, and
confirmItem represents the confirmation of the status of an
added item. Operations addItem and confirmItem are
modelled as repetitive operations (represented by double
border lines). A textbox defines the parameters associated
with an operation, including the constraints on these
parameters (between square brackets). Constraints can be
preceded by the symbols “1:” or “+:” to distinguish
between constraints for the first or next occurrences of an
operation repetition, respectively. The parallelogram
shaped boxes define behaviour variables, also called
behaviour items. For example, behaviour Customer defines
two variables: o representing the order to be sent to the
retailer, and id representing the id of the current order line
item being sent. Each occurrence of operation addItem
sends the next order line item (represented by parameter it
and constraint it = o.getItem(id)), and receives the line item
id as acknowledgement in return. For this purpose, the
value of variable id must be 0 for the first occurrence and
is increased by 1 for each next occurrence. The retailer
adds each received item to its own behaviour variable o as
represented by constraint o.putItem(id, it).

Customer Retailer

Order o

create

reply: long orderId
[orderId = createId();
o = new Order();]

accept: Item it
reply: long id
[id = it.getId();
 o.putItem(id, it)]

reply: int itemNo
[itemNo = o.itemSize()]

invoke: String status, long id
[1: id = 0; +: id = id + 1;
id < close.itemNo;
status = o.getItem(id).getStatus()]

addItem

close

confirmItem

close

return: long orderId
[o.setId(orderId)]

invoke: Item it
[1: id = 0; +: id = id + 1;
 it = o.getItem(id);
 id < o.itemSize()]
return: long itemId

Order o,
long id

addItem

create

confirmItem

return: int itemNo

accept: String status, long itemId
[1: id = 0; +: id = id + 1;
 o.getItem(itemId).setStatus(status);
 id < close.itemNo]

Figure 6. Example choreography

The repetition of addItem terminates once all line items
have been added, as represented by constraint id <
o.itemSize(), upon which the customer wants to execute
operation close. Since the retailer does not know when all
line items have been added, a disabling relation
(represented by a black diamond on top of a horizontal
bar) is used to model that it is willing to execute both the
close and addItem operation after an order has been
created, but the occurrence of new addItem operation
instances is disabled (disrupted) as soon as the close
operation occurs.

4. Application of the framework

This section illustrates the application of the mediation
framework to the example scenario of section 2.2. For
this purpose, the method of section 3 has to be made more
concrete by deciding on, amongst others, the type of
PSMs that are considered, the languages to be used at
PIM level, and related to these choices the
transformations and analysis techniques that are needed,
c.q. have to be developed. This means that in time the
mediation framework may be populated with different
instances of the mediation method, depending on the type
of integration problems that have been addressed.

4.1. Step 1: Abstract from PSMs to PIMs

In this step, we derive the platform independent
information and behaviour models of the services of Blue
and Moon, which are specified by WSDL documents.
Figure 7 illustrates this step. The behaviour models are
represented using ISDL, and the information models are
specified using a combination of UML class diagrams
(for visualization) and Java (for execution).

Figure 7. Abstract from PSMs to PIMs

This step is automated using the WSDL import
function of the Grizzle tool [11]. This tool provides an
integrated editor and simulator for ISDL, and uses Java to
represent and execute operation parameter constraints
(see section 3.2). The WSDL import function enables a
user to import a WSDL specification by providing the
URL of this specification. The user can choose to either
import a single operation, single port type or the complete
WSDL definition. Furthermore, the user may choose
whether the web service should be considered from a

client or server perspective. Accordingly, a behaviour
model is generated that represents the user (client) or
provider (server) role of the web service, in terms of
operation calls or operation executions, respectively. In
addition, an information model is generated consisting of
Java classes that represent the information types that are
referred to by the operations in the behaviour model. The
transformation of WSDL to ISDL and Java is
implemented using JAXB and JAX-WS ([12]). The
EclipseUML tool ([10]) is used to visualize and
manipulate the information model using UML class
diagrams.

As an example, Figure 8 depicts the ISDL behaviours
of Blue and Moon’s OM system that are generated from
the corresponding WSDL descriptions. Besides the
operation parameters, the text box of operation
createNewOrder shows the stereotype information that is
added to the operation definition. This information can be
used to execute the modelled web service as part of the
simulation of an ISDL model (see section 4.4).

