
Modeling a Realistic Workload
for Performance Testing

Christof Lutteroth, Gerald Weber
Department of Computer Science

The University of Auckland
38 Princes Street, Auckland 1020, New Zealand

Email: {lutteroth, gerald}@cs.auckland.ac.nz

Abstract—Load testing of web applications can be specified by
simulating realistic user behavior with stochastic form-oriented
analysis models. Stochastic models have advantages over load
test models that simply play back recorded session data: they
are easier to specify and achieve a higher coverage of the
different operational paths. There are challenges when specifying
load tests such as the generation of form parameters and
the recognition of pages returned by the system. We propose
how these challenges can be overcome by adding additional
specifications to a form-oriented model. Furthermore, we discuss
several workload models and explain why some commonly used
workload models are in fact unrealistic and produce misleading
results. The stochastic form-oriented load testing approach can
be generalized to deal with other submit-response systems such
as those consisting of web services.

I. INTRODUCTION

Web applications are ubiquitous and need to deal with a
large number of users. Due to their exposure to end users,
especially customers, web applications have to be fast and
reliable, as well as up-to-date. However, delays during the
usage of the Internet are common and have been the focus
of interest in different studies [4], [6]. The demands on a web
site can change very rapidly due to different factors, such as
visibility in search engines or on other web sites. Load testing
is thus an important practice for making sure a web site meets
those demands and for optimizing its different components [3].
The same holds true for web services in a service oriented
architecture, which can also be subject to varying load over
time. More and more, web service interfaces will be accessed
as a direct consequence of user requests, and thus these web
services will be often subject to similar usage patterns as web
interfaces.

Raj Jain points out a number of common mistakes people
do when performing load tests [15]. One of them is using
an unrepresentative workload: “the workload used to compare
two systems should be representative of the actual usage of the
system in the field”. In this paper, we address this issue by i)
describing how to specify load test models using a stochastic
approach and ii) analyzing the shortcomings of frequently
(mis-)used workload parameters.

Our approach applies the methodology of form-oriented
analysis [10], in which user interaction with a submit-response
style system is modeled as a bipartite state transition diagram.
The model used in form-oriented analysis is technology-

independent and suitable for the description of user behavior.
It describes what system output a user sees, and what he or she
provides as input to the system. In order to simulate realistic
users we have extended the model with stochastic functions
that describe navigation, time delays and user input [7].
The level of detail of the stochastic model can be adjusted
incrementally through refinement. Although we discuss load
testing in the context of web applications, the same models
can be used for other types of submit-response systems such
as those based on SOA, e.g. for load testing of web services
composition [1].

Section II gives an overview of the form-oriented analysis
model, which serves as the basis for load testing specifi-
cations. Section III extends this model so that stochastic
load test model can be formulated, explains the advantages
of stochastic load testing and points out the importance of
realism. Section IV discusses some of the challenges of load
testing specification, and proposes solutions for specifying the
generation of form parameters, recognition of pages, session
drop out and server unavailability. Section V explains why
some popular workload models are unsuitable and actually
produce misleading load test results. Section VI discusses
related work, and Section VII concludes the paper.

II. THE FORM-ORIENTED MODEL

Form-oriented analysis [10] is a methodology for the spec-
ification of ultra-thin client based systems. Form-oriented
models describe a web application as a typed, bipartite state
machine which consists of pages, actions and transitions
between them. Pages can be understood as sets of screens,
which are single instances of a particular page as they are
seen by the user in the web browser. The screens of a page
are conceptually similar, but their content may vary, e.g. in the
different instances of the welcome page of a system, which
may look different depending on the user. Each page contains
an arbitrary number of forms, which in turn can have an
arbitrary number of fields. The fields of forms usually allow
users to enter information, and each form offers a way to
submit the information that has been entered into its fields to
the system. A submission invokes an action on the server side,
which processes the submitted information and returns a new
screen to the client in response. Hyperlinks are forms with no
fields or only fields that are hidden to the user.

12th International IEEE Enterprise Distributed Object Computing Conference

1541-7719/08 $25.00 © 2008 IEEE

DOI 10.1109/EDOC.2008.40

149

12th International IEEE Enterprise Distributed Object Computing Conference

1541-7719/08 $25.00 © 2008 IEEE

DOI 10.1109/EDOC.2008.40

149

12th International IEEE Enterprise Distributed Object Computing Conference

1541-7719/08 $25.00 © 2008 IEEE

DOI 10.1109/EDOC.2008.40

149

12th International IEEE Enterprise Distributed Object Computing Conference

1541-7719/08 $25.00 © 2008 IEEE

DOI 10.1109/EDOC.2008.40

149

Login

Edit
Transfer

Menu

Status

Depot

Verify

Show
Status

Make
Transfer

Invest

Buy
Bond

Sell
Bond

Confirm
Transfer

Logout

Cancel

Fig. 1. Formchart of example home banking web application.

Login MenuVerify

Logout

Menu Status

Show
Status

Cancel

Fig. 2. Two features of the home banking application.

Form-oriented models can be visualized using formcharts.
In a formchart the pages are represented as bubbles and
the actions as boxes, while the transitions between them are
represented as arrows, forming a directed graph. Formcharts
are bipartite directed graphs, meaning that on each path pages
and actions occur alternatingly. This partitioning of states and
transitions creates a convenient distinction between system
side and user side: the page-action transitions always express
user behavior, while the action-page transitions always express
system behavior.

In Fig. 1 we see the formchart of a simple home banking
system, which will be the running example of this paper.
The system starts showing page Login to a user, who can
enter a username and a password. These data are submitted
to action Verify, which checks if they are correct and either
redirects the user back to the Login page or to the Menu page
of the home banking system. Here the user can access the
different functions, i.e. showing the account’s status, making
transfers, trading bonds, and logging out. Each of the functions
may involve different subsystems and make use of different
technical resources.

