
University of Wollongong University of Wollongong

Research Online Research Online

Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information
Sciences

2010

Supporting change propagation in the evolution of enterprise architectures Supporting change propagation in the evolution of enterprise architectures

Hoa Khanh Dam
University of Wollongong, hoa@uow.edu.au

Lam-Son Le
University of Wollongong, lle@uow.edu.au

Aditya K. Ghose
University of Wollongong, aditya@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/infopapers

 Part of the Physical Sciences and Mathematics Commons

Recommended Citation Recommended Citation
Dam, Hoa Khanh; Le, Lam-Son; and Ghose, Aditya K.: Supporting change propagation in the evolution of
enterprise architectures 2010.
https://ro.uow.edu.au/infopapers/3472

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/infopapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/infopapers?utm_source=ro.uow.edu.au%2Finfopapers%2F3472&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.uow.edu.au%2Finfopapers%2F3472&utm_medium=PDF&utm_campaign=PDFCoverPages

Supporting change propagation in the evolution of enterprise architectures Supporting change propagation in the evolution of enterprise architectures

Abstract Abstract
Enterprise Architecture (EA) models the whole vision of an organisation in various aspects regarding both
business processes and information technology resources. As the organisation grows, tbe architecture
governing its systems and processes must also evolve to meet with the demands of the business
environment. In this context, a critical issue is change propagation: given a set of primary changes that
have been made to the EA model, what additional secondary changes are needed to maintain consistency
across multiple levels of the EA. This paper proposes an enterprise architectural description language,
namely ChangeAwareHierarchicalEA, integrated with a framework to support change propagation within
an EA model. The core part of our change propagation framework is a new method for generating
interactive repair plans from Alloy consistency rules that constrain the EA model.

Disciplines Disciplines
Physical Sciences and Mathematics

Publication Details Publication Details
Dam, H. Khanh., Le, L. & Ghose, A. (2010). Supporting change propagation in the evolution of enterprise
architectures. International Enterprise Distributed Object Computing Conference (pp. 24-33). Piscataway,
New Jersey, USA: IEEE.

This conference paper is available at Research Online: https://ro.uow.edu.au/infopapers/3472

https://ro.uow.edu.au/infopapers/3472

Supporting change propagation in the evolution of enterprise architectures

Hoa Khanh Dam, Lam-Son Lê and Aditya Ghose
School of Computer Science and Software Engineering

University of Wollongong
New South Wales 2522, Australia

{hoa, lle, aditya}@uow.edu.au

Abstract—Enterprise Architecture (EA) models the whole
vision of an organisation in various aspects regarding both
business processes and information technology resources. As
the organisation grows, the architecture governing its systems
and processes must also evolve to meet with the demands of the
business environment. In this context, a critical issue is change
propagation: given a set of primary changes that have been
made to the EA model, what additional secondary changes
are needed to maintain consistency across multiple levels
of the EA. This paper proposes an enterprise architectural
description language, namely ChangeAwareHierarchicalEA,
integrated with a framework to support change propagation
within an EA model. The core part of our change propagation
framework is a new method for generating interactive repair
plans from Alloy consistency rules that constrain the EA model.

Keywords-enterprise architecture; change propagation; soft-
ware evolution; enterprise architecture evolution

I. INTRODUCTION

Enterprise Architecture (EA) captures the whole vision
of an enterprise in various aspects regarding both business
and information technology (IT) resources [1]. EA is a
discipline that analyzes the services offered by an enterprise
and its partners to the customer, the services offered by the
enterprise to its partners, and the enterprise’s organization
and IT infrastructure. The representation of the enterprise
can include various aspects such as enterprise’s strategy,
business services, business processes and web services.

In recent years, the ever-changing business environment
demands constant and rapid evolution of an organisation.
Consequently, changes to the EA models of such an or-
ganisation is inevitable if the EAs are to remain useful
and to reflect the current state of organisational structures
and business processes. For example, initial changes in an
EA model which are made to an enterprise’s strategy and
business goals may lead to secondary changes made to
the organisational structure of the enterprise. Such changes
may lead to further changes in the business processes and
services and so on. The ripple effect that an initial change
may cause in enterprises is termed change propagation.
In a large modern enterprise consisting of many elements,
resources, business processes and infrastructures and their
complex relationships, it becomes costly and labour inten-
sive to correctly propagate changes. Unfortunately, there
has been very little work on maintenance and evolution of

enterprise architectures [2] [3]. Hence, we are in need of
techniques and tools that provide more effective automated
support for change propagation within an EA model. Change
propagation may not be fully automated, since there are
decisions that involve tradeoffs where human expertise is
required. However, it is possible to provide tool support
in tracking dependencies, determining what parts of the
enterprise architecture are affected by a given change, and,
as in this paper, determining and making secondary changes.

We aim to deal with change propagation which spans
different hierarchical levels in an EA model. In order to
achieve this, we define an enterprise architectural model-
ing language, namely ChangeAwareHierarchicalEA, which
describes enterprise architecture in a hierarchical manner.
This language is built on top of SeamCAD [4]. It extends
SeamCAD in several ways: (1) making the modeling vo-
cabulary easier to understand (2) lifting the limitation on
cardinalities (3) addressing the well-formedness of services
in an EA model. In addition, ChangeAwareHierarchicalEA
specifically aims to support changes in the maintenance and
evolution of enterprise architectures in a number of ways.
Firstly, it offers an integrated view of the entire enterprise
which allow us to, for example, analyze the effect at a
business level of a change that takes place at a technical
level. Secondly, it is supported by an (semi-)automatic
mechanism of change propagation based on inconsistency
management by extending an existing change propagation
framework [9] to provide a method for generating repair
options from Alloy consistency rules.

In the next section, we define the ChangeAwareHierar-
chicalEA modeling language and its toolkit. Section III then
describes the change propagation framework followed by an
example in Section IV. Related work is briefly presented in
Section V. We conclude by discussing future directions in
Section VI.

