Monitoring and Analyzing Influential Factors of
Business Process Performance

Branimir Wetzstein® Philipp Leitner!
*Institute of Architecture of Application Systems
University of Stuttgart
Stuttgart, Germany
lastname @iaas.uni-stuttgart.de

Abstract—Business activity monitoring enables continuous ob-
servation of key performance indicators (KPIs). However, if
things go wrong, a deeper analysis of process performance
becomes necessary. Business analysts want to learn about the
factors that influence the performance of business processes and
most often contribute to the violation of KPI target values, and
how they relate to each other. We provide a framework for per-
formance monitoring and analysis of WS-BPEL processes, which
consolidates process events and Quality of Service measurements.
The framework uses machine learning techniques in order to
construct tree structures, which represent the dependencies of
a KPI on process and QoS metrics. These dependency trees
allow business analysts to analyze how the process KPIs depend
on lower-level process metrics and QoS characterisitics of the
IT infrastructure. Deeper knowledge about the structure of
dependencies can be gained by drill-down analysis of single
factors of influence.

I. INTRODUCTION

Business Process Management (BPM) encompasses a set of
methods, techniques, and tools for modeling, executing and
analyzing business processes of an organization [1]. Recently,
BPM has been supported by a set of tools which have been
integrated in order to support the business process lifecycle in
a unified manner. Thereby, business analysts create a business
process model, which is then refined by IT engineers to an
executable model. The executable process model is deployed
to a process engine, which executes the process by delegating
tasks to humans and services. The execution of processes is
often based on a Service Oriented Architecture [2] (SOA). In
that case, the business process model is typically implemented
as a service composition, for example in WS-BPEL [3].

An important aspect of the BPM lifecycle is the continuous
supervision of business goals and timely measurement of
business process performance. This is typically supported by
business activity monitoring (BAM) technology, which enables
continuous, near real-time monitoring of processes based on an
eventing infrastructure [4]. Analysts define Key Performance
Indicators (KPIs) and their target values based on business
goals (e.g., “order fulfillment lead time < 3 days”). KPIs are
influenced by a set of Process Performance Metrics (PPM) [5],
which are metrics based on process runtime data (e.g., “number
of orders which can be served from inhouse stock”). PPMs are
on a different level of granularity than KPIs: a KPI measures the

Florian Rosenberg!

Ivona Brandic! Schahram Dustdar’ ~ Frank Leymann*
Distributed Systems Group
Vienna University of Technology
Vienna, Austria

lastname @infosys.tuwien.ac.at

success of the process as a whole, while a PPM captures only
a single facet of the process, which is usually not interesting
in isolation. Additionally, KPIs are influenced by technical
parameters, i.e., the Quality of Service (QoS) metrics of the
SOA (e.g., the availability of the process engine or the response
time of Web services).

Business Activity Monitoring provides useful information on
KPI achievement. However, the focus is set on the “what” rather
than the “why” question. When KPIs do not meet target values
the business analysts are interested in factors that cause these
deviations. Since KPIs potentially depend on numerous lower-
level PPMs and QoS metrics, these causes can be manifold,
and are rarely obvious even to domain experts. In this paper we
present an integrated framework for run-time monitoring and
analysis of the performance of WS-BPEL processes. Our main
contribution is the presentation of a framework for dependency
analysis, a machine learning based analysis of PPMs and QoS
metrics, with the ultimate goal of discovering the main factors
of influence of process performance (i.e., KPI adherence). These
factors are represented in an easy-to-interpret decision tree
(dependency tree). We present the general concepts of our
analysis framework, and provide experimental results based
on a purchase order scenario, identify cases when dependency
trees do not show expected results, and explain strategies how
these problems can be coped with.

The rest of the paper is organized as follows. In Section II
we present a scenario which we use for explaining our concepts
and for experimentation and explain the research issues that
this paper deals with in more detail. Section III explains
the main ideas of our framework for runtime monitoring
and dependency analysis. Section IV explains in detail the
monitoring of influential factors, which is then followed by the
description of the dependency analysis in Section V. Section
VI describes the implementation of our prototype based on the
scenario and experimental results, which are also extensively
interpreted. Section VII discusses important related work and
Section VIII finally concludes the paper and presents some
future research directions.

Banking

,—{GetPaymentPrefs}»[Authorize]—»[Credit]ﬁ

Receive PO Check Availability in
Warehouse
? All available?

T

Wait for $upplier?

Processing

o o

+-+@)

Order Processing

Shipping

X Receive Delivery
_{ Package]—{ Ship PO]—’[Notification }

v

Contact Suppliers

Supplier Contact

Cancel Process
H

Receive Delivery
Notification
Can Deliver?

Fig. 1.

