
A Simple Solution for Information Sharing in
Hybrid Web Service Composition

Brahmananda Sapkota, Camlon H. Asuncion, Maria-Eugenia Iacob, Marten van Sinderen
Centre for Telematics and Information Technology

University of Twente
The Netherlands

{b.sapkota, c.h.asuncion, m.e.iacob, m.j.vansinderen}@utwente.nl

Abstract—In hybrid service composition approaches, processes
are used to describe the core part of the composition logic
whereas the rules are used to specify decision making constraints
and conditions. These rules are exposed as services and are used
in the processes whenever a certain decision has to be made.
To evaluate these rules, we need a mechanism 1) to share data
between the main process and the rule service; 2) to decide upon
which service to invoke based on the result received from the rule
service. In this paper, we propose a tuple space based solution for
supporting these requirements. We also include descriptions of
an application scenario to motivate our work, a prototype of the
proposed solution and we demonstrate how our solution helps in
achieving process flexibility with minimal maintenance costs in
the context of changing requirements.

I. INTRODUCTION

In modern enterprises, business processes are used to de-
scribe ways of achieving business goals by specifying a
sequence of activities that need to be performed in order
to achieve them. The sequence of activities can be specified
imperatively by means of control and data flows, in languages
such as Business Process Execution Language (BPEL) [1].
Business processes described in such a manner are supported
by means of software systems. This facilitates the separation
of business process logic from business applications, conse-
quently allowing changes into business processes with minimal
impact on business applications. Additionally, this also allows
business managers and application developers to focus on their
own areas of expertise independently from each other.

However, there are several challenges that a business en-
terprise should deal with. The requirements, business rules,
processes as well as the offered service functionality may
change. Furthermore, even the business goals may change as
a result of changes in the external environment or in other
processes [2]. These changes can be planned or unplanned.
The planned changes are known a priori, at design time,
and can be dealt with. In contrast, the unplanned changes
are not known at design time and can only be handled at
run time. It can also happen that changes of requirements,
rules processes or services influence or demand changes of
other aspects as well (e.g., implementation). Such effects are
not desirable and should be minimised as much as possible.
In addition, new functionality may need to be added, some
existing functionality may need to be removed or modified

from already existing service. This is particularly the case
when changes in the environment or the requirements are
introduced. It might even be required to provide variations
of the same service due to variations in requirements coming
from different users of that type of service. This results in
service evolution. Providing support to such an evolution
requires a flexible service composition approach which allows
us to configure composed services to satisfy requirements
of specific users [3]. This brings us to the main research
question addressed in this research, namely: How to define a
run-time service composition approach that can capture and
incorporate new and evolving business requirements also after
a serviced composition is specified by means of a business
process at design time?

Following an idea we proposed in our earlier work [4],
this paper argues that, in order to deal with the challenges
discussed above, we need to use a hybrid service composition
approach by combining complementary features of business
process and business rules approaches. Hence, we must specify
the stable parts of the service composition (i.e., the service
orchestration) in terms of a business process, while the variable
parts of the service composition must be separated from the
main process specification, to increase maintainability and
reuse of rules, which is otherwise not possible. These variable
parts are represented as decision activities in the business
process and are specified separately as business rules. Rules
are stored persistently and are encapsulated in so-called rule
services. Thus, a decision activity is seen as an invocation of a
decision service, which, in turn, is accessing rule services [5]
in order to take a decision with respect to a particular run-time
composition.

To deal with some of the challenges discussed above, in
our earlier work [4], we defined a hybrid service composition
approach by combining complementary features of business
process and business rules approaches. We separate business
rules from the main process to increase maintainability and
reuse of rules, which is otherwise not possible in existing
approaches. The separated rules are stored persistently and
accessed through so called decision services. Decision services
are used as per the SOA [5] principles to access rules. The
decision services are invoked whenever some rules have to be
evaluated at some decision points in the main process. The

use of decision service provides support for 1) modification
of the processes and rules independently; 2) reuse of rules and
decision logics; 3) increasing the flexibility of the composition
process.

The decision service should evaluate the decision logic in
a given context of a particular composition instance. Because
the decision service invokes rule services to evaluate rules,
data may need to be shared between the main process and
the decision service. An important limitation of the approach
proposed in [4] is that it does not clearly specify a mechanism
for 1) passing required data items to the decision service,
and for 2) interpreting the results received from the decision
service. One of the possibilities, of course, is to pass data
as parameters to address issue 1), but then we will need to
know a priori what types of data are used. Issue 2) can be
addressed by endowing the decision points with ‘some’ logic
in order to interpret the data. But such a solution will require
changes in implementation every time the requirements or the
business logic will change. Considering the above drawbacks,
we choose to use tuple spaces to support loosely coupled
communication between participating services and to provide
persistence storage of data. Because of decoupling, decision
logic per instance can be handled efficiently by using a tuple
space. This is required since the actual control flow decisions
are often based on the context of a composition instance.

The rest of the paper is structures as follows. Background
information is discussed in Section II. A solution approach for
information sharing is presented in Section III. Implementation
of the proposed solution is detailed in Section IV. Lessons
learned during the implementation are discussed in Section V.
Similar existing works are presented in Section VI, and finally
Section VIII concludes this paper by mentioning possible
future directions.

II. BACKGROUND AND MOTIVATION

In this section, we discuss the background information based
on which the solution presented in this paper is proposed.