II. CHANGEAWAREHIERARCHICALEA: A
HIERARCHY-ORIENTED MODELING FRAMEWORK FOR

EA

In this section, we present a modeling framework that is
developed as an improvement to an existing work (Subsec-
tion II-A). Our modeling framework consists of a modeling

2010 14th IEEE International Enterprise Distributed Object Computing Conference

1541-7719/10 $26.00 © 2010 IEEE

DOI 10.1109/EDOC.2010.23

24

language definition (Subsection II-B) and a toolkit (Subsec-
tion II-C).

A. Hierarchy-Oriented EA Modeling

Modeling EA requires representing multiple diagrams of
an enterprise, which typically shows the multiples business
entities, IT systems and the services they offer. This could
be done by a team of stakeholders having different back-
grounds. One way to do this is to structure the model into
hierarchical levels each of which can be of interest of just
some, not all, stakeholders. Due to the differences in their
background, stakeholders - the modelers may not want to use
a single modeling approach, even a widely-recognized one,
to build the enterprise model, which can be shared by the
whole team. Developing a modeling framework that can be
applied uniformly throughout the entire enterprise model and
that can be used by all stakeholders is challenging. Firstly,
the framework should have a uniform approach to specifying
the services offered by business entities, IT systems and
software components and to describing their implementation
across hierarchical levels. Secondly, the framework should
allow the stakeholders to represent the service specification
and the service implementation of multiple business entities
and IT systems, even within the same hierarchical level.
Thirdly, the services offered by those entities and systems
should be represented at different levels of granularity.
Fourthly, the modeling framework should maintain the well-
formedness of the enterprise model and the consistency
between different diagrams opened by different stakeholders
of the team.

SeamCAD was developed as a hierarchy-oriented mod-
eling language and a computer-aided modeling tool that
address the aforementioned challenges [4]. This modeling
language allows the modeler to structure an enterprise into
hierarchical levels, in terms of both organization and ser-
vices. The computer-aided modeling tool helps the modeler
visually build her model across levels and brings all levels
together to make a coherent, well-formed model [5]. En-
terprise models can be visually built and represented in a
notation that is based on the Unified Modeling Language
using this tool. The modeling language is formally defined
in Alloy - a lightweight declarative language based on first
order logic and set theory [6].

However, the SeamCAD modeling framework has several
limitations. Firstly, the cardinality of containment relation-
ship between a business entity (or an IT system) and its main
modeling artifacts (e.g. properties, services) in SeamCAD
is (exactly) one making it too simple to do modeling in
practice. Secondly, the vocabulary used in SeamCAD is
not natural for its potential users most of whom are in
the community of EA, SOA or SE. The reason is that
SeamCAD modeling terms [7] are originated from the Ref-

Table I
INFORMAL DEFINITION OF CHANGEAWAREHIERARCHICALEA

BUILDING BLOCKS

Building block Informal Definition
SystemEntity Represents any business unit, IT component or software

component of the enterprise.
Stateful Property Externally-observable properties that characterize a business

entity or a system seen as whole. Can also be a parameter
of services.

Stateless Property Representation of the occurrence of a service. Stateless
property can be considered as a context in which stateful
properties are defined.

Service Externally-observable service performed by a given business
entity or a system seen as whole.

Collaboration Interaction between multiple business entities or systems.
The responsibility of each entity or system that gets involved
in a collaboration is represented by a service.

erence Model of Open Distributed Processing (RM-ODP)1

- a theoretical standardization that supports principles in
distributes processing, only one of which is about enter-
prise architecture. Thirdly, SeamCAD does not establish
the correspondence between the sequence constraints of
services of an entity or a system and those of collaborations
in which the entity or system participates. Fourthly, the
SeamCAD tool enforces all well-formedness rules defined
in the SeamCAD modeling language making it inflexible
to build EA models, particularly in the case where well-
formnedness needs to be compromised for dealing with
large models. These limitations were confirmed by the
user’s feedback collected from a total of 20 participants [4].
Therefore, we develop ChangeAwareHierarchicalEA as an
improvement of SeamCAD while at the same time adding
techniques to support change propagation in the evolution
of modeling EA. The result is a new modeling framework,
namely ChangeAwareHierarchicalEA.

B. Language Definition

The ChangeAwareHierarchicalEA modeling language has
four main building blocks. They are informally defined in
Table I. A model element of these building blocks can be
viewed either as a whole or as a composite. A business
entity or a system viewed as a composite has sub entities
or sub systems. They interact with one another through
collaborations. A business entity or a system viewed as a
whole exhibits properties and offers services. In other words,
if a business entity or a system is treated like white-box, it
is viewed as a composite. If it is treated like black-box, it
is seen as a whole. A property, a service or a collaboration
can also be viewed as a composite, revealing component
properties, services or a collaborations, respectively.

Relations are unchanged from SeamCAD to
ChangeAwareHierarchicalEA. Both have participation link
(between a business entity or a system to a collaboration),

1RM-ODP Resource website http://www.rm-odp.net/

25

association (between two properties), transition link
(between two collaborations or between two services),
generalization (between two model elements of the same
building block), goal binding (between a service or a
property and a collaboration) and means binding (between
a collaboration and a service).

1) Meta-model: Figure 1 is a UML diagram that ex-
presses the building blocks of the ChangeAwareHierarchi-
calEA modeling language. Two improvements over Seam-
CAD can be seen from this diagram: cardinality of associ-
ation ends going to SystemEntity to other builing blocks is
changed from one (1) to many (0..*); building blocks have
new names.