II. SCENARIO

In this section we present a scenario which we use in the
following sections for explaining our concepts and which we
have implemented and used for experimentation purposes. We
have chosen a purchase order scenario consisting of a customer,
a reseller, its two suppliers, a banking service, and a shipping
service. The business process of the reseller is illustrated in the
BPMN diagram shown in Figure 1. The reseller offers certain
products to its customers. It holds a certain part of the products
in stock and orders missing products from suppliers if necessary.
The customer sends a purchase order request with details about
the required products and needed amounts to the reseller. The
latter checks whether all products are available in stock. If some
products are not in stock, they are ordered from suppliers. Note
that the second supplier is contacted only if the first (preferred)
supplier is not able to deliver. If the purchase order can be
satisfied, the customer receives a confirmation, otherwise the
order is rejected. The reseller waits, if needed, for the supplier
to deliver the needed products. When all products are in place,
the warehouse packages the products and hands them over to
the shipment service, which delivers the order to the customer,
and finally notifies the reseller about the shipment. In parallel
to the packaging and shipment, the payment subprocess is
performed. For that, the customer decides on the payment style
and gives its payment details. The reseller contacts a banking
service which authorizes the customer and credits the agreed
amount. From the point of view of the reseller, a typical KPI
is the order fulfillment lead time (duration from receiving the
customer order until shipment is received by the customer), as
defined in the Supply-Chain Reference Model (SCOR) [6].

Assuming that this process is implemented using WS-BPEL,
the KPI order fulfillment lead time is potentially influenced
by a number of technical and non-technical factors, such
as the response time and availability of Web services, the
customer, or the products ordered (Figure 2). In Table I, we have
provided an (incomplete) list of potential factors of influence
for the KPI from our scenario. Factors can include simple
facts from the business process instance, such as a customer

Reseller Process Model in BPMN

QoS

Service
Availabilty,
Response
Times, ...

p—

25% @75%

Purchase measured by

Order
Process

Lo

Order
Fulfillment
Lead Time

PPMs

Customer,]
Products,
Availabilty in
Stock, ..
R

AR AAR AN AR AR AAD

Fig. 2. KPIs, PPMs and QoS metrics

identifier, a product type, or information about which branch of
a process has been executed (e.g., whether the alternative branch
“ordering from external suppliers” needed to be executed). All
these facts are accessible from the process instance, therefore,
we have not given a calculation formula for these PPMs in the
table. However, PPMs on a different level of granularity are also
possible, such as the duration of a whole subprocess. Finally,
we have given a few simple examples of QoS metrics, which
may influence the KPI performance, such as the availability
of the process engine or single services that the process relies
on, or the response time of these services. A full discussion
of possible QoS metrics is out of scope of this paper. The
interested reader may refer e.g., to [7] for a more complete
description of possible QoS metrics and their measurement.
For completeness, we have also provided the possible range for
these example influential factors. Generally, factors of influence
can either be nominal values (i.e., take on one of a finite number
of predefined values), or numeric values (e.g., integer or real
values).

However, it is not obvious even to experts which of these
factors actually influence the KPI most, and what the structure
of the dependencies between factors of influence is (i.e., some
factors are in turn influenced by others, such as the duration of
the payment subprocess which is again influenced by service
response times). These questions are not answered sufficiently
by today’s BAM dashboards — they can only provide status

Name Type Calculation Formula Range

Customer ID PPM {Customery, Customers, ...}
Product Type PPM {Producty, Products, ...}
Shipped from stock PPM {true, false}

Duration of Payment Subprocess ~PPM tend — thegin [0; o]

Availability Process Engine QoS % [0;1]

Availability Banking Service QoS Hpatlatle [051]

Response Time Banking Service QoS tend — thegin [0; o0]

TABLE I
POTENTIAL INFLUENTIAL FACTORS OF KPI PERFORMANCE

information about KPIs, but do not allow further analysis of
the main causes for violations. Our approach supports this
kind of analysis, which we refer to as dependency analysis
(i.e., the analysis of dependencies of KPIs to PPMs and QoS
metrics). Furthermore, more detailed information about internal
dependencies between factors of influence can be gained
by drill-down analysis, i.e., recursively applying dependency
analysis to single factors of influence.

III. FRAMEWORK OVERVIEW

In this section we describe the concepts of our framework
for monitoring and analyzing factors of influence of business
process performance. A high-level overview of the main
components is given in Figure 3. In our framework we
distinguish three different layers.

()
£
=
c
=)
@
§ Services '<~__>
S
o
Q
Publish/Subscribe
QoS Channel
Monitor
()] Extract &
S Correlate
S A4
ES]
c Monitoring
g Tool
BAM
Dashboard Metrics
Database
2
g, Process
g Analyzer — Data Flow
< ----> Invocation
Fig. 3. Monitoring and Analysis Framework Overview

In the process runtime layer, a WS-BPEL business process
is defined and executed. The process can be executed in a

standard WS-BPEL compliant engine, as long as the engine is
able to emit the process information necessary for calculating
PPMs in form of process events.

In the monitoring layer, information about the running
business process and the services it interacts with is collected
in order to monitor KPIs, PPMs, and QoS metrics. Note that
we assume that the user has defined a set of potential influential
factors he wants to monitor for a KPI in order to ensure that
corresponding metric data is available later on for analysis. KPIs
and their potential infuential factors, consisting of both process
performance metrics (PPMs) and QoS metrics, are modeled as
part of a Process Metrics Definition Model (PMDM). Those
metric definitions are deployed to the corresponding monitoring
infrastructure components: QoS metric measurement directives
to a QoS monitor(s); event definitions needed for PPM
calculation to the WS-BPEL engine; and the whole PMDM
to the monitoring tool. During process execution time, the
QoS monitor and WS-BPEL process engine publish events
to a publish/subscribe channel which the monitoring tool is
subscribed to. The PPM and QoS metric values are calculated,
stored in the metrics database for later analysis, and displayed
in the BAM dashboard.

