
Enabling Fine-grained Access Control in
Flexible Distributed Object-aware Process

Management Systems
Kevin Andrews, Sebastian Steinau, and Manfred Reichert

Institute of Databases and Information Systems
Ulm University, Germany

Email: {firstname.lastname}@uni-ulm.de

Abstract—To increase flexibility, object-aware process manage-
ment systems enable data-driven process execution and dynamic
generation of form-based tasks at run-time. Therefore, a powerful
access control concept becomes necessary to define which data
elements users may read or write at a given point in time during
process execution. The access control concept we present in this
paper has been realized in the context of the PHILharmonicFlows
framework, which provides a distributed data-driven process
execution engine. We present solutions that allow for complex
as well as fine-grained permissions and roles, which are granted
depending on the states of processes and data elements. We
show how one can resolve authorization queries in real-time over
multiple business objects and process instances. This constitutes
a significant advantage over centralized access control systems.

Index Terms—access control, authorization, permissions, roles,
process management, scalability, PHILharmonicFlows

I. INTRODUCTION

When dealing with the management of human-centric busi-
ness processes one of the greatest challenges concerns flex-
ibility. Traditional process management systems, which are
based on the activity-centric process management paradigm,
allow for the definition of activities and the order in which
these activities must be executed such that the overall process
may complete. In particular, the flexibility of these systems
depends on the structure of the design-time process model.
For example, a process model that contains many loops
and alternate execution paths is inherently and trivially more
flexible than a linear process. This allows process participants
to handle exceptions, errors, and special use-cases as part
of the normal process flow, instead of forcing them to work
around the limitations of the process model by executing work
“outside” the process management system. As a drawback,
however, process designers must foresee all possible alternate
execution paths when creating a process model. Obviously, this
is no simple task, which becomes evident when studying the
large amount of research devoted to increasing the flexibility
of process execution in cases where the process model is insuf-
ficiently prepared for exceptional control flow. Most research
focuses on allowing the control flow to be manipulated directly
by process participants, for example by inserting control flow
elements, such as activities and transitions, at run-time [1].

However, these approaches do not cover all possible scenar-
ios, as, for example, generating entirely new forms or other

activities at run-time is a very cumbersome task. Part of the
problem is that, in most current process management systems,
the permissions to read or write data elements are set rigidly
per activity, making it impossible to automatically generate
additional forms at run-time based on permissions, as these
simply do not exist outside the context of a specific activity.
Additionally, users that belong to a certain role have all
permissions granted by that role at all times, i.e., finely-grained
access to individual data elements, depending on factors such
as process state, is impossible. Therefore, as automatic form
generation is not possible, process participants must be able to
manually introduce new forms into running process instances.
To facilitate this, they must define which data elements should
be read- or writable in the new form and by whom, making
such a feature very complex. This is especially problematic
when considering that one of the goals of process management
systems is to hide details, such as data elements, from process
participants. In summary, this means that most research into
flexibility is only useful for cases where the control flow needs
to be adapted and not enhanced with new activities being
added to the control flow.

Another, entirely different, approach to the problem of flex-
ibility, is to not structure processes along preexisting activities
(e.g. forms), as it is done in the activity-centric paradigm, but
around the business data. There exist many approaches that,
in some sense, follow this idea [2]–[5]. They enable flexibility
based on global permissions that allow process participants to
read and write the individual data elements , i.e., users may
interact with such data-centric process management systems at
run-time based on automatically generated forms. The latter,
in turn, can be generated by examining the role a user has and
the permissions this role gives him in relation to a certain data
element. Most approaches further add a state, either to the data
elements or to the entire process, which may change during
the execution of a process instance. Utilizing the state concept,
permissions can be defined more precisely, granting them not
only based on a role, but also on the state of individual data
elements or the entire process. As data-centric approaches to
process management require permissions that allow users to
interact with generated forms, access control in some form
is, trivially, a requirement for these approaches to actually
function in real-world scenarios.