The ChangeAwareHierarchicalEA modeling language
come with a list of well-formedness rules. Most of them
are taken from the SeamCAD modeling language. Three ad-
ditional rules are defined for ChangeAwareHierarchicalEA.
Two of them address the binding from services and proper-
ties of a business entity or system to collaborations in which
it gets involved: if a business entity or system participates
in a collaboration, it must offers a service and have property
that is connected to the collaboration via goal binding. The
third of these rules copes with how the sequences of services
matched the sequences of collaborations.

Figure 1. UML diagram expressing the ChangeAwareHierarchicalEA
building blocks

2) Formalization in Alloy: The UML diagram shown
in Figure 1 and the list of well-formedness rules can be

formalized together in single Alloy code. As the Alloy
language offers an object-oriented syntax, we can translate
the UML diagram to Alloy straightforwardly as follows
• A UML class is mapped to an Alloy signature (the sig

keyword)
• A UML role name is mapped to an Alloy field (to be

declared within a signature)
• The UML cardinalities 1, 0..1, 1..* and 0..* are

mapped to the one, lone, some and set keywords of
Alloy, respectively

• The UML generalization is mapped to the extension
mechanism in Alloy with the extends keyword

• For the sake of simplicity, we can ignore UML at-
tributes of which types are primitives (e.g. Date,
String) because they are not referred to in the well-
formedness rules of ChangeAwareHierarchicalEA.

For example, the SystemEntity building block is for-
malized in the following Alloy signature.

sig SystemEntity extends HierarchicalElement {
main_collaborations: set Collaboration,
main_properties : set Property,
main_services : set Service

}

Translating the well-formedness rules of ChangeAware-
HierarchicalEA to Alloy code can be done in two steps: write
first-order logic [8] statements for the BSDL description
rules before mapping these statements to Alloy facts (the
fact keyword). For instance, the rule that specifies goal
bindings between a service offered by a business entity or
a system and a collaboration it gets involved in can be
translated to the following Alloy formula

fact responsibility {
all r: Participation | some s: Service |

s.goal_binding = r.action
}

The Alloy code that formalizes the building blocks and
well-formedness rules of ChangeAwareHierarchicalEA has a
total of 122 lines of code that includes 11 Alloy signatures
and 12 Alloy facts.

C. Toolkit

The ChangeAwareHierarchicalEA framework comes with
a toolkit2 that implements the ChangeAwareHierarchicalEA
modeling language presented in previous subsections. We
will describe an example (Subsection II-C1) before present-
ing how the tool works (Subsection II-C2). We also discuss
how the tool manages the well-formedness of enterprise
models and impact of changes potentially made by tool users
(Subsection II-C3).

1) Example: Let us consider an example of a book-
store whose management decides to provide the companys
services via the Internet. The management has a goal to
specify the services that the bookstore can provide its
customers with and to describe how to implement them

2The ChangeAwareHierarchicalEA toolkit is available at http://www.
uow.edu.au/˜lle/ChangeAwareHierarchicalEA/index.htm

26

using business and IT resources. A book-selling market
contains a BookValueNetwork and a Customer. The value
network consists of three companies: a bookstore company
named BookCo (responsible for the service of processing the
orders placed by the customer), a shipping company called
ShipCo (responsible for shipping the books ordered) and
a publishing company PubCo (responsible for supplying the
books that were ordered but not yet available in the inventory
of the bookstore company). The departmental structure of
the bookstore company shows two departments: one for
coping with the purchasing data (PurchasingDep) and the
other for managing an inventory of books (WarehouseDep).
We may have an addditional level showing IT infrastructure
of these departments.

2) Diagrammatic Representation: Figure 2 is a screen-
shot of the ChangeAwareHierarchicalEA tool that illustrates
how the Bookstore enterprise model is edited and visualized.
As can be seen from this screenshot, each window of the
tool features a tree view (to the top-left), a property view
(to the bottom-left) and a diagram view (to the right).
The tree-view displays the hierarchical structure of the
whole enterprise model. In the diagram view, part of the
bookstore enterprise model is a diagrammatically repre-
sentated. In fact, the screenshot of Figure 2 shows the
first hierarchical levels of the bookstore enterprise model.
Note that BookSellingMarket is viewed as a composite
whereas BookValueNetwork is seen as a whole. sale is a
collaboration between BookValueNetwork and Customer.
BookValueNetwork offers services Sell. SellTxn is a
property that represents the execution context of the Sell

service. BookValueNetwork has other properties that rep-
resent the money balance it has, the book it sells and
information related to the booking-selling order it processes.

Figure 2. BookValueNetwork, Customer and their collaboration

The tool allows EA modelers to open multiple diagrams
at the same time. Figure 3 is another diagram rendered in
the tool. It captures the second hierarchical level of the
bookstore enterprise model in which the three companies
BookCo, ShipCo and PubCo are seen as whole. Another
entity is represented at this hierarchical level is Bank

Figure 3. BookCo, ShipCo, PubCo, Bank and their collaboration.
Customer is not in the scope of this diagram.

that processes payment orders (e.g. by clearing customer’s
cheques).

3) Well-formedness and impact of change: As an instance
model of ChangeAwareHierarchicalEA, the bookstore en-
terprise model should conform to the well-formedness rules
mandated in the ChangeAwareHierarchicalEA modeling lan-
guage. For instance, BookCo, ShipCo and PubCo offer
services according to how they get involved in invoice,
payment, book ready, notify and ship. (In fact, this
is constrained by the well-formedness rule presented in the
first row of Table III.)

However, changes made to the bookstore enterprise model
can potentially break this conformance. For example, adding
a new or deleting an existing collaboration and a link
going from BookCo to the collaboration may leave the
corresponding service of BookCo unbound (i.e. the service
has no goal binding). We need to make additional changes
to keep the bookstore model well-formed. In other words,
changes need to properly propagated across the bookstore
model to preserve its well-formedness. In the next sections,
we present and illustrate how changes are propagated in
ChangeAwareHierarchicalEA models.