In the process analysis layer, the collected metrics informa-
tion is analyzed by the process analyzer component. When the
user is interested in performing a dependency analysis of KPIs,
i.e., analyze the influential factors, the process analyzer gathers
the needed metric data from the metrics database, prepares it
for data mining, and uses a decision tree algorithm to generate
a dependency tree which shows the influential factors of the
KPI. Outcomes of the analysis are again displayed in the
dashboard to the users of the system, who can use this resulting
information to optimize the business process.

IV. MONITORING OF INFLUENTIAL FACTORS

We distinguish in our approach between PPMs and QoS
metrics, which are supported by different monitoring mech-
anisms. PPMs are measured based on business events (e.g.,
OrderReceivedEvent) which are published by the WS-BPEL
engine and other involved systems as the process instances
are executed (Section IV-A). KPIs are specified over PPMs
by providing a predicate (boolean-valued function) over their

values which evaluates to true if the target value is achieved,
e.g., order fulfillment lead time < 2 days. QoS metrics are
used for measuring the IT characteristics of the involved
systems (e.g., availability and response time of Web service
operations) and are provided either by dedicated QoS monitors
or instrumentations of involved systems (Section IV-B).

A. PPM Monitoring

PPMs are metrics defined based on runtime events of
processes. In the following, we focus on runtime events of
WS-BPEL service orchestrations, but in general our approach
supports arbitrary events of information systems participating
in the business process.

PPM monitoring encompasses three phases: modeling,
deployment, and monitoring. In the modeling phase, PPM
definitions are specified in an XML file as part of the PMDM. A
PPM definition specifies the name, description, unit, data type,
and value calculation of the metric. When specifying PPMs we
can distinguish between atomic and composite metrics. Atomic
metrics are specified based on events which are published
by the WS-BPEL engine. The metric value calculation of
an atomic metric specifies how the value of the metric is
retrieved from process event data (e.g., timestamp or a process
data element). Composite metrics are calculated using diverse
functions (arithmetic, aggregation, relational) based on atomic
metrics and other composite metrics. When the PMDM is
to be deployed to the monitoring tool, we generate event
filters which subscribe to the events emitted by the process
engine. Most engines support an event publishing mechanism,
which in most cases is also to some extent configurable on
which events to publish. During process execution, the PPM
monitor receives events via event listeners which are subscribed
to the publish/subscribe channel which the process engine
uses for publishing events, and then calculates atomic metrics
using event filters. After calculation of an atomic metric, its
value is saved in the metrics database with a reference to the
corresponding process instance. This reference is needed for
later analysis. In the next step, all composite metrics which
use that atomic metric are calculated in a recursive fashion.

In the following, we explain the PPM monitoring concepts
based on a sample PPM from our scenario. Listing 4 shows a
definition of an atomic metric in the PMDM which retrieves
the information from a process variable on whether the supplier
can deliver ordered products. To define an atomic PPM the user
can use a set of predefined functions for measuring duration
of activities and between activities, count the occurrence of
activity executions, extracting the state of an activity or process,
or access process data variables. The parameters of these
predefined functions are linked to elements of process models
such as a process activity, a data variable, or the process itself,
and specify in addition the state of the process element when
it is to be measured (e.g., started, halted, completed). In our
example, we use a variable function which references an el-
ement containing that information in the corresponding process
variable orderItemsResponseMessage and the activity
orderItemsFromSupplierl at which the variable value

<ppm id="Supplierl_can_Deliver™
<name>Supplierl_can_Deliver</name
<dataType>boolean</dataType>
<calculation>
<calc:variable activity="orderItemsFromSupplierl”
variable="orderItemsResponseMessage” />
</calculation>

0 N U AW —

<attachments>
9 <activityAttachment
10 parameterName="orderItemsFromSupplierl”
11 xlink:type="simple”
12 xlink:href="PurchaseOrderProcess.bpel#xpointer (
13 /1% [@name="orderltemsFromSupplierl"]) >
14 <activityStatus>completed</activityStatus>
15 </activityAttachment>
16 <variableAttachment
17 parameterName="orderltemsResponseMessage”
18 xlink:type="simple”
19 xlink:href="loanApprovalProcess.bpel#xpointer (
20 // %[@name=" ; orderltemsResponseMessage" ;]) ">
21 <variablePart>deliveryPossible</variablePart>
22 </variableAttachment>
23 </attachments>
24 </ppm>

Fig. 4. Sample PPM Definition

is to be read (lines 5-6). In the attachment s block the links
to corresponding WS-BPEL process elements are defined (lines
8-23). Thereby, we use XLink! and XPointer? to point to the
XML elements in the WS-BPEL file. For example, we reference
the activity with name orderItemsFromSupplierl in the
PurchaseOrderProcess.bpel XML file (lines 12-13).
In addition, we specify that at the state completed of that
activity the corresponding event should be gathered (line 14).
Note that we neglect here that activities can be performed
several times per process instance if they are part of a loop;
in that case one would have to additionally specify in which
loop execution one is interested in.

When the PPM definition is to be deployed to the monitoring
tool, assuming the usage of the Apache ODE BPEL Engine?
(which we have also used for our scenario implementation),
an event filter for the events ActivityExecEndEvent
and VariableModificationEvent is generated. The
first event is published when the corresponding activity has
completed; it contains the process model name, the activity
name, and identifiers of the corresponding process instance
and activity instance. The second event is sent whenever a WS-
BPEL variable has changed and contains the process variable
data, the name of the process model, the name of the variable,
and a process instance identifier.