Formcharts can easily be decomposed into submodels,
which we call features. This is illustrated in Fig. 2, which
shows two features of the home banking application. The fea-
ture on the left side describes the login and logout procedure;
the feature on the right side describes the status function of the
application. As we can see, the features overlap, i.e. they both
contain the Menu page, which means that we can combine the
features in a meaningful way. Merging all features together
results in the complete formchart of a system. Formchart
diagrams are very flexible and it is, for example, possible to
represent the same page or action several times, i.e. as several

Verify
user:String
pwd:String

Logout

Confirm Transfer
payee:String
account:String
amount:Decimal(9,2)
when:{now,weekly,monthly}

Make Transfer

Cancel

Show StatusInvest

Buy Bond
bondId:String
qty:Decimal(9,2)

Sell Bond
bondId:String
qty:Decimal(9,2)

Login
msg:String

Menu

Edit Transfer
maxAmount:Decimal(9,2)

Status
balance:Decimal(9,2)

Depot

Asset
bondId:String
qty:Decimal(9,2)
value:Decimal(9,2)

*1
assets

Fig. 3. Message model for the home banking application.

bubbles or boxes. This can be convenient for avoiding crossing
transition arrows. It illustrates the set semantics of a formchart:
elements can be represented several times with the formal
form-oriented model remaining the same, and form-oriented
models can be combined using simple set union.

In addition to the formchart artifacts, a form-oriented model
also specifies message types for all the pages and actions.
In the context of load testing, the message types for actions
are useful because they specify the structure of the data that
can be submitted through a form or link. This information
helps us to generate form parameters during load testing.
The message types for the pages specify the structure of
the dynamic information represented on a page, and they are
useful because we often need this information during load
testing in order to choose appropriate form parameters.

Figure 3 shows the message model for the home banking
example. The action types are on the left side of the figure,
and the page types on the right side. Types of actions that are
invoked by simple links such as Logout or Invest do not have
any data fields. The actions that are invoked by forms such as
Confirm Transfer have a field for each of the input fields in
the form. We also allow ad-hoc types such as the “when” field
of Confirm Transfer, which are very useful for representing
single selections. If a page always looks the same, i.e. if there
is no dynamic information content, then the corresponding
message type does not contain any field, such as the type for
page Menu. If a page contains a list of structured items, then
additional types can be defined. In our example, the list of
assets shown on the Depot page is modeled as an additional
type Asset with a many-to-one association to type Depot.

A form-oriented model of a web application offers several
benefits. It is suitable for testing as well as for the analysis
and development of dynamic web applications. A typical
shortcoming of many other models is that they do not capture
fan-out of server actions, i.e. the ability of a server action
to deliver many conceptually different client pages, which
is covered by the form-oriented model. There are software
development tools supporting the use of form-oriented models,
including the stochastic models described in this paper, e.g. for
forward engineering [11], reverse engineering [8], [9], and load
testing [5], [7]. A form oriented model is also a good way to
represent complex state-dependent web service interfaces. For
the purpose of load testing, formcharts can be used as initial

150150150150

test cases for finding performance bottlenecks in web service
orchestration scenarios.

III. STOCHASTIC FORMCHARTS

Formcharts specify web applications, which usually work
in a strictly deterministic manner. In a load testing scenario,
however, the system under test already exists, and the problem
is to simulate the behavior of a large number of users. But just
as a formchart is a specification of the web application, it is
also a specification of possible user behavior; and while it
is the web application that chooses in an action which page
will come next and which data will be shown on the page,
it is the user who chooses which of the available actions
will be invoked afterwards and which data the action will
get. In other words, when simulating users we have to model
their navigational choices and the input they enter. Since we
are aiming at real-time simulation, we also need to model
the timing of user behavior. In the case of web applications,
this can be reduced to a model of user response time or
“think time”, i.e. the time delay between reception of a screen
and submission of a form. Since the fine-grained interaction
involved in user input happens at the client side, transparent
to the server, we do not model it.

We cannot predict user behavior as we can predict the
behavior of a web application. Therefore, we use a stochastic
model, which makes only assumptions about the probability
of a particular user behavior and not about which behavior
will actually occur. When estimating such probabilities, it can
be important to take into account the session history of a
user, which may influence the decision about the next step.
For example, a user that has just logged into the system is
unlikely to log out immediately afterwards, but much more
likely to log out after he or she did other things. Consequently,
we are dealing with conditional probabilities. The different
parameters of stochastic formcharts were described in [7]. The
following list gives a brief summary of them.

Pform is a discreet probability distribution for the forms
that can be chosen on a page. Each page usually has a
different Pform. In our stochastic load testing simulation this
distribution is used to determine which choice a user makes
on a page, and which action is invoked next.

pdelay is a probability density function for the think time
of a user on a particular page. As a simple approximation, a
normal distribution can be used, which expresses that extreme
cases such as very long think times or very short think times
are less frequent than think times that are average.

Pinput is a probability distribution that is defined for each
form in the system. It assigns a probability to each possible
form parameter that a user can enter. Describing this distribu-
tion adequately is a challenge because the permitted values
often depend on the application logic, and the application
might not work properly if the values are nonsensical. One
of the contributions of this paper is to shed light on a formal
approach for specifying Pinput as part of the form-oriented
model.

Login

Edit
Transfer

Menu

Status

Depot

Verify

Show
Status

Make
Transfer

Invest

Buy
Bond

Sell
Bond

Confirm
Transfer

Logout

1
Cancel

0.4

0.2

0.2
0.2

1

0.3

0.3

0.4

0.9

0.1

Fig. 4. Simple stochastic formchart for the home banking system.

During load testing, a random number generator is applied
to generate artificial user behavior as specified in the above
probability distributions. Such user behavior data can be
represented efficiently with common random numbers [13].
However, as with deterministic load tests, replaying user
behavior data may not always elicit the same server response.
Even with the server state being the same, server actions may
behave nondeterministically.