III. CHANGE PROPAGATION

The main purpose of change propagation process is to
reintroduce consistency into the EA model by keeping
track of the inconsistencies and making addition, secondary
changes to repair these inconsistencies. Consistency is de-
fined using a metamodel (of the EA model) and consistency
rules, which define conditions that all models must satisfy
for them to be considered valid. Those conditions may

27

include, for example, syntactic well-formedness, coherence
between different EA diagrams, and even best practices.

ChangeAwareHierarchicalEA provides support for change
propagation using a generic framework which has been
previously developed by the first author [9]. This frame-
work provides a “change propagation assistant” that helps a
modeler by suggesting additional (secondary) changes once
primary changes have been made. Previous work has shown
the effectiveness of this framework in supporting change
propagation within agent-oriented design models [10–12].
Figure 4 shows an overview of how this change propagation
framework is adopted in ChangeAwareHierarchicalEA.

Generate

repair plan

types

Alloy facts

Repair plan types
Repair Plan

Library

Modification

(e.g. change context conditions,

remove plan types,

change plan body)

Check

constraints

Violated facts

Calculate

cost

Repair plan instances

Plan instances with least cost

Select one

plan to

execute

User selection

Chosen repair plan instances

Consistency

rules

Alloy facts

Basic cost

values
Basic costs User input

ChangeAwareHierarchicalEA

Metamodel

Metamodel

Metamodel

EA model

Execute

plan

changes

model

Tool Developer

Enterprise

Architect / Modeler

Generate

repair plan

instances

Repair plan types

Alloy facts

Figure 4. Change propagation framework for ChangeAwareHierarchicalEA

The key data items we deal with are a collection of well-
formedness rules, an EA model, and a collection of repair
plans. In ChangeAwareHierarchicalEA, rules are expressed
in terms of Alloy facts. Repair plans represent different
ways of fixing such rules’s violations and are automatically
generated ahead of time. Such repair plans form a library of
repair plan types which will be instantiated at run time. Pre-
vious work [12] focuses on repair plan generation for rules
expressed using the Object Constraint Language (OCL). In
this work, we propose the automatic generation of repair
plans for rules expressed as Alloy facts.

As soon as the enterprise architects make some primary
changes to their enterprise model, they want to trigger the
change propagation process (described as the shaded area in
figure 4). Their model is then checked for inconsistencies
by evaluating the consistency rules, which may result in
the detection of a number of violated rules. When such a
violation occurs, in order to have the rule violation repaired a

corresponding event is generated. A given violation repairing
event may trigger a number of possible repair plans instances
(instantiated from the library of repair plans). The determina-
tion as to which repair plans to choose is generally a design
decision, which can be dependent on various factors such
as the cause of inconsistencies, or even factors other than
consistency that contribute to a good design (e.g. experience,
knowledge on the future evolution of the design, design
styles). In general, many of these dependencies may not
even be capable of being formulated formally and being
captured without extra knowledge provided by the modeler.
As a result, it is expected that the execution of repair actions
requires user interaction.

In some cases, the number of different ways of fixing
a inconsistency can be very large. Therefore, it is also
important not to overwhelm the user with a large number of
choices. For example, it is necessary to prevent infeasible
repair options (e.g. repair actions that result in infinite
cycles) from being presented to the user. The issue of repair
plan selection has been addressed in [10] by defining a
suitable notion of repair plan cost that takes into account the
important cascading nature of change propagation and fixing
inconsistencies. More specifically, the change propagation
framework has a cost calculation component that is respon-
sible for calculating the cost of each repair plan instance.
It takes into account the fact that fixing one violated rule
may also repair or violate others as a side effect, and so
the cost calculation algorithm computes the cost of a given
repair plan instance as including the cost of its actions (using
basic costs defined by the modeler), the cost of any other
plans that it invokes directly, and also the cost of fixing the
violation of any rules that are made false by executing the
repair plan. The user may use this mechanism to adjust the
change propagation process. For example, if he/she wishes
to bias the change propagation process towards adding more
information then he/she may assign lower costs to actions
that create new entities or add entities, and higher costs to
actions that delete entities. The least cost plans (which can
be more than one) are presented to the modeler for selection.
It is also noted that the user can choose not to make any
selection, in this case he/she continues performing further
primary changes and invokes the change propagation process
later.

A. Generate repair plans

Options for repairing inconsistencies (“repair plans”) are
represented using event-triggered plans. The syntax for re-
pair plans is formally defined in figure 5. Each repair plan,
P, is of the form E : C← B where E is the triggering event;
C is an optional “context condition” (Boolean formula);
and B is the plan body [12]. Triggering events can be one
of the following four types: making a fact F true (Ftrue),
or making a fact F false (Ffalse), or adding an entity to a
derived set, or removing it from a derived set. Addition and

28

deletion for derived sets (e.g. union sets) are represented
as events because they do not usually involve a primitive
action. Rather, they require a number of different actions,
for example two deletions might be needed, one of the
first set and the other for the second set, in the case of
removing an entity from a union of two sets. A repair
plan’s context condition specifies when the plan should be
applicable3 and can be expressed in terms of first-order
logic formulaes4). The context condition also contains a
predicate Ask(userVal, guidance) indicating that the user
should be asked to provide (following the hints provided
in the guidance) a value bounded to userVal. For example,
the user is asked to provide a value for a new attribute. It is
also noted that additional criteria can be incorporated in the
context condition such as design heuristics, user preferences,
etc.

The plan body can contain primitive repair actions, se-
quences (B1; B2), events which will trigger further plans
(written as !E), conditionals and loops. There are several
types of primitive repair actions. “Create e : t” indicates
a creation of entity e of type t whilst “Delete e” results
in a deletion of entity e. “Connect e1 and e2 (w.r.t. r)”
denotes a connection between entities e1 and e2 with respect
to relationship r, and similarly “Disconnect e1 and e2 (w.r.t.
r)” refers to a disconnection between entities e1 and e2 with
respect to relationship r. “Change attr of e to val” involves
modifying attribute attr of entity e to a new value val.