A. Hybrid Composition

In the service oriented paradigm, services can be com-
bined to create other complex value-added services. A service
composition method prescribing the composition logic speci-
fies how these services should be composed. Three different
types of approaches are discussed in literature [4], [6], [7],
[8], [9] which are either a) process-based, b) rule-based or
c) a combination of these two, i.e., a hybrid approach. In
process-based approaches, the composition logic is described
in terms of business processes or workflows that specify the
invocation order of individual services. The invocation order
can either be sequential, parallel, choice or join. The logic
required to determine such ordering is usually specified in
terms of conditional expressions and is built-in the process
itself. In rule-based approaches, the entire composition logic
is described in terms of rules. Both these approaches have
their own limitations and advantages. The former is quite
inflexible but is more tractable whereas the latter approach

is more flexible and less tractable. In a hybrid composition
approach, both process-based and rule-based approaches are
used to exploit their positive features in an attempt to make
composition logic more flexible. In this paper, processes are
used to describe the core and stable part of the composition
logic whereas the rules are used to specify decision-making
constraints and conditions, which are required in the process.
The processes and rules are managed separately, but are used
together during execution time.

Thus, the hybrid composition approach provides a mecha-
nism to define composition logic in such a way that the process
and rules can be managed separately. This allows for updates
of core processes as well as rules, when necessary and is
suitable to describe a composition logic that needs to adapt
to frequently changing requirements. Since the processes and
rules can be changed independently, the underlying implemen-
tation code can be updated with minimal effort.

B. Tuple Space

A tuple space provides a medium and mechanisms to sup-
port communication between multiple processes, applications
or agents, based on the principle of associative addressing [10].

Communication between applications takes place by writing
and reading tuples from a tuple space. A tuple is a sequence of
typed fields. A typed field is called an actual field if it is valued
and it is called a formal field if it is non-valued. Currently
available tuple space implementations follow Gelernter’s Linda
model [11]. In Linda, the first field is reserved to contain an
actual field which is used as the identifier of that tuple. There-
fore, an example of tuple according to Linda model, would be
(idvalue, String, 20). One of the interesting characteristics of
tuple space is that a minimal set of operations is required
for parallel or concurrent communication purposes. Linda, for
example, provides out(), rd(), and in() operations to
write, read and destructively read tuples to and from a tuple
space. The rd() and in() take a so-called template as a
parameter to retrieve information written in a tuple space. A
template is similar to a tuple and is used to specify information
search criteria. For a given template, a set of tuples is returned
if the following conditions hold true: 1) number of fields in
the tuples are equal to that of given template and 2) each field
in the tuples matches a corresponding field in the template
by value or by type. Therefore, a template (idvalue, “Age”,
Integer) would be an example of specifying search criteria to
look for tuple stored as (idvalue, String, 20) in the tuple space.
However, using this template rd() or in() operation would
not return, for example, a tuple stored as (idvalue, String, 20,
Boolean) in the tuple space, because the number of fields in
this tuple is not equal to that in the template.

Tuple spaces provide a simple but powerful means to
share information between multiple distributed processes or
applications. Because the communication takes place between
applications by writing and reading tuples from a tuple space,
it supports loose coupling in terms of time, location and
reference. The decoupling in time is supported because the
communicating applications do not need to be available at

the same time. Communicating applications also do not need
to be at the same location and hence, the location decoupling.
Furthermore, they also do not need to know the access address
for communication. The only address they need to know is
that of the tuple space. Therefore, applications are decoupled
in terms of reference. Due to these inherent support for
decoupling, tuple space provides a platform well-suited for
the integration of loosely coupled systems, e.g., systems in
enterprise applications environments.

C. Motivation

An information sharing approach for service composition is
required in situations where a possible future recipient is not
known a priori. We motivate this problem through the fol-
lowing example scenario taken from a home-care application
domain. We acknowledge that the scenario presented below is
simple. However, it is still sufficient to motivate and illustrate
the work presented in this paper.

A “medicine-reminder-and-dispenser” (MRD) service is
constructed by composing the “reminder” and the “dispenser”
services to provide medicine reminder functionality to people
with memory problem helping them take right the medicine
at the right time. The reminder service sends a reminder
message to a subscribed user at the predefined times (specified
at subscription). The dispenser service enables the release
of medicines and also monitors whether the medicines have
actually been taken. The MRD service uses the functionality
of a reminder service to send the reminder message at the
right time. It also uses the functionality of a dispenser service
to ensure that the recipient of the message takes the right
medicine at the right time. To do so, the MRD service repeats
the same reminder if the medicine has not been taken by its
recipient within a certain time interval (∆t). If the medicine
is taken, the MRD service stops sending the same reminder.
At a later point in time, the requirement changes in such a
way that if the recipient of the reminder message does not
take the medicine even after N repetitions of the reminder, an
alarm should be raised to seek external help. This additional
requirement demands the extension of original functionality
offered by the MRD service with the “alarm” functionality
offered by, for example, an “alarm” service. Again, at a later
point in time, the requirement changes in such a why that
the alarm should be raised only for those recipients who are
having life threatening health conditions and should not miss
their medicine intake.

This type of changing requirements calls for a flexible ser-
vice composition solution which is cost-effective and easy to
maintain and manage. Because the hybrid service composition
approaches such as the one described in [4] are aimed at
supporting such flexibility, the MRD service can be described
using that approach as depicted in Fig. 1.

As shown in Fig. 1, the constraints and conditions that
specify when to use the alarm service are externalised as part
of the rules, whereas the core logic is specified as process.
The externalised rules are connected to the process through
the so-called decision activity via the decision service.

Send Reminder

Raise Alarm

al
ar

m
 m

es
sa

ge
re

m
in

de
r

m
es

sa
ge MRD

N = Max. number of repetition
X = Waiting time
T = Scheduled time
M = Message to deliver
D(M) = Destination of Message

Enable Dispenser

A
ck

Reminder

Receive Message

Dispenser

Send Ack

Release Medicine

Alarm

Receive Alarm
Message

wait t time units after
the reminder is sent

Receive Ack

#d ·

Decision Service
d = d1 v d2 v d3

d1 = #r1

d2 = #r1 v #r2

d3 = #r3

Rule Service

r1 = …
r2 = ...
r3 = r1 r2

Fig. 1. MRD Service

Information required to make the decision is passed to the
decision service which, in turn passes this information to the
rule service to ascertain certain constraints and conditions.
This would, however, require a priori knowledge of the
parameter list. In addition, when the decision result is received,
the service implementing decision activity needs to further
analyse the result to determine which of the alternative services
should be invoked. This requires changing the implementation
code should the new services have to be added or the existing
ones have to be removed. Such a change in implementation
code, with each change in requirement, is usually costly and
time consuming. Moreover, as the system becomes complex,
identifying the right place where new changes have to be
adapted becomes a challenging task. Thus, it is necessary
to find a mechanism that resolves these issues in a flexible
manner.