Expanding on these basic ideas, PHILharmonicFlows, an
object-aware process management framework currently under
development at Ulm University, enables fine-grained access
control in order to be able to automatically generate forms
for the respective users at run-time. As PHILharmonicFlows
is object-aware, several data elements are aggregated into
business objects, each representing an entity that the process
relies on, such as a checking account, customer, or transfer.
Moreover, the access control system of PHILharmonicFlows
is very flexible, even allowing permissions to be granted based
on the relations that individual objects have to each other. A
simple example of this could be that the role checking account
manager may only read the amount data element of transfer
objects related to checking account objects, which are, in turn,
related to customer objects assigned to the checking account
manager in question.

Note that this constitutes a significant improvement com-
pared to the rather rudimentary access control systems used
by other data-centric approaches. This conceptual access con-
trol approach constitutes the first contribution of this paper.
Furthermore, as PHILharmonicFlows is being implemented as
a distributed and scalable process management system, the
access control concept presented in this paper utilizes the
possibilities offered by the distributed PHILharmonicFlows
architecture to enable fast real-time resolution of roles and
permissions across a cluster of computers. These additional
considerations are the second contribution of this paper.

As object-aware process management itself, without the
access control system, is already far from being trivial,
the approach, as well as its current implementation as a
microservice based process engine, is discussed in Section
II. The requirements for an access control system, which
must not only function in a completely new kind of process
management system, but also in a distributed environment, is
presented in Section III. Section IV then presents our solutions
to the challenges these requirements create, addressing both
design-time and run-time issues. Finally, Sections V and VI
offer a discussion of related work as well as a summary and
an outlook on future work.

II. FUNDAMENTALS

A. Object-aware Process Management

PHILharmonicFlows, the object-aware process management
framework we are using as a test-bed for the concepts
presented in this paper, has been under development for
many years at Ulm University [6]–[11]. This section gives an
overview of the PHILharmonicFlows concepts necessary to
understand the remainder of the paper. PHILharmonicFlows
takes the basic idea of a data-driven and data-centric process
management system and improves it by introducing the con-
cept of objects. One such digital object exists for each business
object present in a real-world business process. As can be seen
in Fig. 1, a PHILharmonicFlows object consists of data, in the
form of attributes, and a state-based process model describing
the object lifecycle.

Amount: IntegerAmount: IntegerAmount: Integer Date: DateDate: DateDate: Date Approved: BoolApproved: BoolApproved: Bool

Initialized Decision Pending

Approved

Rejected

AmountAmount DateDate
ApprovedApproved

Comment: StringComment: StringComment: String

Approved == true

Approved == false

Transfer

Lifecycle

Attributes

Assignment: Customer Assignment: Checking Account Manager

Fig. 1. Example PHILharmonicFlows Object

The attributes encapsulated in the Transfer object (cf. Fig.
1) are Amount, Date, Approval, and Comment. The lifecycle
process, in turn, describes the different states (Initialized,
Decision Pending, Approved, and Rejected), an instance of
a Transfer object may have during process execution. Each
state, in turn, contains one or more steps, each referencing
one of the object attributes. The steps are connected by
transitions, allowing them to be arranged into a sequence.
When a transition between two steps from different states is
activated at run-time, the state of the object changes. Finally,
PHILharmonicFlows supports alternative paths in the form of
decision steps containing predicate steps. An example of these
can be seen in the Approved decision step in the Decision
Pending state.

In summary, as PHILharmonicFlows is data-driven, the
lifecycle process for the Transfer object can be understood
as follows: The initial state of a Transfer object is Initialized.
Once a Customer has entered data for the Amount and Date
attributes, the state changes to Decision Pending, which allows
a Checking Account Manager to input data for Approved.
Based on the value for Approved, the state of the Transfer
changes to Approved or Rejected.

A single object, however, is only part of a complete PHIL-
harmonicFlows process. To allow for complex, executable
processes, many different objects and users may have to be
involved [10]. It is noteworthy that users are simply special
objects in the object-aware process management concept.
The lifecycle processes present in the various objects are
executable concurrently at run-time, thereby improving per-
formance. The entire set of objects (including users) present
in a PHILharmonicFlows process is denoted as the data model,
an example of which can be seen in Fig. 2.