Figure 8. ISDL generated for Blue and Moon OM

4.2. Step 2: Semantic enrichment of PIMs

The WSDL descriptions of the example scenario
define the services that are provided by Blue, Moon and
the Mediator, in terms of their operations and the types of
the input and output messages of these operations.
However, WSDL does not define the interaction
protocols, i.e., the possible orderings of the operations.
Therefore, to derive the complete PIMs of Moon and
Blue, we have to use and interpret the textual descriptions
that are provided with the integration case (the boxes
labelled “Prose” in Figure 3). This is a manual process.

Firstly, the behaviour models that were generated in
step 1 are completed by defining relations between
operations. These relations can be derived from the
scenario description. This includes the explicit modelling
of the “loops” in the schema of Figure 2, representing the

repetitive process of adding and confirming line items.
Figure 9 depicts the enriched model of the service
requested by Blue and the service provided by Moon OM.

Secondly, the information model may be enriched by
interpreting the scenario description. A WSDL
description defines the syntax of the messages that are
exchanged, but provides no information about their
semantics. This semantics can be made explicit by
defining new classes and use these classes to relate the
existing (generated) classes. Furthermore, the meaning of
classes and their properties may be defined by a mapping
onto some domain-specific ontology, e.g., the Universal
Data Element Framework [28]. The benefits of these
types of semantical enrichment can however only be fully
exploited when using a language that allows one to
explicitly model and reason about the semantics of classes
and their properties. Section 5 introduces and explores the
use of such a language, i.e., OWL, to represent
information models.

Figure 9. Enriched models of Blue and Moon OM

4.3. Step 3: Design of the mediator PIM

In this step we design the behaviour and information
model of the Mediator.

The information model of the Mediator is constructed
from the union of the information models of Blue and
Moon. For the same reason as explained at the end of the
previous section, this information model is not enriched
to define the relationships between the classes and
properties from the information models of Blue and
Moon, except for informal annotations that may explain
these relationships using natural language. Section 5
discusses a formal approach in defining such relationships
using OWL. The information model is extended,
however, with classes to represent status information of
the Mediator, such as the set of order line items that have
been confirmed so far.

The construction of the behaviour model of the
Mediator requires the definition of:
1. the services provided and requested by the Mediator;
2. the composition of these services by relating the

operations of the services;
3. the data transformations among the parameters of the

operations.

Step 1: Provided and requested services. In the
example scenario, the Mediator provides one service that
must match the service requested by Blue. The service
provided by the Mediator can initially be defined as the
‘complement’ of the service requested by Blue. The
complement of a service is obtained by changing each
operation call into an operation execution, and vice versa,
while keeping the same parameters (see Figure 10). In
addition, the relations among the operations and the
parameter constraints may (initially) be retained.
Analogously, the services that are requested by the
Mediator can be obtained by taking the complement of
the services that are provided by Moon. Figure 10 depicts
the resulting skeleton of the Mediator.

Figure 10. Skeleton of Mediator

The retained relations and parameter constraints may
be refined in the next design steps, respectively. For
example, the relation between operations receiveRequest
and receiveConfirmation has to be implemented by the
orchestration of the services of Moon. As another
example, the disabling relation between addLineItem and
closeOrder has already been replaced by an enabling
relation, since the order should be closed only after all
line items have been added (cf. Figure 6).

Step 2. Composition of services. The design of the
Mediator behaviour can now be approached as the search
for a composition of the requested services that conforms
to the provided service. The structure of this composition
is defined by the (causal) relations among the operations.
Most of these relations can be found by matching the
input information that is required by each operation to the
output information that is produced by other operations.
For example, operation search of Moon’s CRM service
requires as input a search string that can be matched to
some element of the customer information that is part of
the purchase order information received by operation
receiveRequest. This implies that a relation should be
defined between receiveRequest and search (see Figure 11).

Figure 11. Design of the mediator

Matching input and output information is however
insufficient to find all relations. For example, although
both operations receiveRequest and search provide
information that matches the input required by operation
createNewOrder, the information that is provided by
receiveRequest should be used. This hidden assumption
has to be made explicit in the behaviour model.