The task of an event filter is to calculate an atomic metric
as specified in the PPM definition based on received event
data. Therefore, it has to deal with event correlation and
process instance management. In the example above, for
each process instance, the event filter collects (potentially
more than one) VariableModificationEvent until it
receives an ActivityExecEndEvent, and then chooses
the last received VariableModificationEvent in order

Thttp://www.w3.org/TR/xlink/
Zhttp://www.w3.org/TR/xptr-xpointer/
3http://ode.apache.org/

<gm id="PO_Process_Availability ">

1
2 <name>PO_Process_Availability</name

3 <dataType>integer</dataType>

4 <calculation>

5 <availability>

6 <endpoint>

7 http: //localhost:8082 /.../ poProcess?wsdl

8 </endpoint>

9 <testFrequencyPerMinute>20</testFrequencyPerMinute>

10 <startTimePpm idref="PO_Process_Started_Time” />
11 <endTimePpm idref="PO_Process_Completed_Time” />
12 </availability>

13 </calculation>

14 </qm>

Fig. 5. Sample QoS Metric Definition

to retrieve the most recent content of the needed process data
variable. Thereby, those events are correlated using the process
instance identifier which is part of both types of events. Note
that in case of non-BPEL events the correlation could not be
done based on the technical process identifiers (assigned by
the BPEL engine), but based on a business identifier such as
the purchase order identifier.

B. QoS Metrics Monitoring

The business processes we focus on in this paper are

implemented as service compositions running on top of a SOA.

Such processes have several dependencies on IT components
and their QoS characteristics, which potentially influence
business process performance. In our context there are three
possibilities of measuring QoS: (1) probing by a separate QoS
monitor, such as the one described in [7], (2) instrumentation of
the WS-BPEL engine, or (3) instrumentation of the WS-BPEL
process (evaluating QoS parameters using PPMs, e.g., response
times of Web services can be estimated through WS-BPEL
activity durations). In our scenario implementation, we use
an external QoS monitor for measuring the availability of the
process engine and partner Web services of the WS-BPEL
process. The QoS monitor polls the corresponding endpoints
and emits QoS events which contain information on their
availability at a certain point in time. Response time is estimated
based on the duration of the corresponding WS-BPEL invoke
activity.

Just like PPMs, QoS metrics are defined in the PMDM.

Listing 5 shows the definition of the availability metric for
the purchase order process from our scenario. Thereby, we
assume that availability is measured by an external QoS monitor
by polling the corresponding Web service endpoint with
a certain testFrequencyPerMinute. The QoS monitor
will thus emit 20 QoS events per minute specifying whether
the process was available. As the case for PPMs, an important
aspect in QoS metric definition is their correlation with process
instances. When a QoS metric is evaluated, it has to be assigned
to process instances and/or activity instances it affects. In this
context, there is a technical difference between an external
QoS monitor and the instrumentation approaches considering
the correlation of process instances and QoS events. As the
instrumentation is internal to the engine, it has access to the

context of the process instance. Thus, it is possible to write the
process instance (and if needed activity instance) identifier as an
attribute into the QoS event which can then be used to correlate
the QoS event with the process instance. For example, in case of
a response time measurement for an invoke activity, the engine
instrumentation can include the process instance identifier
and the activity instance identifier into the QoS measurement
event. In case of an external QoS monitor this is not possible.
Thus, in order to be able to correlate QoS measurements
with the affected process instances for our sample metric, we
specify in addition which QoS measurements (namely those
between the start time PO_Process_Started_Time and
completion time PO_Process_Completed_Time of the
process instance) are to be taken into account when calculating
the availability for a specific process instance.

V. ANALYSIS OF INFLUENTIAL FACTORS

The main idea of dependency analysis is to use historical
process instances to determine the most important factors that
dictate whether a process instance is going to violate its KPIs
or not. The input of this analysis are stored metric values of
process instances, which are available in the metrics database.
The output of dependency analysis is a decision tree that
incorporates the most important factors of influence of process
performance. We refer to this tree as dependency tree, because
it represents the main dependencies of the business process on
technical and process metrics, i.e., the metrics which contribute
“most often” to the failure or success of a process instance in
respect to a KPI.

A. Background

In our approach we use decision tree learning, a well-
established machine learning technique [8] for construction
of dependency trees. Decision tree classifiers are a standard
technique for supervised learning (i.e., concepts are learned
from historical classifications, in our case dependency informa-
tion is learned from monitoring of previous process instances).
Decision trees follow a “divide and conquer” approach to
learning concepts — they iteratively construct a tree of decision
nodes, each consisting of a test; leaf nodes typically represent
a classification to a category. In our case, only two categories
exist (KPI has been violated, or not). One big advantage of
decision tree algorithms in our context is their non-parametric
nature: decision trees need only a very limited set of parameters
(in the simplest case none) to work correctly, and can therefore
be expected to provide useful results from the first run, without
the need for extensive experiments with different parameter
sets. Therefore, learning of dependency trees is completely
automated and transparent to the user, allowing a business
analyst to carry out dependency analysis with good results
out of the box. We use the well-known C4.5 [9] and alternate
decision tree (ADTree) [10] techniques, since their quality is
well established in the community. For decision tree training
we use 10-fold cross validation [8] to avoid having to split
our historic process data into training, test and validation sets,
and to estimate the classification error of the decision tree.