Figure 4 shows a stochastic formchart for the home banking
system. In this formchart, the client-server transitions are an-
notated with probabilities, expressing Pform. Such stochastic
formcharts are similar to Markov chains, but there is a subtle
and important difference: while a Markov chain creates a state
machine with probabilities at every transition, a stochastic
formchart is a bipartite state machine with probabilities only
at the transitions going from page to action. Which transition
will be chosen from an action to the next page is determined
by the logic of the system. However, if we assign probabilities
to these transitions the same way we do with page-action
transitions, e.g. by measuring relative frequencies, estimation
or simply using uniform probabilities, then we can analyze
the model statically and make statistical estimates about the
system under test similar to those described in [30] for Markov
chains. The difference to Markov chains is that our model also
captures behavior over time, i.e. delays. We call a formchart
with probabilities on all transitions a doubly stochastic form-
chart.

The formchart in Fig. 4 can be used as the basis for a
simple stochastic simulation. However, the model is relatively
simplistic because it does not take into account what the user
has already done in the system. For example, logging out is
equally probable no matter if the user has actually used one
of the system functions or not. This can be remedied with
history-sensitive formcharts, which are based on the notion of
decision trees (e.g. see [16]). Pages and actions are cloned if
they are used differently in different historical contexts, i.e.
with different preceding session histories.

The history-sensitive formchart in Fig. 5 shows the effect
of session history on the probability of the Logout action.
Instead of having only one Menu page, the formchart contains

151151151151

Menu1
Show
Status1

Status1

Logout1

Cancel1

0.

0.5 1
Menu2

Show
Status1

Logout1
0.

0.1

1

5

Fig. 5. History-sensitive feature of the home banking application.

two, each representing a different historical context: Menu1,
which represents the Menu page after a user has just logged in,
and Menu2, which represents the page after a user has chosen
the Show Status action and gone back to the Menu. After
having just logged in to the system, a user is very unlikely to
immediately log out, therefore the probability that Logout is
chosen is very low. However, after checking the status of an
account, which is a very common function, a user is a lot more
likely to log out. This case is represented in the transition from
Menu2 to Logout, which has a much higher probability. At the
same time, if a user has just seen the status of an account, it
is less likely that the user will choose the Show Status action
again. More information about stochastic formcharts and how
to use them for load testing can be found in [7].

A. Advantages

Stochastic load testing has several advantages over deter-
ministic load testing, which consists mostly of replays of pre-
recorded user sessions. First of all, it is a lot easier to specify
one stochastic model instead of creating a multitude of pre-
recorded user sessions. Even if we wanted to cover only the
most important sequences of pages and actions, this would be
a lot of work for a medium to large size real-world application.
The number of possible sequences grows exponentially with
the number of actions. With a stochastic model, the size of
our specification is linear to the number of actions and pages:
for each action and page we have to define parameters such as
Pinput and Pform. Stochastic load testing is a generalization
of deterministic load testing: deterministic load testing means
that transition probabilities are either 0 or 1.

Secondly, stochastic load testing can expose unexpected
bottlenecks in a system because it naturally achieves a much
higher coverage during testing. Due to the stochastic nature,
every possible sequence of actions may occur, which may pro-
duce effects that remain hidden with a limited number of pre-
recorded sessions. For example, some actions in a system may
compete for the same resources, such as memory, processor
time or database locks. The longer a stochastic load test is
performed, the more likely it is that such dependencies in the
system show themselves in a reduction of the measured system
performance. After a stochastic load test, it is possible to
analyze what actions actually caused a bottleneck by looking
into the load testing logs. These logs can include an archive
of the sent and received messages, as defined by the message
model, which makes it easier to store and analyze this data
in a typed, well-defined manner. Instead of having to come
up with critical scenarios upfront, a stochastic load testing
approach allows testers to find critical scenarios a-posteriori
by analyzing collected data.

This is similar to the problem of developer-defined vs.
automatically generated test cases for functional testing. To
achieve an adequate test coverage, a very large number of
test cases is necessary. It can save a lot of time to generate
test cases automatically instead of defining them manually.
However, in functional testing, automatic generation of useful
test cases can be difficult due to the inherent complexity of
program code. In the domain of web application load testing,
the coverage does not so much relate to the program code
but to the pages and actions, as expressed in a form-oriented
model. It is much easier to automatically generate load test
scenarios from such models, as they are a lot less complex.

B. Realism

It is important to note that the realism of load test models
really matters. In the simulation of user behavior for the
purpose of load testing it has been found to be crucial [3],
[33]. “A load test is valid only if virtual users’ behavior has
characteristics similar to those of actual users” because “failure
to mimic real user behavior can generate totally inconsistent
results” [20]. Stochastic load test specifications are generally
more realistic than specifications that consist of pre-recorded
sessions because they cover a greater variety of the possible
operational paths. However, when comparing different stochas-
tic specifications, it becomes evident that a stochastic model
alone is not a guarantee for realism. As discussed, stochastic
models are easier to create than deterministic load models, but
still, model parameters have to be chosen carefully.

For example, let us consider the simple model in Fig. 4
and the more sophisticated model in Fig. 5. In the simple
model, the probability for Logout is generally quite high
(0.2), whereas the probability for logging out in the more
sophisticated model is only high after the user has used one
of the system functions. Even if the probability for logging
out from the Menu page is generally 0.2, it is important to
recognize that users use the system first before logging out.
Using the simple load model means that 20% of all users
would log out immediately after logging in, putting hardly any
stress on the system. As a consequence, the simple load test
model would severely underestimate the effect of user sessions
on system load, and produces misleading results.

IV. SPECIFYING LOAD TESTING SCENARIOS

The load testing process poses a number of challenges
such as the generation of form parameters and the recognition
of server responses by the load engine. In this section we
describe how a form-oriented model can be annotated so that
these issues can be specified formally. With the appropriate
specifications, a form-oriented model can be used directly to
generate load testing scenarios, without the need to develop
load testing code manually.