III. INFORMATION SHARING

In this section, we propose an approach for enabling in-
formation sharing in hybrid web service composition. Our
approach is aimed at supporting flexibility and reducing main-
tenance costs. The design of the proposed solution is based
on the SOA principles and supports loose coupling between
participating services. Problems related to information sharing
and interpreting decision results as discussed in Section I are
addressed by using tuple space.

A. Handling Information Sharing

Information between services is shared by sending them as
parameters when invoking the service. In a decision making
scenario, this approach is not applicable because the parameter
list can be of variable length per decision expression. This
would become even worse if new decision expressions are to
be introduced, which is usually the case since flexible service
composition approaches are aimed at supporting such new
additions.

To share information between the service implementing the
decision point activity and the decision service, we use a

Activity A

Activity B

Activity C

Rule ServiceDecision Service

Activity Services
Tuplespace Service

A B C

Decision Point
Activity

· #d1

Fig. 2. Information Sharing

tuple space as a common communication medium between
these services as shown in Fig. 2. This approach is chosen
because the decision service can provide a standard generic
interface definition for invocation thereby eliminating the need
of defining new interface definition every time a new decision
expression has to be added. In the figure, we used different
line styles to differentiate between design and implementation
parts. The dotted lines are used to indicate the execution time
interaction. Arrows with a solid head are used to connect
activities of the process. Arrows with an empty head are
used to indicate the services that implement the corresponding
activities in the process. The Decision Service, Tuple Space
Service and the Rule Service are part of the design but not
of the process, dotted lines with solid arrow head are used to
indicate the interaction between the process and these services
during execution time.

The Decision Point Activity, represented as a rectangle with
a line connecting its top and right boundaries, is used for
invoking the Decision Service in order to obtain a certain
decision result. It refers to the decision deployed in the De-
cision Service. It is used at places, in the process, where a
certain decision has to be made. This activity is realised by
the Decision Activity Service. The Decision Activity Service
handles the data and the control flow of the decisions. The De-
cision Service allows deployment of decision expressions and
acts as a gateway to a Rule Service where specific constraints
and conditions are defined and deployed as rules. In addition,
the Decision Service evaluates the requested decision expres-
sion and returns the result to the Decision Activity Service.
The idea behind creating the Decision Activity Service is to
separate the activities related to the control and data flow from
the decision making logic, which is done by Decision Service.
This allows both services to be encapsulated, modularized
and reusable. The Tuple Space Service manages the tuple
space by exposing tuple space operations as a Web service.
The tuple space is used as a medium to share information
between interacting services by reading and writing tuples.

The Activity Services represents various services that realise
and are invoked by the various activities of the process.

B. Decision Expression

Decision expressions are used to specify the decision mak-
ing logic. We define it in terms of rule expressions, i.e., a
decision expression consists of a logical expression referring
to rules which are deployed in the Rule Service. If rules
r1, r2, ..., rn are used, for example, to make a certain deci-
sion, these rules are grouped using logical connectors in a
decision expression d. To increase modularity and reusability,
we allow decision expressions to refer to other previously
defined decision expressions as well. If decision expressions
d1, d2, ..., dn are already defined, for example, these decisions
are allowed to be used in a new decision expression d′. Thus,
a decision expression can be a combination of rules and/or
existing decision expressions. The logical connectors used
in the decision expression are AND, OR, XOR and NOT
operators.

C. Indexing the Endpoint

The invocation of Decision Service results in a decision
value. The Decision Activity Service, which realises the De-
cision Point Activity is required to identify the endpoint of
the next services to be invoked based on the decision value
d received from the Decision Service. This is the same
problem as, for example, opening a particular BPMN [12]
gateway. In order to resolve this problem, the Decision
Activity Service maintains a simple index of endpoints of
the Activity Service(s) realising the activities which are directly
connected to the Decision Point Activity. Assuming that the
decision value is the name of the next activity to perform,
the entries of the index consists of (key, value) pair where
key represents the name of the activity whereas the value
represents the endpoint of the corresponding Activity Service.
When the Activity Service(s) are implemented, their endpoints
are stored in the tuple space by writing a tuple (tupleid,
EndPoint). In this tuple, the field tupleid represents the name
of the corresponding activity whereas the EndPoint represents
the endpoint of the Activity Service of type URI. The Decision
Activity Service uses the template (activityName, URI) to
read the EndPoint of the Activity Service, which realises the
activity activityName from the tuple space. This information is
then stored in the endpoint index. Having this index in place,
the endpoint of the next service to invoke can be identified by
performing a lookup using the decision value as the key.

D. Interaction Between Services

The interaction sequence between the various services is
illustrated in Fig. 3. This figure mainly illustrates the in-
formation sharing between the Decision Activity Service and
the Decision Service. The interaction begins with the Decision
Activity Service receiving an input data i that will be needed
for decision making purposes. Since the decisions are made
by the Decision Service, this data should flow to the Decision
Service. To handle this data flow, the Decision Activity Service

creates an unique ID (i.e., the Uk) and stores the received
data, i, into the tuple space, by writing a tuple (Uk), i). The
unique ID is needed to retrieve the data later on.