P ::= E[: C]← B

E ::= Ftrue | Ffalse | Add x to SE | Remove x from SE

C ::= C ∨ C | C ∧ C | ¬ C |
∀ x • C | ∃ x • C | Prop | Ask(userVal, guidance)

B ::= RepairAction | !E | B1; B2 |
if C then B | for each x in SE B

RepairAction ::= Create e : t | Delete e |
Connect e1 and e2 (w.r.t r) |
Disconnect e1 and e2 (w.r.t r) |
Change attr of e to val

Figure 5. Repair plan abstract syntax

As a step towards automated change propagation, the
repair plans in our approach are generated automatically
(at design time) from the Alloy facts, and form a repair
plan library which is used at run time. A key consequence
of generating plans from facts, rather than writing them
manually, is that, by careful definition of the plan generation
scheme, it is possible to guarantee that the plans generated

3In fact when there are multiple solutions to the context condition, each
solution generates a new plan instance. For example, if the context condition
is x ∈ {1, 2} then there will be two plan instances.

4“Prop” denotes a primitive condition such as checking whether x > y
or whether x ∈ SE.

are correct, complete, and minimal, i.e. there are no repair
plans to fix a violation of a fact other than those produced
by the generator; and any of the repair plans produced by
the generator can fix a violation. However, we also allow
the users to use their domain knowledge and expertise to
modify generated repair plans or remove plans that should
not be executed.

Since ChangeAwareHierarchicalEA uses Alloy to specify
its well-formedness rules, we have developed a translation
that takes an Alloy fact as input and generates repair plans
that can be used to correct fact violations. Such a translation
can be developed by considering all the possible ways in
which a rule can be false, and hence all the possible ways
in which it can be made true. However, there may be a
large number of concrete ways of fixing a rule violation.
In some cases this number can be infinite. For instance,
consider a fact requiring a particular set SE to be non-empty.
Assume that SE is empty, then the various ways of fixing
this fact are adding 1 element, adding 2 elements, adding
3 elements, and so on. Another example is a fact requiring
that the age (attribute) of a person (model entity) has to be
greater than 18. There is also an infinite number of ways
to fix this rule, each of which corresponds to changing the
age to a number greater than 18. Such issues are due to
the inherent characteristics of first order logic that Alloy
facts is based on. In order to address those issues, our repair
plan generation has the following important characteristics.
Firstly, generated repair plans abstractly represent certain
classes of concrete ways of fixing a rule. For example, plan
ctrue : x ∈ SE ←!c1true(x) represents all the repair plans that
make rule c true, each of which corresponds to picking an
element x in the set SE and making c1(x) true. Secondly,
generated repair plans are minimal in that all of their actions
contribute towards fixing a certain rule, i.e. taking out any
of the actions results in failing to fix the rule. For example,
the generated repair plan for making a (empty) set be not
empty is adding only one element to the set. Finally, there is
a type of repair plan that involves user interaction in which
the user is asked to provide an input. For example, in the
above example the user is asked to input an age value that
is greater than 18. A proof for showing the correctness and
completeness of generated repair plans for rules expressed
in OCL is presented in [12]. Our future work would involve
developing a similar proof for Alloy rules.

Our repair plan generation for ChangeAwareHierarchi-
calEA contain rules which cover a wide range of Alloy
expressions. Due to space limitation we present here an
excerpt of the rules in Table II.

IV. ILLUSTRATION OF CHANGE PROPAGATION

In order to illustrate how ChangeAwareHierarchicalEA
deals with changes, we are developing a case study, an
excerpt of which is presented in this section. The full case
study is a Bookstore which is specified and designed, along

29

Table II
PLAN GENERATION RULES FOR BASIC ALLOY FACTS

Alloy facts Repair plans
fact F{e1.aend = e2} Ftrue : e1.aend = null ← Connect e1 and e2 (w.r.t aend)

Ftrue : e1.aend = x ← Disconnect e1 and x (w.r.t aend); Connect e1 and e2 (w.r.t. aend)
fact F{e1.aend1 = e2.aend2} Ftrue : e2.aend2 = x ← !(e1.aend1 = x)true

Ftrue : e1.aend1 = x ← !(e2.aend2 = x)true
fact F{all x : SE | F1} Ftrue ← for each x in SE if ¬ F1(x) then !F′

true(x)
F′

true(x) ← !(RemovexfromSE)
F′

true(x) ← !F1true(x)
fact F{some x : SE | F1} Ftrue : x ∈ SE ← !F1true(x)

Ftrue : x ∈ Type(SE) ∧ x 6∈ SE ← !(Add x to SE) ; !F1true(x)
Ftrue ← Create x : Type(SE) ; !(Add x to SE) ; !F1true(x)

fact F{F1 and F2} Ftrue : ¬ F1 ∧ F2 ← !F1true
Ftrue : ¬ F2 ∧ F1 ← !F2true
Ftrue : ¬ F1 ∧ ¬ F2 ← !F1true ; !F2true

fact F{F1 or F2} Ftrue ← !F1true
Ftrue ← !F2true

with a number of additional requirements. These additional
requirements give examples of evolution of the enterprise
architecture that are used to assess how ChangeAwareHier-
archicalEA supports change propagation.

The initial architecture of the Bookstore has been pre-
sented earlier in Subsection II-C1. We assume that the
bookstore’s management wants to change the payment meth-
ods supported by the bookstore from taking customer’s
cheques to accepting customer’s credit card. This change
at high-level business requirements leads to changes made
to the bookstore enterprise model. Now, the three companies
BookCo, ShipCo, PubCo need to collaborate with an agent
(called CreditCard Agent) who is capable of verifying
credit cards and processing credit transactions. In addition,
the business of verifying credit cards and processing credit
transactions are now represented as component collabora-
tions of the payment collaboration. Note that the notify

collaboration now becomes a component collaboration of
payment. Figure 6 is a diagram that shows the second
hierarchical level of the bookstore enterprise model after
these initial changes are made. In this diagram, added
elements are marked with tick symbols.