Furthermore, specific processing logic may have to be
designed manually. For example, the process of receiving
confirmations from Moon’s OM system depends on
information from operations receiveRequest (the items to
be confirmed), createNewOrder (the order id) and
addLineItem (the item id used by Moon), and depends on
internal status information of the Mediator, i.e., the
knowledge that operation closeOrder has occurred and the
set of confirmations that has been received so far. Even
when these information requirements are given, the

relations involved in the repetitive processing of
confirmations can not be derived easily, and have to be
designed explicitly.

Step 3: Data transformations among parameters. The
definition of the data transformations among operation
parameters can be approached as a refinement of the
relations among operations defined in the preceding step.
These relations define for each operation on which other
operations it depends, and therefore which output
parameters can be referred to (i.e., used) in the generation
of its input parameters. The data transformations then
define how the value of each input parameter is generated
from the values of the output parameters and, possibly,
some internal state information of the Mediator. This
involves the definition of translations between the
vocabularies used by Blue and Moon. However, these
translations only need to address those parts of the
vocabularies that are related via the relations defined in
step 2. For example, all data transformations of the
Mediator have been defined in a class called Mapping. The
data transformation between operations receiveRequest and
search has been defined by method por2search() as
described in the text box associated with operation search.
This method gets as argument the value of behaviour
variable Pip3A4PurchaseOrderRequest por. This value is
assigned after operation receiveRequest has received the
purchase order request from Blue.

4.4. Step 4: Validation of the mediator PIM

In this step, the design of the Mediator is validated by
means of the following analyses:
• assessment of the interoperability between the

services of Blue, the Mediator and Moon;
• simulation of the interacting behaviour of these

services.

Interoperability assessment. A method for
interoperability assessment has been presented in earlier
work [23]. This method consists of two steps. The first
step checks whether each individual interaction can
establish a result. This check is based on the abstract
interaction concept of COSMO, which allows complex
negotiations to be modelled in which the involved
systems may define their own, possible conflicting,
constraints on the interaction result. In this case, however,
the interactions are operations, which have been designed
such that the parameter types at the sending and receiving
side are the same, and the parameter values are
completely determined by the sending side.

The second step checks whether the service
composition as a whole can establish a result. For this
purpose, the interacting behaviour among Blue, the

Mediator and Moon is viewed from an integrated
perspective, where operations are viewed as joint actions,
and subsequently transformed to a Coloured Petri Net.
From this net we construct the corresponding occurrence
graph to perform reachability analysis, using the
CPNTools [6]. This analysis allows us to check whether
operations can be reached, and in a certain order.

Simulation. The simulation of ISDL behaviours is
supported by the Grizzle tool [11]. Simulation allows a
designer to analyse the possible orderings of operations
occurrences, as well as the information results that are
established in these operations. In addition, the Grizzle
simulator provides hooks in the simulation process to
execute application code upon execution of an operation.
This enables us to perform real web service invocations
and incorporate the results that are returned by web
services during the simulation. For this purpose, stub-
code is linked to a modelled web-service operation call.
This code is generated automatically based on stereotype
information that has been retained during the WSDL
import (see Figure 8), such as the web service’s end-point
address and port type name.

Furthermore, the simulator allows external web-clients
to invoke a modelled web-service operation execution
(see Figure 5(i)). A web service proxy is automatically
generated and deployed in an application server, again
using forementioned stereotype information. This proxy
is responsible for handling the reception of the invocation
request and the return of the invocation result. In
between, the proxy delegates the calculation of the
invocation result to the simulator, which indicates to the
user that the operation is enabled and waits till the user
requests the simulation of this operation.

The support for real, also called ‘live’, web service
invocations, allows one to use the simulator as an
orchestration engine in which an orchestration can be
executed by simulating its ISDL model. This means that
that the simulator provides, in principle, an
implementation for the Mediator. However, this simulator
does not support important properties of an execution
environment, such as performance, monitoring, etc.
Therefore, we transform the Mediator design towards a
BPEL process in the next step.

4.5. Step 5: Derivation of the mediator PSM

In this step, an implementation is derived for the
Mediator design. For this purpose, a transformation has
been developed that transforms an orchestration model in
ISDL to a BPEL specification that can be executed on a
standard BPEL engine. This transformation consists of
two main tasks:

1. the recognition of common behaviour patterns, such
as workflow patterns, and their translation to a
composition of the following basic patterns:
sequence, concurrence, selection and iteration;

2. the realization of these basic patterns using the BPEL
constructs bpel:sequence, bpel:while, bpel:flow and
bpel:if, respectively.