Decision Service Tuple Space Service Activity Service(s)Rule Service(s)Decision Activity Service

receive
input (i, #d)

Uk = generate
unique id (i)

store i using Uk

write (Uk, i)request decision
service with Uk , #d

retrieve data
using Uk

invoke
RuleService with i

send result
send decision d

lookup
ActivityService
endpoint Ea (d)

invoke
ActivityService
(Ea, Uk)

lookup
RuleService
using #d

read(Uk)

Fig. 3. The order of interaction between various services

After storing the data into the tuple space, the Decision
Activity Service passes the information (endpoint reference to
the Tuple Space Service, Uk, decision expression reference #d)
and the control flow further to the Decision Service whose
main responsibility is to a) invoke Rule Service(s) to evaluate
rules used in the decision expression and b) make decision
based on the information returned from the Rule Service. Upon
receipt of the control flow, the Decision Service retrieves data i
which is necessary for decision making from the tuple space
using the tuple ID (Uk). The Decision Service may perform
additional decision processing such as further processing the
results when several rules have to be evaluated and to arrive
at a correct decision d before returning the results back to
the Decision Activity Service. When the decision result is
received, the Decision Activity Service determines the correct
entry point (Ea) of the next service to invoke based on the
received decision result d, and then invokes the correct Activity
Service(s).

IV. IMPLEMENTATION

In this section, we describe the implementation details of
the proposed solution. We first provide a general overview of
the implementation solution. We then apply the solution to the
application scenario described earlier in Section II-C. Finally,
we show how the solution adapts when changes are made to
the application scenario.

A. Implementation Overview

To evaluate the usability and feasibility of the proposed
approach, a prototype is implemented in Java. We use Axis2
as the Web service engine and Tomcat 6 as the standard
container for deploying services. We implement the Tuple
Space Service using JavaSpaces technology — a simple yet
powerful tool for a scalable, high-performance, fault-tolerant,

and elegant coordination of distributed processes [13]. In
JavaSpaces, a tuple specified as a class that implements the
net.jini.core.entry.Entry class. For our purpose,
we implement the Entry class using the TupleEntry class
as shown in Listing 1. It takes two variables: id to indicate the
tuple id (denoting Uk in Fig. 3) and a java.util.Object
called content (denoting i in Fig. 3). The tuple id Uk is
used to uniquely identify tuples from the tuple space. We use
Java to generate an immutable and universally unique identifier
(UUID) string for generating this unique id.
import net.jini.core.entry.Entry;

2

public class TupleEntry implements Entry{
4 public String id = null;

public Object content = null;
6 public String getId(){

return id;}
8 public void setId(String id){

this.id = id;}
10 public Object getContent(){

return content;}
12 public void setContent(Object content){

this.content = content;}
14 }

Listing 1. The TupleEntry implementation of JavaSpaces Entry.

We design the Tuple Space Service to implement
four of the several methods available from
net.jini.space.JavaSpace: write(), take(),
and read(). An example of the write() implementation
is shown Listing 2. A TupleEntry object called entry is
created to store the id and content of the tuple passed as
a write object. For simplicity, we implement the JavaSpace
object, space, as a singleton so that there is only one space
that can be accessed at any given time (although JavaSpaces
allows the creation of several spaces). The write() method
can then be invoked passing the entry object as the tuple.
Again, to keep the implementation simple, we do not use a
transaction manager (which gives transaction atomicity for
a group of space operations); hence, a null value as the
second argument. The Lease.FOREVER code indicates the
amount of time that the entry will be stored in the space
before it is removed (in this case, indefinite).
public WriteResponse write(Write write) {

2 . . .
TupleEntry entry = new TupleEntry();

4 entry.setId(write.getTupleID());
entry.setContent(write.getContent());

6 . . .
JavaSpace space

8 = SpaceSingleton.getInstance();
space.write(entry, null, Lease.FOREVER);

10 . . .
}

Listing 2. An implementation of the write() method of the Tuple
Space Service.

We implement the Decision Service to maintain the decision
expression and for decision-making purposes. The decision
expressions are stored, for the purpose of this prototype, in a
decision-expression.xml file. A sample decision ex-
pression is given in Listing 3 which specifies that ruleName

should be invoked using its endpoint based on the given
decision reference.

<?xml version="1.0" encoding="UTF-8"?>
<decision-expression xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance">
<decision name="http://example.org/DecisionService/deci-

sion#1">
<rule name="ruleName" endpoint="http://localhost:8080/

axis2/services/RuleService"/>
</decision>

</decision-expression>

Listing 3. An example decision expression.

The Decision Service evaluates the decision expression
referred by (#d) which is supplied together with data items
when the Decision Service is invoked. Although the decision
reference (#d) can take any string for identification purposes,
we format it to take a form of a namespace in our imple-
mentation. We use the Java Architecture for XML Binding
(JAXB) for serializing XML [14] as Java objects. In Listing 3,
there is only one decision reference and one rule as its child
element. Thus, the Decision Service invokes the ruleName
rule service using its endpoint. However, it should be noted
that a decision expression file may have several decisions with
several rule services combined logically in different ways.

We use Java Expert System Shell (Jess) [15] as the technol-
ogy for implementing executable rules. The main advantage of
using Jess is that it is tightly integrated with Java so that Jess
rules can simply be manipulated as regular Java objects. A
typical Rule Service encapsulates an atomic Jess rule exposed
as a Web service.

To support identification of the services that need to be
invoked after the decision has been made, we define a simple
index and store it as an activity-services.xml file. A
sample decision index is given in Listing 4, which specifies
that given a name serviceA, its endpoint can be returned.

<?xml version="1.0" encoding="UTF-8"?>
<activity-services xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance">
<service name="serviceA">

"http://localhost:8080/axis2/services/ServiceA"
</service>

</activity-services>

Listing 4. An example service index.

This index is maintained by the Decision Activity Service
and used when necessary to determine the correct endpoint of
the correct Activity Service(s).