The classification error allows the business analyst to measure
the quality of the dependency tree, i.e., how exact the tree
represents the actual structure of real-world dependencies.

B. Creation of Dependency Trees

The inputs and outputs of dependency analysis are sketched
in Figure 6. The analysis takes a set of historical process
instance metric values as input (training set), and produces a
tree representation of the internal dependencies.

c Time il .
D Banking Service Banking Service "
1234 312ms 0.98 FAIL /
2548 148ms 0.98 SUCCEED/

/

!
5

&

Decision Tree Learning

Response Time
Banking Service

{ KPI fulfilled)

Fig. 6. Dependency Analysis Input and Output

The analysis consists of the following phases: (1) KPI
selection and optional adjustment of analysis parameters, (2)
creation of the training set, (3) decision tree learning, (4)
displaying the result tree in the dashboard. All phases but
the first one are performed automatically. In the first phase,
the user chooses a KPI (from the PMDM) he wants to
analyze. Optionally he can adjust the following parameters
(or alternatively use default values): the KPI target value
(and corresponding predicate); the analysis period and/or how
many process instances in that period should be analyzed (e.g.,
last 1000); a subset of metric types from the PMDM which
should be used as potential influential factors (default value:
all); the decision tree algorithm which should be used. In the
second phase, the creation of the training set is then performed
automatically as follows: for each process instance which has
begun and finished in the analysis period, the corresponding
PPM and QoS metric values are gathered from the metrics
database and used as attributes of a record of the training
set. The predicate of the KPI metric value is evaluated and
according to the result, the record is classified as ”KPI fulfilled”
or ”KPI violated”. An example training set is shown in Figure
6. Each row (record) contains the metric values (representing

potential influential factors) of a process instance, whereby the
last column specifies whether the KPI target value predicate
(order fulfillment time < target value) is fulfilled or violated
for that process instance.

As a result of decision tree learning a dependency tree
is constructed as shown in Figure 6 and displayed in the
dashboard. In this (simple) example, the most influential factor
is the response time of the banking service, since a delay in this
service generally leads to a violated KPI. However, even if the
banking services response time is acceptable (below 210 time
units in this example), the KPIs are still often violated if the
order is placed by the customer with the ID *1234’. Business
analysts can use the dependency tree to learn about the “hot
spots” of the process, and inform themselves about possible
corrective actions if a process underperforms. For example,
considering the example in Figure 6, a business analyst can
take the corrective action to replace the “Banking Service”
against a service with better response time, if such a service
is available. However, note that the “first” metric used in the
dependency tree is not necessarily the most important one — to
find out about the most important metrics one needs to look at
the whole tree and find out which decisions lead to the most
failed process instances. For metrics which have been identified
as factors of influence, a further “drill down” analysis can be
performed. For this, one of the factors of influence (e.g., the
response time of the banking service) is selected, a target value
is specified, and another dependency analysis is launched. This
identifies the more detailed dependencies that influence this
specific factor of the overall process performance (e.g., one
could find out that way that the response time of the banking
service strongly depends on the type of the banking account).

VI. EXPERIMENTATION

In this section we describe our prototype implementation of
the framework and experimental results based on the example
scenario.

A. Experiment Setup and Implementation

We have implemented the scenario as presented in Section
II using a Java-based prototype. We use Apache ODE as our
business process execution engine. ODE is open source soft-
ware, and implements the WS-BPEL standard for Web service
orchestration. One of the features of ODE is that it can trig-
ger execution events (e.g., ActivityExecStartEvent),
which we use as process events as described in Section III. The
eventing features of ODE demand for a JMS implementation
to take care of the transportation of events to subscribers
(the monitoring tool in our case). We chose to use the open
source message queue Apache ActiveMQ*, however, any other
JMS implementation could be used as well. The purchase
order process has been implemented as a WS-BPEL process
which interacts with six Web services including the client
of the process. These Web services have been implemented
in Java using Apache CXF> and simulate certain influential

“http://activemq.apache.org/
Shttp://cxf.apache.org/

factors. One can, for example, configure the response time,
availability, and outputs of a service over time and dependant
on business process data. The metrics database is implemented
as a standard MySQL?® database. Because of the limited size of
the scenario we did not use advanced features such as clustering
or load balancing. The Monitoring Tool for evaluation of PPMs
has been implemented in Java as described in [5]. We have
additionally implemented support for correlation of PPMs and
QoS metrics. The Dashboard component is implemented as
an standalone Swing application. The process analyzer is a
standalone Web service, which is accessible over a RESTful
interface. The foundation of this component is the WEKA
toolkit”, which implements many high-quality machine learning
schemes, including the decision tree based classifiers that we
used in this paper. We have transparently integrated WEKA into
our process analyzer component using the WEKA Java APL
Finally, we have implemented a simple QoS monitor, which
can non-intrusively check the availability of Web services
through periodic polling. This QoS data is again provided to
the monitoring dashboard through a RESTful interface. For
experimentation, we have deployed all these components on a
single desktop PC, mainly to prevent external influences such
as network latency to influence our experimentation results.
However, the scenario is designed in such a way that physically
distributed experiments can be run without any modifications.