A. Parameter Specifications

The task of the load engine is to simulate a user. It is
relatively easy to automatically choose a form or link on a
webpage, but it is not so easy to fill out a form with suitable

152152152152

parameters. Therefore, the form-oriented load testing model
can be annotated with parameter specifications, which help
the load testing engine in accomplishing this task. The point
that makes parameter specifications formal and meaningful
is that they refer directly to the message types of pages
and actions as introduced in Section II. In the form-oriented
terminology [10], parameter specifications are client output
specifications. This methodology is flexible with respect to
the chosen specification language, which can be for example
the object constraint language (OCL) [24] of UML or another
suitable specification language.

In the form-oriented load testing model, parameter specifica-
tions are given in a common mathematical, functional notation
for case distinctions of the form:

variable = condition1 → value1,

condition2 → value2, . . . ,

defaultV alue

We generalize this by allowing values between 0 and 1 for
the condition specifying nondeterministic choice. The given
condition specifies the probability of the condition being true,
i.e. the probability of the associated value being chosen as the
value for the variable.

Let us consider some examples. The first challenge for
the generation of suitable form parameters in our system
is the Verify action. Most users will enter a well-defined,
correct username/password pair, so purely random generation
of parameters would be completely unrealistic here. However,
sometimes users do enter wrong credentials, so our load engine
should do the same. This behavior can be specified in the
following manner:

(user/pwd) = 0.9→ rnd(Credentials), (void/void)

In other words, with a probability of 0.9 the
username/password pair is taken randomly from a list
Credentials of valid credentials, and with the remaining
probability of 0.1 invalid credentials are used.

The following parameter specification can be used for action
Confirm Transfer:

payee = 0.95→ rnd(Payees), void

account = 0.95→ rnd(Accounts), void

amount = 0.95→ rnd(0, maxAmount),
maxAmount + 1

when = 0.5→ now, 0.25→ weekly, monthly

With a 0.95 probability the payee is randomly chosen from
a list Payees of valid payees, otherwise an invalid value
is produced. The same happens for the account. With a
0.95 probability, the amount is chosen randomly between
0 and maxAmount, otherwise an invalid value greater than
maxAmount is produced. Note how the value maxAmount,
which is defined on the page from which Confirm Transfer
is invoked, can be used in the specification. maxAmount
is formally well-defined in the type of page Edit Transfer,

and can be recovered by the load testing engine with simple
screen scraping techniques, e.g. by using path expressions and
regular expressions [22]. It is common that values represented
on a page are important for the generation of suitable form
parameters, hence the page types, combined with simple
screen scraping, are very useful.

As a last example, we want to look at a parameter specifi-
cation for action Sell Bond:

a = rnd(assets)
bondId = a.bondId

qty = 0.95→ rnd(0, a.qty), a.qty + 1

In this example, a is an auxiliary variable. It holds a randomly
chosen asset, with asset referring to the assets that are
associated with page Depot from which action Sell Bond is
invoked. bondId is always the chosen asset’s bondId. The
quantity to sell is either a valid quantity, i.e. chosen randomly
between 0 and the available quantity a.qty, or an invalid
quantity greater than a.qty.

Parameter specifications can be used to infer probabilities
for action-page transitions. In a stochastic formchart, only
page-action transitions are annotated with probabilities. But
a parameter specification usually describes choices that de-
terministically lead to a certain action-page transition. In the
user credentials example above, correct credentials should
always lead to successful login, and incorrect credentials
should always lead to an error. Hence the probabilities of the
parameter specification are probabilities for the action-page
transitions chosen by the targeted server action, and we can
use these probabilities as annotations in the formchart. Note
that it is not always possible to infer action-page transition
probabilities like this because the server behavior may not be
easily predictable. In general, server behavior cannot be deter-
mined by the load testing engine; it is part of the observation,
not part of the controlled parameters. An example illustrating
this is an auction site where the virtual users influence each
other through competing bids.

B. Page Recognition Specifications

Sometimes the load engine has to recognize which page
was actually returned after invoking an action. In the home
banking example, this is the case with action Verify: if the
username/password combination was correct, then the Menu
page is returned, otherwise we go back to page Login. When-
ever we have several outgoing transitions at an action, we need
to specify how the load engine can recognize which transition
was chosen. This is done with page recognition specifications.
Note that these specifications are not used to evaluate whether
an action gave a “correct” response, as in functional testing.
They are used to make sure that a load engine stays in sync
with the load test model, i.e. that it can recognize the current
state.

Page recognition specifications are predicates that are either
true or false, expressing if a particular page was recognized.
For example, the recognition specification for page Login

153153153153

Terminate0.05
Menu,

Edit Transfer,
Status, Depot

Login0.4

Fig. 6. A feature modeling session drop out.

could be:
title contains ”Login”

Similar to screen scraping, page recognition specifications
operate on the document object model (DOM) [31] of a
page. Consequently, they use path expressions and regular
expressions for matching the values of a page against the
values that are expected.

C. Session Drop Out and Server Unavailability

There are two types of possible events that are not consid-
ered in the simple stochastic model of Fig. 4: session drop
out and server unavailability. Session drop out means that the
user simply aborts the session, e.g. by browsing to a page
outside the web application or closing the web browser. To
model session drop out, which is a common occurrence in
real user sessions, we need to reduce the probabilities in Fig. 4
slightly to accommodate additional transitions from every page
to an artificial action Terminate, which symbolizes the end
of a session. Because the arrows between all the pages and
Terminate would render a formchart unreadable, we model
session drop out as a feature, as introduced in Section II. As a
simple approximation, we could assume that the session drop
out probability is the same for all pages except the Login
page (0.05). For the Login page the dropout probability is a
lot higher (0.4). This is because most users use the Logout
action before terminating a session, which leads to the Login
page. Hence, sessions are usually terminated from that page.