The data model contains all objects participating in a pro-
cess as well as the relations existing between them. A relation
constitutes a logical association between two objects, e.g., a
relation between a Transfer and a Checking Account. Such a
relation can be instantiated at run-time between two concrete
object instances of types Transfer and Checking Account,
thereby associating the two object instances with each other.
The resulting meta information, i.e., the information that the
Transfer in question belongs to a certain Checking Account,
can be used to coordinate the processing of the two objects
with each other.

Checking
Account

Stock Depot

Transfer

Customer

Employee

Savings
Account

Fig. 2. Example PHILharmonicFlows Data Model

Finally, complex object coordination, which becomes nec-
essary as most processes consist of numerous interacting
business objects, is possible in PHILharmonicFlows as well
[10]. As objects publicly advertise their state information, the
current state of an object can be utilized to coordinate with
other objects, corresponding to the same business process,
through a set of constraints, defined in a separate coordination
process. As a simple example, consider a constraint stating that
a Transfer may only change its state to Approved if there are
less than 4 other Transfers already in the Approved state for
one specific Checking Account.

The various components of PHILharmonicFlows, i.e., ob-
jects, relations, and coordination processes, are implemented
as separate microservices, turning PHILharmonicFlows into
a fully distributed process management system. For each
object instance, relation instance, or coordination process
instance present at run-time, one microservice is spawned.
The individual microservices communicate with each other,
exactly mirroring the conceptual ideas of PHILharmonicFlows
presented in this section. Each microservice only holds data
representing the attributes of its object. Furthermore, the mi-
croservice only executes the lifecycle process of the object it is
assigned to. The only information visible outside the individual
microservices is the current “state” of the object, which is, in
turn, used by the microservice representing the coordination
process to properly coordinate the objects’ interactions with
each other.

As the actual implementation architecture of PHILharmon-
icFlows is close to its core conceptual ideas, the implemen-
tation of additional concepts, such as access control, can
be realized closely to their conceptual ideas as well. As a
flip-side, access control, especially when permissions concern
multiple objects and therefore multiple running microservices,
is far from being trivial and must take additional factors and
requirements into consideration compared to a more traditional
engine implementation.

B. Role-based Access Control

As the access control concept presented in this paper relies
on the basic concepts of Role-Based Access Control (RBAC),
this section offers a quick overview of RBAC [12]. The goal
of RBAC is to only allow users to access and edit information
which need for completing their tasks. Furthermore, RBAC
offers an improvement over earlier access control concepts as
it removes unnecessary administrative overhead. Fig. 3 gives
an abstract overview of the elements the basic RBAC concept
offers.

Users Roles Permissions Operations Objects

Fig. 3. RBAC elements

• Objects are business objects that can be interacted with,
e.g., data or functions.

• Users are the individual process participants that wish to
interact with the objects.

• Operations are the various ways in which users may
interact with an object, e.g., writing a data element or
executing a function.

• Roles allow users to be grouped logically, easing the
administrative overhead of managing access control.

• Permissions allow mapping operations on objects to
roles, i.e., they control the access users have to object
operations.

Example 1 illustrates the interactions between the different
RBAC elements and concepts in a typical real-world process
scenario.

Example 1. User Employee1 needs to perform operation edit
balance on CheckingAccount1. Permission p1 associates the
edit balance operation of checking account objects to the
role checking account manager. Therefore, Employee1 needs
to be authorized to activate the checking account manager
role, allowing him to perform the edit balance operation on
CheckingAccount1.

Example 1 refers to the concept of role activation, an
important part of RBAC. In RBAC, users are not simply
assigned to a role and have all permissions belonging to
that role at all times. Instead, users are statically assigned
roles, which they may activate, if they are authorized to
do so. This addition of only activating roles when users are
authorized allows for greater permission assignment flexibility
in systems using RBAC. The authorization to activate roles
depends on authorization constraints which can be defined
when assigning roles. The exact nature of these constraints
depends on the information system implementing RBAC, as
well as the concrete use-cases present. While most systems
hide the actual activation of roles from users in the interest
of usability, in some it is necessary to prevent users from
activating roles with conflicting permissions.