After making such initial changes, the enterprise architect
may wish to ask the tool what other entities they should alter
to correctly propagate the new change. In fact, the removal
of Bank, the addition of CreditCard Agent, verify cc,
transfer money and the relocation of notify break the
well-formedness of the bookstore enterprise model. Specifi-
cally, these changes violate a total of three well-formedness
rules defined in the ChangeAwareHierarchicalEA modeling
language. Table III explains these rules both informally (in
English sentences) and formally (by means of Alloy code).

The underlying change propagation process in
ChangeAwareHierarchicalEA firstly checks for rule
violations in the new EA model. As mentioned earlier,
the first rule is violated in several instances. As can be
seen from figure 6, the new business entity CreditCard

Figure 6. Representation of the bookstore enterprise model at the same
scope as Figure 3 after initial changes are made.

Agent gets involved in the new collaboration verify cc

(similarly to the two other new collaborations transfer

money, notify) but it does not offer any service that
is bound to the collaboration. Therefore, the first rule is
violated for the participation between CreditCard Agent

and verify cc, denoting CreditCardAgent verifycc.
To fix this rule violation, ChangeAwareHierarchicalEA

uses and instantiates repair plans which have been generated
earlier. For instance, let us have a look at the first consistency
rule which is expressed as an Alloy fact as follow.

fact F {all r : Participation | some s : Service |
s.goal binding = r.action}

We define the following abbreviations:
fact F1(r) {some s : Service | s.goal binding = r.action}
fact F2(r, s) {s.goal binding = r.action}
ChangeAwareHierarchicalEA produces the following re-

30

Table III
WELL-FORMEDNESS RULES THAT ARE VIOLATED BY INITIAL CHANGES

MADE TO THE BOOKSTORE ENTERPRISE MODEL

Rule Formalization in Alloy
A business entity or a
system that gets involved
in a collaboration must
offer a service that is
bound to the collabora-
tion.

fact responsibility {
all r: Participation |
some s: Service |
s.goal_binding = r.action }

The orders in which
services are performed
within a business entity
comply with the orders
that is specified for col-
laborations the business
entity gets involved in.

fact sequence {
all s1, s2: Service |
s2 in s1.ˆ(˜source.destination)
=> (some c1, c2: Collaboration |
s1.goal_binding = c1 and
s2.goal_binding = c2 and
c2 in c1.ˆ(˜source.destination)) }

The decomposition hier-
archy of services must be
the same as the decom-
position hierarchy of col-
laborations that they are
bound to.

fact binding_hierarchy {
all c1, c2: Collaboration |
all s1, s2: Service |
(c2 in c1.components and
s1.goal_binding = c1 and
s2.goal_binding = c2)
=> s2 in s1.components }

pair plans for making fact F true, since it has the form
all x : SE | F1

Ftrue ← for each r in Participation
if ¬ F1(r) then !F′true(r) (P1)

F′true(r) ← Remove r from Participation (P2)
F′true(r) ← !F1true(r) (P3)

For the F1(r) fact, the following repair plans are gener-
ated, since the rule is of the form some x : SE | F1. In
the rules of Table II, “Type(SE)” denotes the type of SE’s
elements. In this case, SE (which is Service) contains all the
available services and therefore the first and second plan are
the same and creating a new service also adding it to the set
of services.

F1true(r) : s ∈ Service ← !F2true(r, s) (P4)
F1true(r)← Create s : Service ; !F2true(r, s) (P5)

Similarly for fact F2(r, s), the following repair plans are
generated.

F2true(r, s) : r.action = x ← !(s.goal binding = x)true (P6)
F2true(r, s) : s.goal binding = x ← !(r.action = x)true (P7)

Finally, the following repair plans are generated to make
s.goal binding = x and r.action = x true.

(s.goal binding = x)true : s.goal binding = null
← Connect s and x (w.r.t goal binding) (P8)

(s.goal binding = x)true : s.goal binding = y
← Disconnect s and y (w.r.t goal binding);

Connect s and x (w.r.t. goal binding) (P9)
(r.action = x)true : r.action = null

← Connect s and x (w.r.t action) (P10)

(r.action = x)true : r.action = y
← Disconnect s and y (w.r.t action);

Connect s and x (w.r.t. action) (P11)

As discussed earlier in Section III, ChangeAwareHierar-
chicalEA allows users to use their domain knowledge and
expertise to modify generated repair plans or remove plans
that should not be executed. For instance, plan P2 can be
removed since we do not want to remove a Participation.
In addition, in order to make sure that the service and
participation are associated to the same business entity, the
user may change the context condition of plan P4 and the
body of plan P5 as follows.

F1true(r) : s ∈ Service ∧ s.host object = r.object
← !F2true(r, s) (P4new)

F1true(r)← Create s : Service ;
Add s to r.object; !F2true(r, s) (P5new)

Figure 7 represents the event-plan tree for fixing the
violation of fact F using the plans produced by our repair
plan generator. At the root of the tree is the event of making
the top constraint fact F true. The leaves of the tree are
primitive repair actions.