In addition, the Mediator model has to be annotated
with information that is required as input to the
transformation. This information concerns choices in the
mapping of abstract ISDL behaviour constructs onto
concrete BPEL constructs or extra design information that
is needed at platform specific level. Figure 12 depicts
these annotations, which are added as stereotype
information to ISDL model elements. The ‘process’
annotation is used to indicate which behaviour definition
represents the complete orchestration behaviour and thus
has to be mapped onto a BPEL process. The other
annotations deal with the mapping of operations and the
information model onto WSDL. A transformation has
been implemented that generates a complete
BPEL/WSDL model from a properly annotated ISDL
model. For more information we refer to [7], [21].

Figure 12. BPEL annotations

5. Automated support for mediation design

In this section we discuss the potential benefits of
using OWL-DL [14] as a language to represent
information models. OWL-DL allows one to reason about
relationships between classes, properties and individuals
in an information model, such as inheritance, equivalence,
transitivity, etc. This support for reasoning helps in
defining and analysing the mapping between information
models, and assessing the interoperability between
services. Furthermore, reasoning may enable the
development of automated support for designing the
mediator PIM.

5.1. Information model mapping

A limitation of using Java and UML class diagrams to
represent information models is that these languages do
not allow one to formally model and reason about the
semantical relationships among classes and their
properties (except for the inheritance relation). Instead,

OWL provides a number of constructs to semantically
relate classes and properties:
• equivalence: the constructs owl:equivalentClass and

owl:equivalentProperty are used to state that a particular
class or property is equivalent to another class or
property, respectively;

• specialisation: the constructs rdfs:subClassOf and
rdfs:subPropertyOf are used to state that a particular
class or property has a more specific meaning than
another class or property, respectively;

• disjointness: the construct owl:DisjointWith is used to
state that two classes cannot share instances.

Furthermore, OWL provides a number of ways to
construct complex classes using owl:unionOf,
owl:intersectionOf and owl:complementOf, or by restricting the
values of a property. This way, a new class can be defined
in terms of classes and properties from one information
model and then asserted to be owl:equivalentClass,
rdfs:subClassOf or owl:DisjointWith a class from another
information model. An example of such a mapping is
shown in Figure 13. The presented mapping relates all
individuals of class Item that have property status equal to
“accepted” to the class AcceptedItem.

Figure 13. Mapping using restriction

In addition, OWL provides ways to define new
properties for classes in one information model and then
assert them to be owl:equivalentProperty, rdfs:subPropertyOf or
owl:DisjointWith a property from another information
model. Figure 14 shows an example of such a mapping.

Figure 14. Mapping of equivalent properties

The main benefit of using a language like OWL in
defining the mappings between the information models of
Blue and Moon, is that it allows one to reason about the
consistency and implications of the defined mappings.
For example, some mapping may result in different sub-
class relationships than expected, e.g., a class being a sub-
class of the empty class, meaning that this class can never
have any instances. As another example, one may want to
check whether the union of the class of “rejected” items
and the class of “accepted” items is equivalent to the class
of “confirmed” items, and a sub-class of the class of
“added” items. Furthermore, the reasoning capabilities of

OWL help in finding and revealing new mappings, since
indirect relationships that are implied by a (combination
of) mapping(s) will be made explicit.

In spite of this benefit, the actual data transformations
between operation parameters at instance level still have
to be defined. These data transformations can not be
generated from the class and property mappings
automatically. Currently, we investigate the use of
SPARQL for this purpose, since it can query OWL
ontologies and therefore exploit its reasoning capabilities
at runtime. To define the information models of Blue and
Moon, and the mappings between them, we have used
Protégé [19] as an editing tool and Pellet [18] as a
reasoner. For the derivation of information models from
WSDL documents, we have used the Gloze tool [3].