III. REQUIREMENTS

Before delving into the details of our solution to access
control in a distributed, object-aware process management
system, we present fundamental requirements with respect to
complex and fine-grained access control. In the initial research
into object-aware process management systems, numerous
requirements were identified for an access control system
which utilizes the advantages of the object-aware paradigm
[6], [8]. These requirements have since been extended and
partially revamped as the concept of object-aware process
management was developed into PHILharmonicFlows: a fully
distributed object-aware process management system. As fine-
grained access control is essential for offering dynamically
generated forms to users at run-time, the capabilities of the
system were extended considerably over time. Finally, as the
implementation of PHILharmonicFlows is based on microser-
vices, the requirements were extended even further to take
the challenges presented by the distributed microservice-based
architecture into account.

The main elements of any RBAC system are present in
PHILharmonicFlows as well, i.e., users, roles, permissions,
operations, and objects (cf. Section II-B). As roles provide
a mapping between users and their permissions, they are
required to reduce the administrative efforts for managing
permission assignments. Note that, without roles, each new
user would have to be assigned each permission separately.
Using roles, one can statically associate users and permissions
without any complicated n:m mapping. However, this is also
not an ideal system, as new users or users whose roles may
have to be changed must be managed by some form of
administrative entity. In larger corporations this can be a cum-
bersome task, as there is a constant influx of new employees
and existing ones switch to different jobs, requiring different
permissions. Note that this constitutes a challenge in all sorts
of information systems, not just process management systems.
A more sophisticated approach, which we aim to achieve with
PHILharmonicFlows, is to dynamically activate various roles
for authorized users at run-time, in line with RBAC notions
of role authorization and role activation, explained in Section
II-B. As this cannot be done “magically”, we need to leverage
parts of the PHILharmonicFlows concept to this end, leading
us to Requirement 1.

Requirement 1 (Dynamic Authorization of Permissions and
Roles). The access control system should use the conceptual
elements of object-aware process management for dynamically
authorizing roles and permissions at run-time.

As every user is represented by an object, the factor deter-
mining whether or not a user is authorized to activate a role
must somehow be decided by differences in the instantiated
objects at run-time. Basically, there are only two factors that
distinguish two objects of the same type at run-time. On the
one hand, there are the values of the attributes, which, together
with the lifecycle process, determine the object state. On the
other, there are the relations an object has to other objects. As

Customer

Checking
Account

Employee

Customer 1

Checking
Account 1

Employee 1

Customer 2

Checking
Account 2

Checking
Account 3

Checking Account
Manager

Checking Account
Manager

Checking Account
Manager

Fig. 4. Roles Derived from Relations at Design-time and Run-time

users are represented in terms of objects, these distinguishing
factors apply to them as well. The first of these two factors
leads to Requirement 2.

Requirement 2 (Role Authorization Depending on Data).
Role authorization conditions should be definable on the
attribute values of the object representing the user.

Example 2. An Employee user is authorized to activate the
Checking Account Manager role if his Department attribute
has the value “Account Management”.

When examining the second distinguishing factor between
objects, concerning the relation of an object or user to other
objects, an opportunity to increase the expressiveness of the
role system in PHILharmonicFlows is presented. If roles can
be authorized dynamically based on relations, this allows roles
to be activated in regards to specific other objects, leading to
Requirement 3.

Requirement 3 (Role Authorization Depending on Relations).
Role authorization conditions should be definable on the
relations of the object representing the respective user to other
objects. These roles should be specific to the related objects
granting them.

Example 3. An Employee user is authorized to activate the
Checking Account Manager role in regards to a specific
Checking Account object as he is related to a Customer user
who, in turn, is related to the Checking Account object.

To clarify Example 3, Fig. 4 shows the structure of the data
model at design-time on the left, as well as the individual
object instances created at run-time, including the relation
instances that exist between them, on the right. The Checking
Account Manager role is defined on the relation between Em-
ployee and Customer at design-time. At run-time, an Employee
related to a Customer is authorized as the Checking Account
Manager for that Customer. Moreover, he may activate the role
in regards to all Checking Accounts related to the Customer.