Figure 6 shows the session drop out feature, which uses
the state set notation, i.e. a double bubble with a list of
page names. The double bubble with its transition to action
Terminate signifies that all the pages listed have such a
transition. It is much easier to read than drawing a separate
transition for each of the listed pages.

Server unavailability covers the case that the web server
responds with a “Service temporarily overloaded” code due to
high load. It can be modeled with transitions from every action
to a new page Unavailable. Similar to probabilities on action-
page transitions, this is only relevant for static, model-based
analysis, not for actual load testing. Analogously to session
drop out, it is convenient to model server unavailability as a
separate feature using the state set notation.

V. WORKLOAD MODELS

A workload for a given web application under test is com-
pletely described by a stochastic formchart and one of several
possible usage intensity parameters; both elements together
give a workload model. A usage intensity parameter can be
a function over time, modeling a changing workload. For the
introduction and comparison of the different parameters here

we focus on scenarios where the parameter is constant over
time after an initial warm up.

The combination of a system under test, a given constant
usage intensity and a given stochastic formchart is measurable
if the stochastic formchart has a defined average number
of requests (AV GR) before the session terminates and an
average session duration (AV GD). This excludes formcharts
that do not terminate. It also excludes systems that age, i.e.
systems where the same operation performs slower over time
due to some internal state change. In many cases it is possible
to statically check whether a stochastic formchart has such a
finite AV GR; then we call it a finite user session.

In the load test, the stochastic formchart is executed several
times in parallel. For one point in time, every running stochas-
tic formchart is a virtual user. The client request rate (CRR)
is the request rate of the individual virtual user averaged over
its lifetime. Hence we have:

CRR = AV GR/AV GD

or
AV GR = AV GD · CRR

AVGD is determined by the server response time and the user
think time after receiving the response. The think time of every
request should be greater than 0. If this think time is kept
constant, then CRR decreases as soon as the server response
degrades. For load testing tools, a load-independent CRR is
often recommended, but this requires in general a non-trivial
implementation [3].

A. Usage Intensity Parameters

There are two traditional usage intensity parameters: one
is the number of virtual users (V U), i.e. the number of
user processes active at a point in time; the other one is
the request rate (RR), i.e. the number of requests generated
per time unit. All client requests – in our terminology form
submissions – are counted. Based on our workload models we
can define a different usage intensity parameter, the starting
user session rate (SUR). This is the average number of finite
user sessions that is started per time unit. It is related to
the arrival pattern in queuing theory [12]. All these three
usage intensity parameters can be used to describe a constant
load. In fact, for all three parameters the following holds on
measurable systems under test: if the usage intensity parameter
is constant over time, then the load is constant over time. A
constant workload model can hence be described as a pair
(stochasticformchart, paramname = value) where the
second element is a key-value pair naming a usage intensity
parameter as a key and a dimensioned number as a parameter
value.

Operationally, in a load test framework, the parameters are
applied differently. If V U is the usage intensity parameter, a
constant load is achieved by generating a certain number of
virtual users, and then ceasing to generate new users. We can
also control the load with SUR. A constant load is achieved
by continuously generating new user sessions with a constant

154154154154

SUR. After an initial start-up time in the order of AV GD we
have constant load. V U is in this case an observable parameter
that is affected by SUR and other parameters.

B. Model-Realistic Workload Description

The two elements of the workload model, i.e. stochastic
formchart and usage intensity parameter, should model truly
different aspects of the model as a separation of concerns.
Otherwise, the model will be badly maintainable as we will
see in the following. We say a workload description is model-
realistic if the following holds for a change in the stochastic
formchart: if any value in the stochastic formchart is changed,
for example if a think time is shortened to model an improved
page readability, or if the number of requests per user session
is changed because the user navigation is improved, then this
change in the user model should have the same effect on the
load test as it would have on the real system. We restrict
our attention here to these two types of changes in the user
model. We can show that the two major conventional usage
intensity parameters, namely V U and RR, do not give model-
realistic workload models, but our newly defined parameter
SUR does. In order to obtain this result, we have to clarify
the relationships between the different parameters defined so
far.

C. Workload Laws

We capture the mutual relation between the usage intensity
parameters in a set of laws. As said earlier, these laws are
derived for the case of a constant workload. These laws
describe the case of a negligible server response time, meaning
that the server response time is much smaller than the user
think time. They create the foundation on which the behavior
for non-negligible server response time can be discussed.

First, we derive a law concerning the relationship of
RR, V U and CRR. We want to show:

RR = V U · CRR

For that we assume a constant V U . In Fig. 7, executions of the
stochastic formchart – we call them sessions – are indicated
by gray bars with teeth for the individual requests. A constant
V U means that a new session starts immediately whenever
another session has stopped, giving rise to V U horizontal lines
of sessions in the diagram. The average request rate per unit
of time for the whole experiment is now obviously V U times
the request rate of each horizontal line in the diagram. The
request rate in each such line is CRR by definition, hence
proving the equation above.

We now consider a workload model with usage intensity
parameter SUR. After an initial start-up we have:

RR = SUR ·AV GR

This can be seen by assuming a fixed SUR. Let case a be
the case that there is only one request per session, AV GRa =
1, then we have as many requests as we have starting user
sessions. Hence we have RRa = SUR = SUR · AV GRa in
this case. If in case b the session model is changed to any other

RR = VU * CRR

time

VU

time

VU

individual requests
Scale think time by a

Fig. 7. The Request Rate (RR) for a fixed number of virtual users (V U)
changes with the think time. As one sees, the request density is lower in the
lower picture.

user model so that each session issues on average x request
AV GRb = xAV GRa, then ceteris paribus the request rate
changes by a factor of x as well RRb = xRRa so we have:

RRb = xRRa = xSUR ·AV GRa

= SUR · xAV GRa = SUR ·AV GRb

Fig:RRequalsSURtimesAVGR

time

session nr

dT

Fig. 8. RR for fixed SUR and varying AV GR.