B. Experimental Results

The procedure of experimentation is as follows. We create
a configuration which simulates certain influential factors and
define a set of potential influential metrics. We then execute the
process a certain number of times (100, 400, and 1000 times)
by triggering the process using a simulated client. During
execution, the process is monitored and metrics are saved in
the metrics database. We then perform dependency analysis of
the KPI and compare the result of the generated dependency
tree with our configured influential metrics. In the following
we present the results of two experimental runs. For both of
them, we have used the same configuration consisting of the
KPI Order Fulfillment Lead Time and a set of 31 potential
influential factors (a subset is shown in Table I).

For the first run, we have created a configuration which
simulates the following factors: (i) the warehouse availability
check (order in stock) returns a negative result for certain
product types based on certain probabilities; order in stock is
an important influential factor of the overall duration of the
process as it decides whether products have to be requested
from suppliers which increases the overall process duration
substantially (ii) supplier 1 has in average a higher than
expected supplier delivery time; (iii) average shipment delivery
time is high in relation to the overall duration of the process
instance. Based on this configuration, we expect the KPI to be
mainly influenced by order in stock, product type, supplier 1
delivery time, and shipment delivery time. Other metrics (in

Shttp://www.mysql.com/
Thttp://www.cs.waikato.ac.nz/ml/weka/

particular response times of services) also influence the KPI
value, but in a marginal way.

The generated decision tree is shown in Figure 7a. It has been
generated using J48 (the WEKA implementation of C4.5 [9])
based on 100 process instances. The most influential factor
is the shipment delivery time; if it is above 95 time units all
process instances lead to KPI violations (“red”), otherwise
they depend further on the order in stock metric and supplier
1 delivery time. The leaves of the tree show the number of
instances which are classified as “red” or “green”.

The dependency tree shows three of the four influential
factors we have configured. Interestingly, the fourth factor, the
product type, is not shown. The reason for this is that product
type directly influences order in stock, which again influences
the KPI value which is shown in the tree; as both metrics
influence the KPI value in the same way, only one of them
is shown in the tree. This particular result is unsatisfactory,
as it hides the root cause, namely product type in this case.
The user can deal with this problem using two approaches:
(i) he can drill down and request the analysis of the order
in stock metric. A second tree is generated which explains
when ordered products are not in stock as shown in Figure 7b.
This tree now clearly shows how the unavailability depends
on product type and ordered product quantity. (ii) The user
can also remove the order in stock metric temporarily from
the analyzed metric set. Now, the algorithm will search for
alternative metrics which classify the instances in a similar way
as order in stock. In that case, as shown in the experiments,
the algorithm finds and displays product type in the tree (not
shown in the figure).

Table II shows the more detailed results of the first ex-
perimental run. We have experimented with two algorithms:
J48 (based on C4.5 [9]) and ADTree (alternating decision
tree [10]). Both of them show very similar results concerning
the displayed influential metrics. Typically there is only one
or at most two (marginal) metrics which differ. For the same
precision (correctly classified instances in the training set, as
shown in the last column), the algorithms also generate trees
of about the same size. The usage of parameters has lead to
only marginal changes in our experiments (for example, J48
-U with no pruning). The only parameter that turned out useful
in our experimentation was the “reduced error pruning” (J48
-R) [8] as it reduced the size of the tree, loosing accuracy only
marginally. This parameter is useful as the experiments show
that the tree is getting bigger (column “Leaves/Nodes”) with
the number of process instances. For example, J48 generated
for 400 instances a tree with 11 nodes, for 1000 instances a
tree with 18 nodes, while the precision improved only by 1%.
In particular, when the tree gets bigger, factors are shown in
the tree which have only marginal influence and thus make
the tree less readable; column “Displayed Metrics” shows how
many distinct metrics are displayed in the tree, the first number
thereby depiciting the number of expected metrics. In the case
of too many undesirable (marginal) metrics, one can try to
improve the result by simply removing those metrics from
the analyzed metric set and repeating the analysis. Finally,

?

== 95922 = 45922

T
red (120

=true = false

== 33687

-
een o)

= 33687

T~
E=a

Fig. 7.

concerning the analysis duration, in our setting on a standard
laptop computer a decision tree generation based on 1000
instances takes about 30 seconds.

Instances Algorithm Leaves/ Displayed Metrics Correctly

Nodes Expected/All Classfied
100 J48 417 3/4 95,0 %
100 ADTree 11/16 2/4 98,0 %
400 J48 6/11 3/4 97.8 %
400 ADTree 17/26 4/5 99,0 %
1000 J48 11/18 3/6 98,8 %
1000 J48 -R 6/11 3/4 97,9 %
1000 J48 -U 13/22 4/9 99.2 %
1000 ADTree 19/28 3/6 99,4 %

TABLE II

EXPERIMENTAL RESULTS

For the second run, we have created a configuration
which, among others, simulates QoS influential factors: (i)
the warehouse Web service and the shipment Web service are
unavailable with the probability of 15%; the BPEL process
contains fault handlers when trying to invoke partner services;
in case of unavailability it waits for a certain time frame and
retries; we have defined response time metrics (measured based
on process events) for each invoke-activity which “include” the
retries in case of unavailability (ii) the warehouse availability
check (order in stock) returns now a negative result only with
the probability of 5%; (iii) shipment delivery time is still very
influential in relation to the duration of other activities of the
process. Based on this configuration, we expect the KPI to
be mainly influenced by the availability of warehouse Web
service and shipment Web service, order in stock, and shipment
delivery time.