Additionally to users and roles, an access control system
needs permissions. The latter are indispensable, as without
them there is no reason to maintain roles, or even the concept
of users, in an information system. Usually, however permis-

sions are merely the means to ensure that inexperienced or
malicious users are only able to use functions or edit data
they rely on in order to complete their tasks. Note that in
object-aware process management permissions are central to
process execution, as they determine the exact structure of the
dynamically generated forms the users interact with at run-
time. For example, a user who may write a certain attribute
value, is presented with an input field for that attribute when
he views the form for its object at run-time.

Obviously, this increases complexity compared to more
traditional (i.e. activity-centric) process management systems,
where permissions are defined per activity and not for each
data attribute separately. However, it does offer the advan-
tage of allowing fully dynamic form generation, completely
eliminating the need for creating forms and associated data
mappings at design-time. In PHILharmonicFlows this is fa-
cilitated by an object’s lifecycle process, that dictates which
attributes have to be filled out before the object may switch
to the next state, as well as the read/write permissions, that
allow users with certain roles to fill out additional, mostly
optional attributes. Together, this results in a personalized
and dynamically created form, which is then displayed to
the respective user at run-time. An example of such a form,
derived from the lifecycle process of the object displayed in
Fig. 1 and a write permission for the Comment attribute, is
shown in Fig. 5.

Obviously, read/write permissions may depend on the cur-
rent state of an object, otherwise a person with a specific
activated role and, therefore, the permissions belonging to
that role, would always interact with exactly the same form
when viewing an object at run-time. In contrast to activity-
centric process management systems, where granting permis-
sions based on the state of an entire process instance is
commonplace, as role assignments are per-task, the permis-
sions offered in PHILharmonicFlows have to be more fine-
grained and granted depending on the state of individual
objects. To this end, we extend the RBAC concepts of role
assignment, role authorization, and role activation with the
notions of permission assignment, permission authorization,
and permission activation. In a nutshell, this means that
permissions are not simply “granted” to all users that have an
active role containing the permission. Instead, the permissions

Bank Transfer – DecisionBank Transfer – DecisionBank Transfer – Decision

27.000 €

03.06.2017

true

Amount

Date

Approved*

Submit

Comment

 next mandatory
input according to
lifecycle process

*

Fig. 5. Example PHILharmonicFlows Form

themselves have authorization constraints allowing the access
control system to allow or deny their activation. One possible
constraint, i.e., the state of the object a permission grants an
operation on, is formulated in Requirement 4.

Requirement 4 (Permission Authorization Depending on Ob-
ject State). Permissions authorization conditions should be
definable on the current state of an object.

Example 4. An Employee with an active Checking Account
Manager role in respect to a Transfer object may activate the
permission to write a Comment attribute when the Transfer is
in the Decision state.

An object-aware process management system, which fulfills
access control Requirements 2, 3, and 4, already turns out to be
very flexible and can be used to model numerous access con-
trol scenarios. However, a common scenario is not covered yet:
the ability to authorize the activation of permissions based on
attribute values of affected objects. Note that this is extremely
useful when assigning tasks to different process participants
using a distribution key. This is common in many information
systems, for example issue/bug tracking software with tickets.
The task assignment distribution key in an issue tracking
software could be, for example, the system or software affected
by the issue or the issue severity. Both factors can be used by
the issue tracking software to determine the correct process
participant an issue ticket shall be assigned to. In essence,
this means that the authorization to activate the permission to
access and solve the ticket is granted dynamically, based on
attributes of the ticket in question. In a more generic concept,
such as object-aware process management, this can be seen as
granting permissions based on data values.

Requirement 5 (Permission Authorization Depending on
Data). Permissions authorization conditions should be defin-
able on the current attribute values an object has.

Example 5. An Employee with an active Checking Account
Manager role in respect to a Transfer object may only activate
the permission to edit the form for the Decision Pending state
if the value of the Amount attribute is less than 50.000 C,
otherwise an Employee with an active Supervisor role is
authorized to activate the permission to complete the Decision
Pending form instead.