Since b is the general case, we have proven the equa-
tion. This argument is visualized in Fig. 8. The horizontal
bars are sessions, and we assume that they have a constant
CRR. Hence the longer sessions have a proportionally higher
AV GR. The law can also be illustrated by assuming a fixed
AV GR, AV GD, CRR, and varying SUR. This is shown
in Fig. 9. The starting user rate is the slope, i.e. the first
derivative of the most recent session number n. Fixed CRR
implies RR ∼ V U . In the case of a larger SUR, i.e. a steeper
slope, each small time interval dT intersects more sessions and
therefore contains more requests. Hence RR is proportional to
SUR.

Now we see that globally scaling all think times ceteris
paribus does not change RR, since the duration of the single
user session is irrelevant after start-up. The equation contains
AV GR and not AV GD. This behavior of the load test is
exactly the behavior of the real system; for the real system, the
same equation holds. We now consider the second condition of
realism. If we change the user model by, say, halving AV GR,
and if we assume for simplicity that all requests create the
same load, then in both, the load test and the real system, the

155155155155

Fig:RRequalsSURtimesAVGR

time

n
(session

Nr)

n= SUR
.

dT dT

Fig. 9. RR for fixed AV GR, AV GD and varying SUR.

load will be halved. According to our definition, this indicates
that workload models with usage intensity parameter SUR are
model-realistic. In fact, workload models with usage intensity
parameter SUR have other advantages. RR is not sensitive
to server load, even if the think time of the session clients
would be sensitive to the server load. Even if the actual user
agents are programmed in a way that they have AV GD that
are dependent on the server response, if SUR is kept constant,
then the load is constant. This is because V U is changed
appropriately if we scale the think times. Taking all three
previous laws together we have:

V U = SUR ·AV GD

We sum up the laws in the following table. This set of
laws is redundant, in that exactly one of the equations can be
deleted, since every equation can be derived from the other
three. It is deliberately presented in redundant form because
for that same symmetry reason it would be to some extent
arbitrary to choose one the laws and delete it.

traditional parameters RR = V U · CRR
session metrics AV GR = AV GD · CRR
request rate RR = SUR ·AV GR
virtual users V U = SUR ·AV GD

We can now discuss whether usage intensity parameters RR
and V U are model realistic. First, we assume constant V U .
Figure 7 shows what happens after globally scaling all think
times in the stochastic formchart by factor a: this changes
CRR by factor a, and also RR. The scaling of think times
hence changes the load on the system under test if VU is
constant. On the real system however the load is not expected
to change in a typical scenario where the think time changes,
for example if a think time is shortened by improved page
readability. If all users simply take less time to think, but
still do the same number of requests, RR does not change!
Instead, on the real system V U would change because of the
law V U = SUR · AV GD demonstrated in Fig. 8. Hence
realism is violated for a workload model with usage intensity
parameter V U . This means that V U is not model-realistic.

We now discuss whether a workload model with usage
intensity parameter RR is model-realistic. We note that for
such models the request rate is trivially kept constant if think
times are scaled. We now consider the second condition of
realism: if we change the user model by reducing AV GR and
we assume for simplicity that all requests create the same load,

then the load during the load test remains constant if we have
fixed RR. But on the real system, the load would decrease.
Hence workload models with usage intensity parameter RR
are not model-realistic.

D. Example of Non-Model-Realistic Load Test Results

We discuss now an example showing that an unrealistic
workload model, if applied naively, can create misleading
load test results. We take as example an enrollment system
for university students. Using the system is mandatory for
students. We compare the behavior of the different load test
approaches during maintenance of the application. We assume
that a workload model with usage intensity parameter RR is
used, that the system performance is sufficient, and that every
student performs 10 requests during enrollment with only the
last one creating a heavy load on the system. Now imagine
the user interface was improved, and only two requests per
user are necessary: the first one being lightweight, and the
last one causing the same heavy load as before. If we naively
change only the user model in the workload model with RR,
and not the usage intensity parameter RR itself, then the load
on the system under test would increase roughly by factor
5 and could bring down the system. In the real application
the system load would not increase, but rather decrease. The
problem remains if the workload model is set up with usage
intensity parameter V U . In contrast, if the workload model
is set up with the realistic usage intensity parameter SUR,
the system load correctly decreases in the load test, hence
resembling the behavior of the running application.Fig:peakolad

time

session
 nr

t1 t2

SURpeak

SURlow

Fig. 10. RR for fixed AV GR and varying SUR.

We said that we assume negligible server response times.
The question arises whether non-negligible server response
times, as they arise during heavy load, make this argument
stronger or weaker. Figure 10 shows a scenario with non-
constant load. The light gray extensions of the sessions around
t2 indicate session delays by non-negligible server response
times. They are an observed variable. The intersections of the
vertical lines at t1 and t2 with the sessions indicate the values
of V U at these times. V U is modified by the observed session

156156156156

delay – in simple terms this is visible because t2 cuts the light
gray area of sessions. It is therefore a bad control variable.
SUR is the slope of the starting edge of the user sessions.
SUR is purely a controlled variable. If the longer session
duration would not only be caused by longer server response
time but also by more requests per session, perhaps due to
more error cases in each session, then the usage intensity
parameter RR would be similarly affected as V U . However,
the details of this argument are beyond the scope of this
discussion.

As we see, workload models with usage intensity parameters
RR or V U can deliver spurious results if the parameters are
not changed with every change to the user model. These
changes can theoretically be done, but they would require
exceptional insight into the effects of the above equations or
lucky intuition to the same effect. In contrast, the correct load
test behavior comes for free in the workload model with the
realistic usage intensity parameter SUR.