P1

Ftrue

Key
Event

Plan
F’true(r)

P2 P3

P5newP4new

P8

P6

*

F1true(r)

F2true(r, s)

(s.goal_binding = x)true

Remove r

Disconnect s

and y (w.r.t.

goal_binding)

P9

Create s :

Service

Action

Connect s and

x (w.r.t.

goal_binding)

P7

(r.action = x)true

P10

Disconnect r

and y (w.r.t.

action)

P11

Connect r and

x (w.r.t.

action)

Add s to

r.object

Figure 7. An event-plan tree for Ftrue

Repair plan P4 is not applicable since CreditCard

Agent does not have any services at the time. Hence, the
only applicable repair plan for making F1 true is P5, which
create a new service in CreditCard Agent and making
F2 true for the newly-created service. Two repair plan types
P6 and P7 which can potentially make F2 true for the new
service. However, plan P7 is not applicable in this case
since there is no collaboration to which the newly-created
service is bound to (i.e. s.goal binding = null). On
the other hand, plan P6 is applicable since the associated
collaboration of r is verify cc, i.e. r.action = verify

31

cc. P6 potentially can trigger either plan P8 or P9. However,
since the new service is currently not associated with any
collaboration, i.e. s.goal binding = null, only plan P8
is applicable in this case. Therefore, ChangeAwareHierar-
chicalEA will propose the following actions to fix the first
rule:

1) Create a new CC Verification service
2) Add this new service into CreditCard Agent

3) Set verify cc to be the collaboration of the new
service.

However, these changes will violate the other two rules
listed in Table III, which lead to further changes being
needed. In a similar manner, ChangeAwareHierarchicalEA
uses and instantiates repair plans to fix those rule violation.
As discussed in Section III, we calculate the cost for each
repair plan and present a list of equal least cost plans
to the user. The repair plan’s cost is computed by firstly
accumulating the costs of each repair actions in the plan.
For instance, the basic cost of plan P1 for fixing the first
rule violation would be the sum of the costs of a creation
of a new entity, a connection between two entities and a
modification of an entity’s attribute. In addition, the cost
of plan P1 includes the cost of fixing the other two rules’
violation which it breaks. We follow the same process of
generating plan instances to calculate the cost of fixing the
violation of those rules. Due to space limitation, we do not
include a full discussion here but provide a list of additional
changes proposed by ChangeAwareHierarchicalEA, which
are marked with star symbols (*), in Table IV.

V. RELATED WORK

A number of methods have been developed for model-
ing enterprises. Archimate proposes an integrated model-
ing framework for EA including organizational structure,
business processes, information systems and infrastructure
[13]. The Computer Integrated Manufacturing Open System
Architecture (CIMOSA, also known as the ISO EN/IS 19440
standard)5 focuses on the modeling of processes in the con-
text of computer integrated manufacturing projects. Design
and Engineering Methodology for Organizations is a method
for (re-)designing organizations [14]. IDEF6 (Integrated
DEFinition Methods) is a set of methods that address many
aspects of enterprise modeling (e.g. function, data, process,
object-oriented design). TOGAF7 and Zachman [15] propose
ad-hoc modeling frameworks in which multiple systems can
be represented. The well-formedness of enterprise models is
not specficially defined in these methods. It is up to the EA
modelers to preserve the well-formedness of their models if
they wish to.

There has been very little work to deal with change
propagation in enterprise architecture. To the best of our

5CIMOSA homepage http://www.cimosa.de/
6Integrated Definition Methods http://www.idef.com/
7The Open Group Architecture Framework http://www.togaf.org/

Table IV
INITIAL CHANGES LEAD TO FURTHER CHANGES MADE TO THE

BOOKSTORE ENTERPRISE MODEL

Category Model element
Removal Bank business entity
Addition CreditCard Agent business entity
Addition verify cc collaboration
Addition transfer money collaboration
Mod payment becomes parent of notify collaboration
Removal Link Bank to payment

Addition Link CreditCard Agent to verify cc

Addition Link CreditCard Agent to transfer money

Addition Link CreditCard Agent to notify

Removal Partcipation link Bank to notify

Addition* CC Verification service in BookCo

Addition* CC Verification service in CreditCard Agent

Addition* TransferMoney service in BookCo

Addition* TransferMoney service in CreditCard Agent

Addition* Notify service in CreditCard Agent

Addition* Transition verify cc to notify

Addition* Transition verify cc to transfer money

Removal* Transition payment to notify

Addition* Transition CC Verification to Notify

Addition* Transition CC Verification to TransferMoney

Removal* Transition Payment to Notify

Addition* Payment service in CreditCard Agent

Mod* Payment service becomes parent of CC Verification
service in BookCo

Mod* Payment service becomes parent of Transfer Money
service in BookCo

Mod* Payment service becomes parent of Notify service in
BookCo

Mod* Payment service becomes parent of CC Verification
service in CreditCard Agent

Mod* Payment service becomes parent of Transfer Money
service in CreditCard Agent

knowledge, only Archimate was taken for analyzing change
impact in EA [2]. This work helps EA modelers identify
potential impacts of a change made to their enterprise
model before it actually takes place. Their work proposes
a classification of relationships between different entities
within an EA model. Such relationships are however defined
at a high level and it is not clear how they can be used
to propagate changes. Another work in this area illustrates
how to propagate changes and determine change impacts
through rules and ontology [3]. This work does not address
any particular EA framework. In addition, it does not deal
with the issue of how to repair such rules when they are
violated.

Several approaches provide developers with a software
development environment which allows for recording, pre-
senting, monitoring, and interacting with inconsistencies
to help the developers resolve those inconsistencies [16].
Other work also aims to automate inconsistency resolu-
tion by having pre-defined resolution rules (e.g. [17]) or
identifying specific change propagation rules for all types
of changes (e.g. [18]). However, these approaches suffer
from the correctness and completeness issue since the rules

32

are developed manually by the user. As a result, there is
no guarantee that these rules are complete (i.e. that there
are no inconsistency resolutions other than those defined
by the rules) and correct (i.e. any of the resolutions can
actually fix a corresponding inconsistency). In order to deal
with this issue, [19] has proposed an approach for auto-
matically generating repair options by analyzing consistency
rules expressed in first order logic and models expressed
in xLinkIt. They did not take into account dependencies
among inconsistencies and potential interactions between
repair actions for fixing them. In other words, their work
considers repair actions as independent events, and thus
does not explicitly deal with the cascading nature of change
propagation.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a new enterprise
architectural description language and toolkit, namely
ChangeAwareHierarchicalEA, which can be used to de-
scribe enterprise architecture in a hierarchical manner. This
language is built on top of SeamCAD and has several
key improvements in terms of the understandability of the
vocabulary, cardinalities, and well-formedness of services in
an EA model. An important novel aspect of ChangeAware-
HierarchicalEA resides in its capability to deal with changes
made to an existing EA model. It is integrated with a
framework which provides (semi-)automated support for
propagating further changes across an EA model after certain
initial changes have been made. The underlying change
propagation framework of ChangeAwareHierarchicalEA au-
tomatically generates repair plans from consistency and
well-formedness rules defined in Alloy. Such repair plans
are the driver of propagating futher changes.