B. Implementing the Application Scenario

We now describe how the generic solution described
in the previous section can be applied to the application
scenario. Fig. 4 shows the invocation order of the different
services in the MRD application scenario. The interaction
begins with Remind Service invoking the Decision Activity
Service and passing the MRD Repeat Request input
data and the decision reference decision#1. The
Decision Activity Service, thereafter, creates a unique id
at runtime, Uk, for MRD Request and passes these
to the Tuple Space Service for space storage using the

write() operation. In this case, the generated id is
“74f4cf40-6ca0-449d-b015-1cd1414727a4”, and
the decision reference is “http://dyscotec.is.
utwente.nl/Decision-Service/decision#1”.
The Decision Activity Service now passes the control to
the Decision Service.

The Decision Service now calls the Tuple Space Ser-
vice to retrieve the MRD Request object using the
unique id. Next, the Decision Service unmarshalls the
decision-expression.xml to retrieve the appropriate
rule service endpoints that will be invoked later. For this
scenario, two rule services will be used with the names
MRDRule and MRDRepeatRule as shown in Listing 5.
Thus, the Decision Service will first invoke the MRD Rule
Service using the endpoint from the decision-expression file
passing the MRDRequest object retrieved earlier from the
tuple space.
<decision-expression xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance">
<decision name="http://dyscotec.is.utwente.nl/Decision-

Service/decision#1">
<rule name="MRDRule" endpoint="http://localhost:8080/

axis2/services/MRDRuleService"/>
<rule name="MRDRepeatRule" endpoint="http://localhost:

8080/axis2/services/MRDRepeatRuleService"/>
</decision>

</decision-expression>

Listing 5. The decision expression of decision#1.

The MRD Rule Service is a Web service that exposes a
Jess rule called MRDRule as shown in Listing 6. Its role is
to check if an acknowledgement from the dispenser has not
yet been received, and that the medicine time is equal to the
current time. If so, the rule fires and returns a boolean value of
true to send a reminder and enable the medicine dispenser.
This response is specified as a simple Java bean called MRD
Response as shown in Fig. 4.

(assert (ack (fetch ACK-VALUE)))
2 (bind ?mt (fetch MED-TIME))
(bind ?ct (fetch CUR-TIME))

4

(if (= ?mt ?ct) then (assert (remind)))
6

(defrule MRDRule
8 ?a <- (ack false)

?r <- (remind)
10 =>

(store SEND-REMINDER true)
12 (store ENABLE-DISPENSER true)

(retract ?a)
14 (retract ?r))

Listing 6. MRDRule exposed as the MRD Rule Service in Jess.

One of the roles of the Decision Service is to make
further decisions based on the results returned after invoking
appropriate rule services. It can either choose to invoke more
rule services or to end the execution of the process. In the
given scenario, when the MRD Rule Service returns a value of
true for isSendReminder and isEnableDispenser,
then the Decision Service informs the Decision Activity Service
about the need to invoke Send Reminder Service (otherwise,
if the rule does not fire, the Decision Service does not need to

Decision Service Tuple Space Service Send Reminder
Service

MRD Rule ServiceDecision Activity Service

send input
(i = MRDRequest,
#d1 = http://dyscotec.is.
utwente.nl Decision

Service/decision#1)

store i using Uk

write (Uk, i)request decision
service with Uk , #d1

retrieve i using Uk

invoke MRDRuleService

with MRDRequest

send MRDResponse

read(Uk)

Remind Service MRD Repeat Rule Service

invoke
MRDRepeatRuleService

with MRDRepeatRequest

send MRDRepeatResponse

MRD Response

+ boolean
isSendReminder
+ boolean
isEnableDispenser

MRDRepeatRequest
+ boolean ack
+ date timeOut
+ date medTime

MRDRepeatResponse

+ boolean
isSendReminder

lookup
SendReminderService

endpoint

MRD Request
+ boolean ack
+ date curTime
+ date medTime

Uk = 74f4cf40-6ca0-
449d-b015-
1cd1414727a4

Dispenser Service

send decision d

invoke
DispenserService

return acksend ack

send ack

send decision d
invoke
DispenserService

return acksend ack

invoke
SendReminderService

use decision#1 from
decision-expression.xml

invoke
SendReminderService

Fig. 4. Interaction between services to realise MRD service

do further actions). To do this, the Decision Activity Service
looks up the endpoint of the Send Reminder Service from the
activity-services.xml file and thereafter invokes it.
The Send Reminder Service, thereafter, invokes the Dispenser
Service to automatically enable the medicine dispenser.

If the Decision Activity Service is not able to receive an
acknowledgement from the Send Reminder Service within
a given time frame, then it informs the Decision Service
about this. The Decision Service, in turn, calls the next rule
service based on the decision#1, i.e., the MRD Repeat
Rule Service, to remind the patient again of the need to take
his medicine. The MRD Repeat Rule Service is a Web service
that encapsulates the Jess rule MRDRepeatRule as shown in
Listing 7.

(assert (ack (fetch ACK-VALUE)))
2 (bind ?ct (fetch CUR-TIME))
(bind ?to (fetch TIMEOUT))

4

(if (= ?ct ?to) then (assert (remind)))
6

(defrule MRDRepeatRule
8 ?a <- (ack false)

?r <- (remind)
10 =>

(store SEND-REMINDER true)
12 (retract ?a)

(retract ?r))

Listing 7. MRDRepeatRule exposed as the MRD Repeat Rule Service in
Jess.

The role of the MRD Repeat Rule Service is to remind the
patient again to take his medicine if no acknowledgement has
been received from the dispenser given a certain timeout; i.e.,
the rule fires, sending an isSendReminder of true, when
the ack is false and the medTime and the timeOut are
equal. The rule service returns true if a reminder is to be
sent again. The Decision Service also counts the number of
times the reminder has been sent. Finally, if the patient has

taken his medicine from the dispenser, the Dispenser Service
returns an acknowledgement to the Send Reminder Service,
and, thereafter, to the Decision Activity Service. The process
ends after this.