VI. RELATED WORK

One distinct difference between the form-oriented load test-
ing model and other load testing approaches is their purpose.
Other load testing approaches are concerned with load testing
only, but the form-oriented model is in fact an analysis model
that is used for the development of enterprise applications.
The same form-oriented model can be used as a basis for sys-
tem specification, forward and reverse engineering, and load
testing. This means that changes of the system specification
result directly in changes of load testing specifications, i.e. the
correlation between the two makes maintenance of the load
test models a lot easier.

In many cases, load-testing is still done by hand-written
scripts that describe the user model as a subprogram [26],
[28]. For each virtual user, the subprogram is called, possibly
with a set of parameters that describe certain aspects of the
virtual user’s behavior. Often the users are also modeled by a
multimodel, i.e. a model consisting of several submodels for
different categories of users, which defines a subprogram for
each user category. Data is either taken from a set of predefined
values or generated randomly. With regard to input data this
approach has a certain degree of randomization, however, user
behavior itself mainly remains a matter of repetition. This
approach does not support the degree of abstraction and formal
specification of the form-oriented model. It is purely script
driven and suffers, like any hand-written program, from being
prone to programming errors. The load engine itself has to be
developed and brought to a mature state, which is usually a
very time consuming task.

Products for industry-strength load testing [23] such as
Mercury Interactive’s LoadRunner [21] take a similar script-
driven approach. LoadRunner offers a visual editor for end-
user scripts. No conventional programming is needed, and
the scripts describe the load tests in a more domain-specific
manner. End-user scripts are run on a load engine that takes
care of load balancing and monitoring. Most current load
testing tools operate in a similar manner. A detailed discussion

of bottleneck problems is given in [3], where the authors also
present a nontrivial implementation for load test clients. More
information about load test practice can be found in [14], [15],
[20], [27].

There already exist model-based approaches for testing of
web applications, e.g. in [2], [19], [29], but they usually focus
on the generation of test cases for functionality testing. For
example, finite-state models with constraint annotations for
form parameters have been used for generating test cases [2]. It
has also been shown that functional test cases can be efficiently
generated based on real user session data [18].

Different studies have shown that stochastic models, in
particular Markov chains, provide benefits for functional test-
ing [17], [29], [30]. They can be used for the automatic
generation of large randomized test suites with a high coverage
of operational paths. For example, in [25], [29] analysis
models are used for regression testing in web site evolution
scenarios. The model for user navigation is a stochastic one
similar to Markov chains, but all user input data has to be
given in advance for the system to work. While this may be
appropriate for regression testing, it is not flexible enough for
performing load tests. A Markov chain model like that in [29],
[30] can only be used for a system where identical inputs cause
identical state transitions, which is not the case in most web
applications that rely on session data or a modifiable database.
Consider, for example, an online ticket reservation system:
after a specific place has been booked, it is not available
any more; thus, repeating the same inputs will cause different
results.

The motivation of using a statistical model based on data
about real user behavior for realistic load testing of web
sites was already anticipated in [17], but their model fails to
distinguish the user behavior, which can only be adequately
modeled as a stochastic process, from the system behavior,
which is given by the implementation. Transforming a state
model of a web site directly into a Markov chain is not suf-
ficient and does not account for the system’s behavior, which
is usually not stochastic. The form-oriented model offers page
recognition specifications to deal with this problem. In [32]
it was shown that creation of a simple stochastic user model
with real user data represents a valid approach for load testing.
However, most approaches offer no model for specifying user
behavior over time, and it is usually neglected that form choice
probabilities may change during a session.

From the perspective of queuing theory [12], a web appli-
cation can be regarded as a queuing system, with requests
being queued and processed by sending back responses. The
workload models discussed in Section V influence the arrival
patterns in the system. While workload models such as starting
user session rate are deterministic, arrivals at the server actions
are stochastic due to random variables such as the user think
time. In order to model a web application as a queuing
system, a service pattern for the web application would have
to be specified. This would be very hard, as the service time
probabilities of the server actions may influence each other
due to contention for resources, e.g. lock contention in a

157157157157

database. The service pattern of an action, in turn, influences
the arrival patterns at subsequent actions. Load testing allows
us to explore the performance of a web application empirically,
rather than doing so analytically using a complex queuing
theoretical approach. The stochastic formchart model is not
a queuing system at all because it models the actions of a
single user, and thus does not involve any queues. If we were
to model web application as a queuing system, the stochastic
formchart model and the workload model would be among
the factors influencing the interarrival-time distributions of the
server actions.

VII. CONCLUSION

We discussed the form-oriented stochastic load testing ap-
proach, and showed that with appropriate annotations all the
information necessary for realistic load testing can be specified
in the context of a form-oriented analysis model:

• Stochastic user navigation, with the possibility to make
stochastic behavior dependent on the session history

• Stochastic form parameter generation and recognition of
returned pages

• Appropriate workload parameters
Stochastic load testing has advantages over load testing with
pre-recorded session data. It is a lot less work to create load
tests with a high coverage of the operational paths of the ap-
plication, and helps to reveal unanticipated bottlenecks. Some
popular workload models such as number of virtual users are
not suitable for load testing, and our work shows that the user
session starting rate is a more realistic workload parameter.
This paper focused on submit-response style systems, with
web applications as the best known members of this class.
The advantage of our methodology is that it is a technology-
independent model that can be applied to submit-response
style systems built on web services as well. The basic stochas-
tic model and the findings on usage intensity parameters are
applicable to the whole range of service oriented systems.

REFERENCES

[1] Tarek F. Abdelzaher, Kang G. Shin, and Nina Bhatti. Performance
guarantees for web server end-systems: A control-theoretical approach.
IEEE Transactions on Parallel and Distributed Systems, 13(1):80–96,
2002.