The generated decision tree is shown in Figure 8a. It is a

J48 tree based on 1000 instances using reduced error pruning.

= ERICSB(BAMSUBIGIEMENS BENG = NOKIA

NN

-/---

=28 =28

e

Generated Trees for (a) Order Fulfillment Time, (b) Order in Stock

The tree shows the response time warehouse, delivery time
shipment, and order in stock as the main influential factors.
Completely missing, however, are the expected dependencies on
the availability of the warehouse Web service and the shipment
Web service. We suspect that availability of warehouse Web
service is hidden by response time warehouse, which could
be analyzed by drilling down. However, we take now another
approach and perform an analysis of the KPI only in relation
to availability metrics of all services involved in the process,
i.e., we remove all other metrics from the analyzed metric set.
Effectively, we analyze the impact of availability on the KPI.
The result is shown in Figure 8b. It clearly shows that (only)
availability of the shipment and warehouse Web services have
an impact on the KPI value, as expected.

Overall, we can draw the following conclusions from the
experiments. In general, the generated trees show the expected
influential metrics in a satisfactory manner. As expected,
the non-parametric nature of decision tree algorithms makes
dependency analysis produce suitable results “out of the box”.
We argue that this renders our approach suitable for non-IT
personnel. However, this claim has yet to be verified through
real-life evaluation. Concerning the influential factors displayed
in the tree, we have identified two problems: (i) as the tree gets
bigger it contains often more metrics than expected, i.e. metrics
which have only marginal influence and thus only “blur the
picture”; in that case one can try to tune the algorithm by using,
for example, reduced error pruning, or one can simply remove
those metrics from the analyzed metric set and repeat the
analysis; both techniques lead to more satisfactory results; (ii)
the tree does not show some of the expected metrics: we have
shown that this is often the case when there are “multi-level”
dependencies between metrics; in that case further analysis
(drill down) of lower-level metrics may help to find further
influential factors. While in the general analysis case, the user
does not need to have any special domain knowledge on metric
dependencies, in the drilldown case, we assume that the user
suspects that there could be further dependencies behind a

?

== 3343 =3343

pwawalin

== 56922 = 56922

s

=falge

e

=true

—/

Fig. 8.

lower-level metric.

VII. RELATED WORK

There are several approaches that deal with monitoring of
service compositions. They differ mostly in monitoring goals,
i.e., what is monitored, and the monitoring mechanisms. IBM’s
approach integrates performance management tightly into the
business process lifecycle and supports it through its WebSphere
family of products [11]. Thereby, process metrics are modeled
and monitored based on events published by the Process Server
BPEL engine. Our approach is similar to IBM’s approach in
that we use process events published by the process engine. We,
however, also support monitoring of QoS metrics and automated
dependency analysis. Baresi et al. [12] deal with monitoring
of WS-BPEL processes focusing on runtime validation. The
goal is thereby not to monitor process performance metrics,
but to detect partner services which deliver unexpected results
concerning functional expectations. Traverso et al. [13] describe
a monitoring approach for WS-BPEL processes which supports
run-time checking of assumptions under which the partner
services are supposed to participate in the process and the
conditions that the process is expected to satisfy. The approach
supports also collecting statistical and timing information. All
of these approaches have in common that they concentrate only
on monitoring of business processes. In particular, they do not
deal with QoS metrics integration and dependency analysis.

When it comes to the analysis aspect of service composi-
tions, the idea of using dependency models for representing
dependencies among different impact factors is not new and
has been applied in connection with the monitoring of SLAs
of service compositions in [14]. This approach focuses on
dependencies of SLAs of overall service compositions on
SLAs of composed services and analyzes reasons for SLA
violations. Focusing on response time and cost metrics, the
dependency relations and the impacts factors are identified at
design time, and then later compared with monitoring results

e

== 0. 466BAT = 0 4ARRAT

- -

==0.45 =045

—

——

Generated Trees for (a) All Factors, (b) Availability of IT Infrastructure

during runtime. In our approach, we do not model dependencies
at design time, but solely construct the dependency model based
on monitoring results using data mining. Most closely related
to our work is the platform for business operation management
developed by HP [15], as it supports both process monitoring,
and analysis and prediction based on data mining. In [16] the
authors give an overview and a classification of which data
mining techniques are suitable for which analysis and prediction
techniques. Thereby, also decision trees are mentioned as one
possible technique, which is what we concentrate on in our
approach. The platform presented allows users to define and
monitor business metrics (not focused on WS-BPEL processes),
perform intelligent analysis on them to understand causes
of undesired metric values, and predict future values. Our
approach is different in that we focus on SOA-based WS-BPEL
processes, and explicitly integrate PPMs and QoS metrics for
analysis purposes. We deal only with decision trees, but provide
detailed experimental results. Another popular approach to
process analysis is process mining. Process mining techniques
operate on event logs provided by information systems and
perform different kinds of analysis on them, in particular
process discovery when there is no explicit process model
a priori [17]. In our approach, we also operate on monitored
“metric logs” during analysis phase, but focus on mining of
metric dependencies using decision tree algorithms.