C. Adapting to Scenario Changes

We now describe the implementation solution when changes
to the application scenario are introduced. As previously
described, enabling the dispenser may not be enough. The
patient, for example, could be in a serious condition that
prevents him from taking his medicine on time. This may be
a hazardous situation. The functionality of the MRD service
can be extended to seek external help (e.g., from a volunteer
or a health care professional) in a situation like this.

For this purpose, we introduce a new rule service
called Alarm Rule Service that is raised when a patient
continuously ignores a reminder for some number of times.
The Alarm Rule Service can be used to invoke the Alarm
Service that automatically sends an alert (for example, through
a text message or an automated phone call) for external
assistance. This new rule service can be added in conjunction
with the two previously defined rule services (i.e., the MRD
Rule Service and the MRD Repeat Rule Service).

To implement this new rule service easily, a new decision
index can be added, hereafter called decision#2, to the
decision-expression.xml as shown in Listing 8. In
this new decision index, the previous rules are reused while
adding a new rule called the AlarmRule.

<decision-expression xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance">

<decision name="http://dyscotec.is.utwente.nl/Decision-
Service/decision#1">

<rule name="MRDRule" endpoint="http://localhost:8080/
axis2/services/MRDRuleService"/>

<rule name="MRDRepeatRule" endpoint="http://localhost:
8080/axis2/services/MRDRepeatRuleService"/>

</decision>

<decision name="http://dyscotec.is.utwente.nl/Decision-
Service/decision#2">

<rule name="MRDRule" endpoint="http://localhost:8080/
axis2/services/MRDRuleService"/>

<rule name="MRDRepeatRule" endpoint="http://localhost:
8080/axis2/services/MRDRepeatRuleService"/>

<rule name="AlarmRule" endpoint="http://localhost:8080/
axis2/services/AlarmService"/>

</decision>
</decision-expression>

Listing 8. Updated decision expression file.

The Alarm Service encapsulates the AlarmRule in List-
ing 9. Its role is to send an external alarm message in case
the patient has ignored reminders to take his medicine for a
certain number of times.

(assert (ack (fetch ACK-VALUE)))
2 (bind ?c (fetch COUNT))
(bind ?rc (fetch REMINDER-COUNT))

4

(if (>= ?rc ?c) then (assert (alarm)))
6

(defrule AlarmRule
8 ?a <- (ack false)

?r <- (alarm)
10 =>

(store SEND-ALARM true)
12 (retract ?a)

(retract ?r))

Listing 9. AlarmRule exposed as the Alarm Service in Jess.

Using the Alarm Request object, the rule fires when
the dispenser has not sent an acknowledgement, and the
number of times a patient has been reminded is equal to the
maximum number of reminders. The service returns an Alarm
Response object with a boolean value of isSendAlarm as
shown in Fig. 5.

When the MRD Request Rule Service repeatedly sent re-
minders for a certain maximum number of times, and still
the Dispenser Service has not returned an acknowledge-
ment, the Decision Activity Service informs the Decision
Service about this. Thereafter, the Decision Service, invokes
the Alarm Rule Service to fire the Jess AlarmRule (shown
in Listing 9). If the AlarmReponse returns a value of
true for isSendAlarm, then the Decision Service in-
forms the Decision Activity Service that the Alarm Service
needs to be invoked. The Decision Activity Service, there-
after, looks up the endpoint of the Alarm Service from the
activity-services.xml and invokes it. After this step,
the process ends.

V. DISCUSSION

Hybrid service composition approaches designed so far
focus on control flow aspects while defining a composition
logic. However, in these approaches, information sharing
between services is equally important because the rules are
evaluated outside of the processes. We aim at contributing
to this area by providing a tuple-space-based approach for
sharing information between rules and processes via decision
services. The proposed approach allows sharing of information
in a generic way. This means that the Decision Service has
to provide only one generic access interface because the

information is shared by writing and reading it to the tuple
space.

The proposed solution is flexible in the sense that new
services can be added or old ones can be removed from the
already existing service at a minimal cost. The addition or
removal can be done by updating the decision expressions
and rules, and with minimal changes to the underlying pro-
cess specification and implementation code. The information
sharing can be handled seamlessly because of the use of the
tuple space. We tested this feature through the implementation
of a prototype.

One of the difficulties we encountered when implementing
this solution using an execution language such as BPEL is that
the Decision Service decides at runtime which Activity Service
to invoke next based on the current values returned by the Rule
Services. As described previously, the control flow logic is
specified mainly by the decision-expression.xml. It
is difficult to implement this solution in BPEL since the control
flows need to be determined a priori during design time.

An additional implementation difficulty when using BPEL
is caused by its Assign activity. This is especially true when
it is used to design the Decision Service. An important design
requirement for the Decision Service is that it must be able to
receive and send any data object in order for it to be reusable.
With BPEL, however, data objects must be known at design
time in order for the Assign activity to successfully transform
values between BPEL activities (e.g., invoke, reply, receive).
Because of these limitations, we based our implementation on
the service layer by directly embedding control flows between
service invocations. We intend to improve our approach by
experimenting with other standard tools and languages, and
by trying to address the BPEL related difficulties as well.

As already mentioned, a major challenge in the implemen-
tation is making the Decision Service operations as generic
as possible in terms of receiving and sending data of any
type. Following [16], our initial solution has been to treat all
messages as a Java String type. This ensures interoperability
between non-Java implementations. Using JAXB, a Java object
is first marshalled into an XML String before Web service
A, for example, can send it to Web service B. Conversely,
Web service B unmarshalls the XML string into a Java content
tree before the object can be used for further business logic
processing. However, this brings a significant disadvantage:
both Web services must have common knowledge of the actual
type of object they are exchanging. This is especially important
when upcasting or downcasting Java objects.