5.2. Interoperability assessment

The use of OWL also facilitates the first step of the
method for interoperability assessment discussed in
section 4.4. In general, the systems that are involved in an
interaction, or operation, may use different information
models to define the type of interaction result and the
constraints on the possible instances of this type that can
be established. For example, Figure 15 depicts a
simplified goal model [22] (see also section 3.2) of the
interaction between Blue and Moon. The use of OWL to
define the relations between the classes and properties in
the information models of Blue and Moon, as explained
in the preceding section, allows one to use a reasoner to
assess whether a common interaction result can be
established. This is done by checking whether the
intersection of the class of interaction results allowed by
Blue and the class of interaction results allowed by Moon
CRM and Moon OM is satisfiable, i.e., can have instances
or not. Given the relations defined in the bottom part of
Figure 15, one may conclude that a common interaction
result is indeed possible, consisting of a registered
customer and an order having a delivery period of 3 (say
days) and a price between 1000 and 2000 (say euro).
Note that interoperability assessment at goal level can be
useful to check beforehand if a mediation solution can be
constructed without changing the existing services of
Blue and Moon.

Figure 15. Example goal model

We refer to [23] for a detailed explanation on how the
method for interoperability assessment in combination
with OWL, can be used at different abstraction levels
during a service design process.

5.3. Semi-automated mediator composition

The benefits of using OWL described above mainly
concern analysis tasks. In our current work, we explore
the potential of OWL in supporting the semi-automated
construction of mediation solutions. In particular, we are
developing the following techniques to automate parts of
the mediator design.

Matching input and output parameters. The
matching of input and output information as used in step
2 of section 4.3 can be automated using OWL reasoners.
Given some input and output class that represent the type
of input and output information, respectively, one can
check whether both classes are equivalent or one is a sub-
class of the other. In the former case and in case the
output class is a sub-class of the input class, the output
information can be used as input to some operation.
However, in case the input class is a sub-class of the
output class, some restriction or guard may have to be
imposed on the output information before it can be used
as input to the operation.

Derivation of relations between operations. Based
on the automated matching of input and output
parameters, a search algorithm can be developed to find
the output parameters that provide the information that is
required by some input parameter. The basic idea is to try
in a first step to match the required input class to the
classes of all output parameters. If no or only a partial
match is found, this step is applied recursively to the
properties of the input and/or output classes. From the
resulting set of potentially partial and alternative matches,
a selection can be either made manually or be proposed
automatically by the algorithm based on some heuristics.
Given the selected (partial) match, the (ordering) relations
among the involved operations can be derived
automatically.

Derivation of data transformations. Based on the
selected match, also the signature for the required data
transformation can be obtained automatically. For
example, from the relation between the output parameter
of operation receiveRequest and the input parameter of
operation search as explained in section 4.3 the signature
of method por2search() can be derived, i.e., String
por2Search(Pip3A4PurchaseOrderRequest por) .

Integration of ISDL and OWL/SPARQL. ISDL
allows bindings with different information modelling
languages. Currently, this binding is being implemented
for OWL/SPARQL to support simulation and
transformation to BPEL. For this purpose, the simulator is

linked to an OWL reasoner that contains the information
model and state associated with the simulated behaviour.
During simulation, data transformations expressed in
OWL and SPARQL are delegated to this reasoner. In the
mapping to BPEL these data transformations are
delegated to a special web-service that enables the BPEL
engine to access the OWL reasoner.

6. Related and future work

Several approaches and solutions have been proposed
within the SWS challenge. Here we briefly discuss the
approaches based on the WSMO, SWE-ET and
jABC/jETI frameworks.

The DERI approach [16] follows the Web Services
Modelling Ontology (WSMO) framework. It consists of
four main components – ontologies, goals, web services
and mediators. The main difference between WSMO and
our work is that our framework has less concepts while
providing comparable expressive power. Both solutions,
however, differ with respect to the way of process
modelling. WSMO describes the mediator interaction
behaviour by means of Abstract State Machines. A state
is described by a WSMO ontology, the domain ontology
constitutes the underlying knowledge representation and
each transition rule defines a state transition where the
condition is defined as an expression in logic, which must
hold in a state before the transition is executed. For the
purposes of the SWS Challenge, the provided solution
assumes that the invocation order is unimportant. This is
not the case though: the operations of system Moon
should be invoked in a particular order.