VIII. CONCLUSIONS

In this paper we have presented a framework that performs
monitoring of both PPMs and QoS metrics of business
processes runnning on top of a Service-Oriented Architecture.
Besides providing up-to-date dashboard information about the
current process performance, the main goal of our framework
is to enable what we refer to as dependency analysis, i.e.,
an analysis of the main factors that influence the business
process and make it violate its performance targets. The result
of this analysis is represented as a decision tree. We have

presented experimental results which show that in general the
generated decision trees provide explanations in a satisfactory
manner, but in some cases further analysis has to be done.
In that respect, we have shown how drill-down functionality
and analyis based on different metric sets can influence the
analysis result. One important advantage of our approach is
that results are satisfactory without the need for extensive
experimentation and parameter adaptation, which lets our
approach seem feasible even for domain experts which are not
IT-savy.

Our future work includes extending the framework presented
here into various directions. Firstly, we plan to work on the
runtime prediction of the outcome of process instances (i.e.,
whether the KPI is going to be violated or not) while they
are still running. Basically, we can use the same techniques
as for dependency analysis (however, we will in addition
use regression trees). Secondly, we are working towards
making use of the dependency analysis in the area of process
adaptation — currently, dependencies are presented towards the
human business analyst, who is then incorporating the gained
knowledge back into the process, e.g., by exchanging service
bindings. We currently think about a more automated feedback
mechanism, which uses rule sets and predefined reactions to
incorporate dependency knowledge back into the WS-BPEL
process in a more automated way. One example would be
service selection: if the dependency model of a process shows
that the process outcome is sensitive to the response time of a
service, then an expensive high-quality service is selected; if
the response time is no important factor of influence a cheaper
service is selected. Finally, we still need to test our approach
in real-world settings, to further validate the claims that we
have stated in this paper.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Communitys Seventh Framework Pro-
gramme FP7/2007-2013 under grant agreement 215483 (S-
Cube).

REFERENCES

[1] M. Weske, Business Process Management: Concepts, Languages, Archi-
tectures. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2007.
[2] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, “Service-
Oriented Computing: State of the Art and Research Challenges,” IEEE
Computer, vol. 11, 2007.
OASIS, Web Services Business Process Execution Language Version 2.0
— OASIS Standard, 2007.
[4] J.-J. Jeng, J. Schiefer, and H. Chang, “An Agent-based Architecture for
Analyzing Business Processes of Real-Time Enterprises,” in Proceedings
of the 7th International Conference on Enterprise Distributed Object
Computing (EDOC ’'03). Washington, DC, USA: IEEE Computer
Society, 2003, p. 86.
B. Wetzstein, S. Strauch, and F. Leymann, “Measuring Performance
Metrics of WS-BPEL Service Compositions,” in The Fifth International
Conference on Networking and Services (ICNS 2009), Valencia, Spain,
April 20-25, 2009. 1EEE Computer Society, April 2009.
S. Council, “Supply Chain Operations Reference Model Version 7.0,”
2005.
F. Rosenberg, C. Platzer, and S. Dustdar, “Bootstrapping Performance and
Dependability Attributes of Web Services,” in Proceedings of the IEEE
International Conference on Web Services (ICWS ’06). Washington,
DC, USA: IEEE Computer Society, 2006, pp. 205-212.

[3

=

[5

[6

=

[7

[8]

[9]

(10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques, 2nd ed. Morgan Kaufmann, 2005.
J. R. Quinlan, C4.5: Programs for Machine Learning.
Kaufmann, 1993.

Y. Freund and L. Mason, “The Alternating Decision Tree Learning
Algorithm,” in Proceedings of the 16th International Conference on
Machine Learning (ICML ’99). San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1999, pp. 124-133.

U. Wahli, V. Avula, H. Macleod, M. Saeed, and A. Vinther., Business
Process Management: Modeling Through Monitoring Using WebSphere
V6.0.2 Products. 1BM, International Technical Support Organization,
2007.

L. Baresi and S. Guinea, “Towards Dynamic Monitoring of WS-BPEL
Processes,” in Proceedings of the 3rd International Conference of Service-
Oriented Computing (ICSOC’05). Springer, 2005, pp. 269-282.

F. Barbon, P. Traverso, M. Pistore, and M. Trainotti, “Run-Time
Monitoring of Instances and Classes of Web Service Compositions,”
in Proceedings of the IEEE International Conference on Web Ser-
vices(ICWS’06), 2006, pp. 63-71.

L. Bodenstaff, A. Wombacher, M. Reichert, and M. C. Jaeger, “Monitor-
ing Dependencies for SLAs: The MoDe4SLA Approach,” in Proceedings
of the 2008 IEEE International Conference on Services Computing (SCC
’08). Washington, DC, USA: IEEE Computer Society, 2008, pp. 21-29.
M. Castellanos, F. Casati, M.-C. Shan, and U. Dayal, “iBOM: A Platform
for Intelligent Business Operation Management,” in Proceedings of the
21st International Conference on Data Engineering (ICDE’05), 2005,
pp. 1084-1095.

M. Castellanos, F. Casati, U. Dayal, and M.-C. Shan, “A Comprehensive
and Automated Approach to Intelligent Business Processes Execution
Analysis,” Distributed and Parallel Databases, vol. 16, no. 3, pp. 239—
273, 2004.

W. van der Aalst, T. Weijters, and L. Maruster, “Workflow mining:
Discovering process models from event logs,” IEEE Trans. on Knowl.
and Data Eng., vol. 16, no. 9, pp. 1128-1142, 2004.

Morgan-