Currently, the focus of the implementation solution has
largely been within the service layer; i.e., control flows
are directly embedded between service invocations. Ideally,
one should be able to “lift” the specification of the control
flow to a more abstract layer, perhaps through the use of a
business process modeling language instead of an execution
language. We are currently exploring the possibility of using
BPMN to specify the control flows. In such a case, BPMN
activities, (at a higher layer), would be implemented using
more concrete, encapsulated, modularized and reusable Web

lookup AlarmService
endpoint

send decision d

AlarmRequest
+ boolean ack
+ int count
+ int reminderCount

AlarmResponse
+ boolean
isSendAlarm

send ack

invoke
Alarm Service

Decision Service Tuple Space Service Send Reminder
Service

MRD Rule ServiceDecision Activity Service

send input
(i = MRDRequest,
#d1 = http://dyscotec.is.
utwente.nl Decision

Service/decision#2)

store i using Uk

write (Uk, i)request decision
service with Uk , #d2

retrieve i using Uk

invoke MRDRuleService

with MRDRequest
send MRDResponse

read(Uk)

Remind Service MRD Repeat Rule Service

invoke
MRDRepeatRuleService

with MRDRepeatRequest

send MRDRepeatResponse

MRD Response

+ boolean
isSendReminder
+ boolean
isEnableDispenser

MRDRepeatRequest
+ boolean ack
+ date timeOut
+ date medTime

MRDRepeatResponse

+ boolean
isSendReminder

lookup
SendReminderService

endpoint

MRD Request
+ boolean ack
+ date curTime
+ date medTime

Uk = 74f4cf40-6ca0-
449d-b015-
1cd1414727a4

Dispenser Service

send decision d

invoke
DispenserService

return acksend ack

send ack

send decision d invoke
DispenserService

return acksend ack

invoke
SendReminderService

use decision#2 from
decision-expression.xml

Alarm ServiceAlarm Rule Service

invoke
SendReminderService

invoke
AlarmRuleService

with AlarmRequest
send AlarmResponse

Fig. 5. Interaction between services to realise MRD with Alarm service

services. This is not currently implemented, but, we already
see some promising tools/approaches that can achieve this
(e.g., BizAgi1, Mendix2).

VI. RELATED WORKS

Hybrid service composition approaches, which combine
business processes and rules, are aimed at providing an effi-
cient and flexible mechanism for creating application services.
Some of the closely related works that are also motivated
by the flexibility requirements for service composition are
presented in the following.

In [17], an automatic service composition approach for
data-providing services is proposed. In their approach, data-
providing services are modeled as RDF [18] views over a
mediated domain ontology. This ontology is used to describe
a relationship between input and output parameters of the
services. A query rewriting approach is used to transform
user queries into a composition of data providing services.
However, the proposed mechanism is mainly targeted to data-
providing services, which are special types of services. Data-
providing services are considered to have no precondition and
do not cause effects after their invocation.

A dynamic web service composition approach that considers
operational flow semantics is presented in [19]. In the proposed
approach, an abstract composition plan is generated based on
the graph flow concept. This abstract plan is then refined by
selecting suitable candidate web services and their operations.
The flow semantics is used to define a dependency between
operations. Unlike our solution, this approach does not clearly

1http://www.bizagi.com/
2http://www.mendix.com/

specify how information is shared between participating ser-
vices.

A Tuplespace-based approach for synchronising control
flow in workflow management systems is presented in [20].
The basic tuplespace model is extended to handle multiple
tuple matching in a single operation and to support join
operations to synchronise concurrent threads of control flow.
This work focuses mainly on control flow synchronisation
whereas information sharing is the main focus of our work.

In [7], a hybrid approach for web service composition
is presented. In their approach, business processes are used
for describing a core part of the composition logic and the
rules are used for defining policy-sensitive aspects of the
composition. These rules and processes are kept separately to
reduce complexity and to increase adaptability. This approach
emphasises a combined usage of business processes and busi-
ness rules. The information sharing part, which is required for
evaluating the rules, is however poorly specified.

A combination of SOA, BPEL and ontologies is considered
in [21] to improve maintainability and achieve flexibility of
knowledge intensive business processes. The variable tasks are
described more abstractly and stored in a task pool during
design time whereas their flow is defined during run time.
Ontologies and business rules define these abstract parts to
support a selection of execution of tasks during run time.
Unlike our approach, information sharing is done through a
database which would require frequent updates to the database
schema if new decisions or rules are required to be added. This
would result in increased maintenance costs.

The work presented in [22], propose an approach to cus-
tomise a business process to a particular case of usage. In their
work, authors utilise business rules and workflow patterns to

model variable parts of a process flow to support dynamic
pattern composition. These workflow patterns are identified
and implemented in business rules similarly to the approach
proposed in [21]. The rules are kept separately from the
process. The focus is on isolating the parts of the process that
are likely to change from the rest of the process. A solution to
incorporate the isolated process parts and information sharing
between them is not clearly defined. In [23], an approach is
presented to specify Web service choreography by exploiting
business processes and business rules. Their work follows
meta-modelling approach and focuses on achieving imple-
mentation consistency and behaviour compatibility instead of
information sharing between participants.

VII. CONCLUSIONS

Our research demonstrates how hybrid service composition
allows us to achieve flexibility and reusability of existing
services when creating complex composite services to satisfy
frequently changing user requirements. This type of approach
has the ability to respond to the changing user requirements
due to the separation of processes and rules. Current ap-
proaches either do not provide adequate support for sharing
required information between services or the offered solutions
are too restrictive in terms of cost and time required for
responding to the change in requirements. This is mainly
because the underlying implementation needs to be changed
to facilitate information sharing between services when new
requirements have to be accommodated.