The joint team of Politecnico di Milano and CEFRIEL
[4] focuses more on the modelling of the mediator’s
internal logic, which is defined by a BPMN model. A
coarse WebML skeleton is automatically generated from
the BPMN model and manually refined by the designer.
The WebML process model, specified as a graph of
(web)pages, differs quite significantly from our approach.
Pages consist of connected units, representing the
publishing of atomic pieces of information, and
operations for modifying the underlying data or
performing arbitrary business actions. Units are
connected by links, to allow navigation, parameter
passing, and computation of the hypertext from one unit
to another. The method was not natively meant to face
mediation problems, but showed to adapt rather well to
this class of problems.

The jABC/jETI solution [26] uses SLGs (Service
Logic Graphs) as choreography models, allowing the
designer to model the mediator in a graphical high level
modelling language by combining reusable building
blocks into (flow-)graph structures. These basic building
blocks are called SIBs (Service Independent Building

Blocks) and the development process is supported by an
extensible set of plug-ins that provide additional
functionality. The jABC framework originated in the
context of the verification of distributed systems and
provides explicit support for model checking, which
allows automatically proving global compliance
constraints on the business logic of an SLG.

In general, service composition and mediation have
emerged as an active and productive research area.
Various approaches and techniques have been presented,
such as static vs. dynamic, model-driven, declarative,
automated vs. manual, context-based, and workflow vs.
planning approaches ([8],[25],[15],[1]). In our current and
future work, we investigate the use of existing AI
planning techniques [17] for automatic construction of the
behaviour of the Mediator. In particular, we currently
focus on the use of backward-chaining techniques to
discover causal relations among the activities performed
by the Mediator. In our approach, we start with the
activities that send messages and recursively search for
activities that provide the information required to
construct these messages. The search is performed using
the mappings defined in the information model of the
Mediator.

7. Conclusions

In this paper, we have presented a framework for
developing mediation services as a means to integrate
non-interoperable systems. The framework combines
model-driven, service-oriented and semantic web
techniques. Model-driven techniques are used to lift the
design of a mediation solution from technology to
(platform-independent) model level, in order to clearly
capture the semantics of the integration problem and
proposed solution, and facilitate the involvement of
business domain experts by abstracting from
implementation details. Following the service-oriented
paradigm, the systems that have to be integrated are
assumed to be defined in terms of the services they
provide to and request from their environment. The
integration problem is then approached as a service
composition problem, where a mediator must be found
that orchestrates and enhances the existing services
provided by one system in such a way that it matches the
service requested by another system.

A method has been presented to guide the
development of a mediator. Tool support is provided for
each of the steps in this method, including the modelling
and ‘live’ simulation of the mediation solution, and
transformations between model and implementation level.
Web services (WSDL and BPEL) are assumed as
implementation technology.

Currently, the composition of the mediation solution is
mainly a manual process. The use of semantic web
technology, based on OWL, enables automated reasoning
about the mediator design, in particular the information
modelling part. We have applied this in the development
of a general technique to assess the interoperability of
systems, and have used it in this work to validate the
interoperability that is offered by the mediator.

Further, we have discussed techniques based on OWL
to automate parts of the composition process of the
mediator. Our ongoing and future work will focus on the
elaboration of these techniques, and the development of
tool support to make them practically applicable. Here,
automation is not a goal in itself. In fact, we do not think
semantic web technology can be used (yet) to develop
fully automated techniques for building mediators.
However, semantic web technology can be helpful in
automating techniques that support the designer in re-
using design information that is present in existing
models. For example, using our mediation framework it
should be easy for a developer to cope with changing
integration requirements. The SWS challenge addresses
this issue explicitly by requiring changes to the mediation
scenario described in this paper. Our framework limits the
impact of these changes to the design step of our method,
such that the designer only needs to adjust the
information and behaviour model of the mediator in order
to generate automatically a new implementation of the
mediator that reflects the changed requirements.

References

[1] Alamri A, Eid M and El Saddik A. Classification of the
State-of-the-art Dynamic Web Services Composition. In:
International Journal of Web and Grid Services, Vol. 2,
No. 2, 2006, pp. 148-166.