[2] A.A. Andrews, J. Offutt, and R.T. Alexander. Testing web applications
by modeling with FSMs. Software and Systems Modeling, 4(3):326–345,
2005.

[3] Gaurav Banga and Peter Druschel. Measuring the Capacity of a Web
Server under Realistic Loads. World Wide Web, 2(1-2):69–83, 1999.

[4] Paul Barford and Mark Crovella. Measuring Web Performance in the
Wide Area. SIGMETRICS Perform. Eval. Rev., 27(2):37–48, 1.99.

[5] Y. Cai, J. Grundy, and J. Hosking. Synthesizing client load models for
performance engineering via web crawling. In ASE 2007 – Proceedings
of the 22th International Conference on Automated Software Engineer-
ing, pages 353–362, 2007.

[6] Kevin Curran and Connor Duffy. Understanding and Reducing Web
Delays. Int. J. Netw. Manag., 15(2):89–102, 2005.

[7] D. Draheim, J. Grundy, J. Hosking, C. Lutteroth, and G. Weber. Realistic
load testing of web applications. In CSMR’06: Proceedings of the
10th European Conference on Software Maintenance and Reengineering.
IEEE Press, 2006.

[8] Dirk Draheim, Elfriede Fehr, and Gerald Weber. JSPick - a server pages
design recovery. In 7th European Conference on Software Maintenance
and Reengineering, LNCS. IEEE Press, March 2003.

[9] Dirk Draheim, Christof Lutteroth, and Gerald Weber. A Source Code
Independent Reverse Engineering Tool for Dynamic Web Sites. In
9th European Conference on Software Maintenance and Reengineering.
IEEE Press, 2005.

[10] Dirk Draheim and Gerald Weber. Form-Oriented Analysis - A New
Methodology to Model Form-Based Applications. Springer, October
2004.

[11] Dirk Draheim and Gerald Weber. Specification and Generation of Model
2 Web Interfaces. In APCHI 2004 - 6th Asia-Pacific Conference on
Computer-Human Interaction, LNCS 3101. Springer, June 2004.

[12] D. Gross and C.M. Harris. Fundamentals of queueing theory. Wiley,
1998.

[13] R.G. Heikes, D.C. Montgomery, and R.L. Rardin. Using common
random numbers in simulation experiments–an approach to statistical
analysis. SIMULATION, 27(3):81, 1976.

[14] Arun K. Iyengar, Mark S. Squillante, and Li Zhang. Analysis and
Characterization of Large-scale Web Server Access Patterns and Per-
formance. World Wide Web, 2(1-2):85–100, 1999.

[15] Raj Jain. The Art of Computer Systems Performance Analysis. Wiley,
1991.

[16] K. Jajuga, Andrzej Sokoowski, and Hans Hermann Bock. Classification,
Clustering and Data Analysis. Springer, August 2002.

[17] Chaitanya Kallepalli and Jeff Tian. Measuring and Modeling Usage
and Reliability for Statistical Web Testing. IEEE Trans. Softw. Eng.,
27(11):1023–1036, 2001.

[18] Srikanth Karre. Leveraging user-session data to support web application
testing. IEEE Trans. Softw. Eng., 31(3):187–202, 2005. Member-
Sebastian Elbaum and Member-Gregg Rothermel and Member-Marc
Fisher II.

[19] David Chenho Kung, Chien-Hung Liu, and Pei Hsia. An Object-
Oriented Web Test Model for Testing Web Applications. In COMPSAC
’00: 24th International Computer Software and Applications Confer-
ence, pages 537–542, Washington, DC, USA, 2000. IEEE Computer
Society.

[20] Daniel A. Menascé. Load Testing of Web Sites. IEEE Internet
Computing, 6(4):70–74, July 2002.

[21] Mercury Interactive Corporation. Load Testing to Predict Web Perfor-
mance. Technical Report WP-1079-0604, Mercury Interactive Corpora-
tion, 2004.

[22] J. Myllymaki. Effective Web data extraction with standard XML
technologies. Computer Networks, 39(5):635–644, 2002.

[23] Newport Group Inc. Annual Load Test Market Summary and Analysis,
2001.

[24] Object Management Group. OCL 2.0 Specification, June 2005.
[25] Filippo Ricca and Paolo Tonella. Analysis and Testing of Web Appli-

cations. In ICSE ’01: Proceedings of the 23rd International Conference
on Software Engineering, pages 25–34, Washington, DC, USA, 2001.
IEEE Computer Society.

[26] Andreas Rudolf and Raniner Pirker. E-Business Testing: User Percep-
tions and Performance Issues. In Proceedings of the First Asia-Pacific
Conference on Quality Software. IEEE Press, 2000.

[27] Jonathan C. C. Shaw, Colin G. Baisden, and Will M. Pryke. Performance
Testing – A Case Study of a Combined Web/Telephony System. BT
Technology Journal, 20(3):76–86, 2002.

[28] B.M. Subraya and S.V. Subrahmanya. Object Driven Performance
Testing of Web Applications. In Proceedings of the First Asia-Pacific
Conference on Quality Software. IEEE Press, 2000.

[29] Paolo Tonella and Filippo Ricca. Statistical Testing of Web Applications.
Software Maintenance and Evolution, 16(1-2):103–127, April 2004.

[30] James A. Whittaker and Michael G. Thomason. A Markov Chain Model
for Statistical Software Testing. IEEE Trans. Softw. Eng., 20(10):812–
824, 1994.

[31] World Wide Web Consortium. Document object model (DOM) level 1
specification, 1998.

[32] Lei Xu and Baowen Xu. Applying Users’ Actions Obtaining Methods
into Web Performance Testing. Journal of Software (in Chinese),
(14):115–120, 2003.

[33] Lei Xu, Baowen Xu, and Jixiang Jiang. Testing Web Applications
Focusing on their Specialties. SIGSOFT Softw. Eng. Notes, 30(1):10,
2005.

158158158158