Extending on our previous work [4], we have proposed an
approach for facilitating information sharing using tuple space.
By using tuple space, we aim at minimising the maintenance
cost due to the addition of new requirements. Information is
shared between services by writing and reading tuples in the
tuple space.

The proposed solution is implemented in Java and the
usability of the proposed approach is illustrated with the
MRD application scenario from homecare domain. The current
implementation supports AND and OR operators. Providing
support for other operators is left as part of our future work.
The singleton implementation of JavaSpace is aimed at show-
ing that the proposed solution is feasible. In order to achieve
improved scalability and performance, the implementation will
be extended to support multiple Tuple Space instances. In
the current implementation, the links between services are
hard coded. We aim to control this connection via some
execution engine, for example, BPEL4WS [1]. We further
aim at developing application scenarios from other domains
to further test the applicability of the proposed approach.

VIII. ACKNOWLEDGEMENTS

This material is based upon works jointly supported by
the IOP GenCom U-Care project (http://ucare.ewi.utwente.nl)
sponsored by the Dutch Ministry of Economic Affairs under
contract IGC0816 and by the DySCoTec project sponsored by
the CTIT, University of Twente.

REFERENCES

[1] M. B. Juric, B. Mathew, and P. Sarang, Business Process Execution
Language for Web Services : BPEL and BPEL4WS. PACKT Publishing,
2004.

[2] M. Hammer and J. Champy, Re-engineering the Corporation, A Mani-
festo for Business Revolution. New York: Harper Business, 1993.

[3] M. van Sinderen and J. P. A. Almeida, “Empowering Enterprises
through Next-Generation Enterprise Computing (Editorial),” Enterprise
Information Systems, vol. 5, no. 1, pp. 1–8, February 2011.

[4] B. Sapkota and M. van Sinderen, “Exploiting Rules and Processes
for Increasing Flexibility in Service Composition,” in Proc. of the
Fourteenth IEEE International Enterprise Distributed Object Computing
Conference Workshops, 2010.

[5] T. Erl, Service-Oriented Architecture Concepts, Technology, and Design.
Prentice Hall Professional Technical Reference, 2005.

[6] F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S. Weerawarana, “The Next
Step in Web Services,” Communications of the ACM, vol. 46, no. 10,
pp. 29–34, 2003.

[7] A. Charfi and M. Mezini, “Hybrid Web Service Composition: Business
Processes Meet Business Rules,” in Proc. of the 2nd International
Conference on Service Oriented Computing (ICSOC), 2004, pp. 30–38.

[8] B. Orriens and J. Yang, “A Rule Driven Approach for Developing
Adaptive Service Oriented Business Collaboration,” in Proc. of IEEE
International Conference on Services Computing, 2006, pp. 182–189.

[9] C. H. Asuncion, M.-E. Iacob, and M. J. van Sinderen, “Towards a
Flexible Service Integration through Separation of Business Rules,”
in Proc. of the 14th IEEE International EDOC Enterprise Computing
Conference (EDOC 2010), 2010, pp. 184–193.

[10] D. Gelernter, “Generative Communication in Linda,” Proc. of ACM
Transactions on Programming Languages and Systems, vol. 7, no. 1,
pp. 80–112, January 1985.

[11] D. Gelernter and N. Carriero, “Coordination Languages and their Sig-
nificance,” Communications of the ACM, vol. 35, no. 2, pp. 97–108,
1992.

[12] S. A. White, “Introduction to BPMN,” Object Management Group
(OMG), Tech. Rep., 2004.

[13] E. Freeman, K. Arnold, and S. Hupfer, JavaSpaces Principles, Patterns,
and Practice, 1st ed. Essex, UK: Addison-Wesley Longman Ltd., 1999.

[14] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau,
Eds., Extensible Markup Language (XML) 1.0 (Fifth Edition). W3C
Candidate Recommendation, November 2008.

[15] E. F. Hill, Jess in Action: Java Rule-Based Systems. Greenwich, CT,
USA: Manning Publications Co., 2003.

[16] I. Singh, S. Brydon, G. Murray, V. Ramachandran, T. Violleau, and
B. Stearns, Designing Web Services with the J2EE 1.4 Platform: JAX-
RPC, SOAP, and XML Technologies. Addison-Wesley, Boston, USA,
2004.

[17] M. Barhamgi, D. Benslimane, and B. Medjahed, “A Query Rewriting
Approach for Web Service Composition,” IEEE Transactions on Services
Computing, vol. 3, no. 3, pp. 206–222, 2010.

[18] G. Klyne and J. J. Carroll, Eds., Resource Description Framework:
Concepts and Abstract Syntax. W3C Recommendation, February 2004.

[19] D. A. D’Mello and V. S. Ananthanarayan, “Dynamic Web Service Com-
position Based on Operation Flow Semantics,” International Journal of
Computer Applications, vol. 1, no. 26, pp. 1–12, 2010.

[20] D. Martin, D. Wutke, and F. Leymann, “Synchronizing Control Flow
in a Tuplespace-Based, Distributed Workflow Management System,” in
Proc. of the 10th International Conference on Electronic Commerce,
2008, pp. 19–22.

[21] D. Feldkamp and N. Singh, “Making BPEL flexible,” Association for the
Advancement of Artificial Intelligence (www.aaai.org), Technical Report
SS-08-01, 2008.

[22] T. van Eijndhoven, M.-E. Iacob, and M. L. Ponisio, “Achieving Business
Process Flexibility with Business rules,” in Proc. of the 12th Interna-
tional IEEE Enterprise Distributed Object Computing Conference, 2008,
pp. 95–104.

[23] M. Milanović and D. Gas̆ević, “Modeling Service Choreographies
with Rule-Enhanced Business Processes,” in Proc. of the 2010 IEEE
Enterprise Distributed Object Computing Conference, 2010, pp. 194–
203.