[2] A-Muse project. http://a-muse.freeband.nl
[3] Battle S. Gloze: XML to RDF and back again. In:

Proceedings of 2006 Jena User Conference, 2006.
http://jena.hpl.hp.com/juc2006/proceedings.html

[4] Brambilla M, Celino I, Ceri S, Cerizza D, Della Valle E
and Facca F. A Software Engineering Approach to Design
and Development of Semantic Web Service Applications,
In: Proceedings of the 5th International Semantic Web
Conference (ISWC 2006), LNCS 4273, 2006, pp. 172-186.

[5] Bussler C. Semantic Web Services: Reflections on Web
Service Mediation and Composition. In: Proc. of the
Fourth Int. Conf. on Web Information Systems Engineering
(WISE), 2003, p. 253.

[6] CPNTools - Computer Tools for Coloured Petri Nets.
http://wiki.daimi.au.uk/cpntools//cpntools.wiki

[7] Dirgahayu T, Quartel D and van Sinderen M. Development
of Transformations from Business Process Models to
Implementations by Reuse, In: 3th International Workshop
on Model-Driven Enterprise Information Systems, 2007,
pp. 41-50.

[8] Dustdar S and Schreiner W. A survey on web services
composition. In: International. Journal of Web and Grid
Services, Vol. 1, No. 1, 2005, pp. 1-30.

[9] van Eck P, Blanken H, Wieringa R. Project GRAAL:
Towards Operational Architecture Alignment. International
Journal of Cooperative Information Systems 13(3), 2004,
pp. 235-255.

[10] ElipseUML. http://www.eclipsedownload.com/
[11] ISDL. http://ctit.isdl.utwente.nl
[12] JAX-WS and JAXB.

http://java.sun.com/webservices/technologies/index.jsp
[13] Jonkers H, Lankhorst M, van Buuren R, Hoppenbrouwers

S, Bonsangue M, van der Torre L. Concepts for Modelling
Enterprise Architectures. International Journal of
Cooperative Information Systems, vol. 13, no. 3, 2004, pp.
257-287.

[14] McGuinnes D and van Harmelen F. OWL Web Ontology
Language Overview – W3C Recommendation 10 February
2004. http://www.w3.org/TR/owl-features/.

[15] Milanovic N and Malek M. Current Solutions for Web
Service Composition. In: IEEE Internet Computing, Vol. 8,
No. 6, 2004, pp. 51-59.

[16] Mocan A, Moran M, Cimpian E and Zaremba M. Filling
the gap - extending service oriented architectures with
semantics. In: IEEE International Conference on e-
Business Engineering (ICEBE), 2006, pp. 594-601.

[17] Peer J. Web service composition as AI planning - a survey.
Technical report, Univ. of St. Gallen, Switzerland, 2005.

[18] Pellet. http://pellet.owldl.org/
[19] Protégé. http://protege.stanford.edu/overview/protege-

owl.html
[20] Prud’hommeaux E and Seaborne A. SPARQL Query

Language for RDF - W3C Proposed Recommendation 12
November 2007. http://www.w3.org/TR/rdf-sparql-query/ .

[21] Quartel D, Dirgahayu T and van Sinderen M. Model-driven
design, simulation and implementation of service
compositions in COSMO. To appear in: Int. J. of Business
Process Integration and Management.

[22] Quartel D, Steen M, Pokraev S and van Sinderen M.
COSMO: a conceptual framework for service modelling
and refinement. In: Information Systems Frontiers, 9 (2-3),
2007, pp. 225-244.

[23] Quartel D and van Sinderen M. On interoperability and
conformance assessment in service composition. In:
Proceedings of the Eleventh IEEE International EDOC
Enterprise Computing Conference (EDOC 2007), 2007,
pp. 229-240.

[24] Quartel D, Dijkman R, van Sinderen M. Methodological
support for service-oriented design with ISDL. Proceedings
of the 2nd Internatiation Conference on Service Oriented
Computing, 2004, pp. 1-10.

[25] Rao J and Su X. A Survey of Automated Web Service
Composition Methods. In: Semantic Web Services and Web
Service Composition, LNCS 3387, 2005, pp. 43-54.

[26] Steffen B, Margaria T, Nagel R, Jörges S and Kubczak C.
Model-Driven Development with the jABC. In:
Proceedings of Haifa Verification Conference, LNCS
4383, 2006, pp. 92-108.

[27] SWS challenge. http://sws-challenge.org
[28] UDEF. http://www.opengroup.org/udefinfo/