We have implemented ChangeAwareHierarchicalEA and
started integrating the change propagation framework into its
toolkit. Our future work also involves implementing a repair
plan generator which covers a complete set (or a majority
of) Alloy expressions. This will lead to the ability to deal
with changes in the landscape of strategic alignment. The
feasibility of this direction can be judged in the way that we
use Alloy to formalize the meta-model of a specific modeling
method and an accompanied toolkit that are particularly
designed to address the strategic alignment of business ser-
vices. Our future work also includes an evaluation to test the
effectiveness and efficiency of ChangeAwareHierarchicalEA
using real life models.

REFERENCES

[1] J. Schekkerman, How to Survive in the Jungle of Enterprise
Architecture Framework: Creating or Choosing an Enterprise
Architecture Framework. Trafford Publishing, 2004.

[2] A. W. Stam, “Change Impact Analysis of Enterprise Archi-
tectures,” in Proceedings of the 2005 IEEE Conference on
Information Reuse and Integration. IEEE Computer Society,
2005, pp. 177–181.

[3] A. Kumar, P. Raghavan, J. Ramanathan, and R. Ramnath,
“Enterprise Interaction Ontology for Change Impact Analysis
of Complex Systems,” in Proceedings of the 2008 IEEE Asia-
Pacific Services Computing Conference. IEEE Computer
Society, 2008, pp. 303–309.

[4] L.-S. Lê, “SeamCAD: a Hierarchy-Oriented Modeling Lan-
guage and a Computer-Aided Tool for Enterprise Architec-
ture,” Ph.D. dissertation, EPFL, 11 2008.

[5] L.-S. Lê and A. Wegmann, “SeamCAD: Object-Oriented
Modeling Tool for Hierarchical Systems in Enterprise Archi-
tecture,” in 39th Hawaii International Conference on System
Sciences, vol. 8. IEEE Computer Society, 2006, p. 179c.

[6] D. Jackson, “Alloy: a lightweight object modelling notation,”
ACM Trans Softw Eng Methodol, vol. 11, no. 2, p. 256290,
2002.

[7] A. Wegmann, L.-S. Lê, G. Regev, and B. Wood, “Enter-
prise modeling using the foundation concepts of the RM-
ODP ISO/ITU standard,” Information Systems and E-Business
Management, vol. 5, no. 4, pp. 397–413, 2007.

[8] R. Smullyan, First-Order Logic. Dover Publications, 1995.
[9] K. H. Dam. Supporting Software Evolution in Agent Systems.

PhD thesis, RMIT University, School of Computer Science
and IT, 2009.

[10] K. H. Dam and M. Winikoff, “Cost-based BDI plan selection
for change propagation,” in Proceedings of the 7th Interna-
tional Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2008), Padgham, Parkes, Müller, and Parsons,
Eds., Estoril, Portugal, May 2008, pp. 217–224.

[11] K. H. Dam, M. Winikoff, and L. Padgham, “An agent-oriented
approach to change propagation in software evolution,” in
Proceedings of the Australian Software Engineering Confer-
ence (ASWEC). IEEE Computer Society, 2006, pp. 309–318.

[12] K. H. Dam and M. Winikoff, “Generation of repair plans for
change propagation,” in Agent-Oriented Software Engineering
VIII, ser. Lecture Notes in Computer Science, M. Luck and
L. Padgham, Eds., vol. LNCS 4951. Springer Berlin /
Heidelberg, April 2008, pp. 132–146.

[13] M. Lankhorst, Modelling, Communication and Analysis.
Springer, 2005.

[14] J. Dietz, Enterprise Ontology: Theory and Methodology.
Springer, 2006.

[15] J. A. Zachman, “A framework for information systems archi-
tecture,” IBM Syst. J., vol. 26, no. 3, pp. 276–292, 1987.

[16] J. Grundy, J. Hosking, and W. B. Mugridge, “Inconsis-
tency management for multiple-view software development
environments,” IEEE Transactions on Software Engineering,
vol. 24, no. 11, pp. 960–981, 1998.

[17] W. Liu, S. Easterbrook, and J. Mylopoulos, “Rule based
detection of inconsistency in UML models,” in Proceedings
of UML Workshop on Consistency Problems in UML-based
Software Development, 2002, pp. 106–123.

[18] L. C. Briand, Y. Labiche, L. O’Sullivan, and M. M. Sowka,
“Automated impact analysis of UML models,” Journal of
Systems and Software, vol. 79, no. 3, pp. 339–352, March
2006.

[19] C. Nentwich, W. Emmerich, and A. Finkelstein, “Consistency
management with repair actions,” in ICSE ’03: Proceedings of
the 25th International Conference on Software Engineering.
IEEE Computer Society, 2003, pp. 455–464.

33

	Supporting change propagation in the evolution of enterprise architectures
	Recommended Citation

	Supporting change propagation in the evolution of enterprise architectures
	Abstract
	Disciplines
	Publication Details

	Supporting Change Propagation in the Evolution of Enterprise Architectures