As we aim to fulfill all these requirements with PHILhar-
monicFlows, the question remains as to how they are realizable
in a fully distributed computing environment. Considering
that each object, whether it represents a user or a business
object, can potentially be located on a different physical
node of a cluster, thanks to the microservice architecture, the
authorization of most permission involves at least two objects.
On the one hand, the object the permission concerns must be
involved to ensure that the permission is authorized, on the
other, the user object must be involved to ensure that the user
has an active role containing the permission in question.

As both the role and the permission authorization can be
dynamically granted or revoked at any point in time during

process execution, based on data, object states, or relations
between objects, the queries on both ends have to be run
in real-time for every permission or role authorization query.
Furthermore, this real-time solution needs to scale well with
increasing numbers of users, as the generation of forms at run-
time relies on the the access control system. This leads us to
Requirement 6.

Requirement 6 (Scalable Real-Time Permission and Role
Authorization). Permission and role authorization should be
determinable in real-time, without sacrificing scalability.

Example 6. A Customer may edit a pending Transfer and
raise the Amount to over 50.000 C (cf. Example 5), meaning
that an Employee with an active Checking Account Manager
Role is no longer authorized to activate the permission to
approve the transfer. This dynamic change of permissions
should become immediately visible to process participants,
i.e., there is no time window in which the access control
system grants outdated permissions.

As the authorization conditions for roles and permissions
shall based on attribute values (cf. Requirements 2 and 5),
additional challenges present themselves at run-time. As Re-
quirement 6 states, using real-time resolution of permission
and role authorization queries is necessary to ensure that
changing attribute values are immediately reflected when re-
solving authorization conditions. Additionally, the commonly
used strategy of caching the results of such queries to improve
performance is not applicable in this scenario. In particular,
the use of cached authorization query results could result
in role or permission activations which should have been
prohibited instead. Additionally, caching could lead to the
inverse problem of denying role or permission authorization
when it should have been granted. In information systems
where roles and permissions can not change based on as many
factors as in an object-aware process management system,
caching might be acceptable. However, in order to utilize the
strengths of the object-aware paradigm to its fullest, we must
find other strategies to cope with the run-time complexity of
the access control system.

Requirement 7 (Adequate Performance without Caching Re-
sults). Permission and role authorization should not utilize the
strategy of caching results to improve performance, instead
ensuring adequate real-time performance through other means,
in support of Requirement 6.

This section gave an overview of the most important require-
ments for an access control system we identified in the context
of the object-aware process management approach. Obviously,
these are not all requirements relevant to an access control
system in general. However, we believe that the presented ones
are the most challenging and fitting for a process management
system, especially one which is data-driven and object-aware,
such as PHILharmonicFlows. This paper focuses on the issues
that are academically challenging and interesting from a
conceptual standpoint and not on actual security concerns of

the access control system, such as communication security,
password management and identity verification. However, our
concepts and prototypical implementations are extendable to
include such security-oriented provisions in various ways, as
described in [13].

IV. ENABLING FINE-GRAINED ACCESS CONTROL

This section presents the concepts and architecture we
developed to fulfill the requirements that we identified for a
flexible, distributed access control system integrated into an
object-aware process management system. The microservice
based architecture, we selected for implementing PHILhar-
monicFlows, allows us to handle incoming access control
requests independently of one another, however, it also adds
complexity to some of the concepts. To fulfill the requirements
from Section III, various aspects must be considered, for both
for the design- and the actual run-time of PHILharmonicFlows
processes.

A. Design-time aspects

As explained in Section III, two major factors determine
whether or not a particular user has the permission to perform
a certain action at run-time: the roles the user has currently
activated and whether the permissions belonging to these
roles are authorized for the object and operation in question.
The currently implemented permissions focus on allowing
process modelers to shape the dynamically generated forms
for the different roles present in a given real-world process.
An overview of selected permissions is given in Table I. An
affiliation between two conceptual elements is denoted by
subscript.

Permission Assignment: Obviously, every permission, no
matter for which operation it is granted, needs to be statically
assigned to a role r. Only users that have activated role r
are considered when resolving authorization for a permission

TABLE I
BASIC PHILHARMONICFLOWS PERMISSIONS

Operation Parameters Description

Read
Attribute

Role r
Object o

Attribute ao
State so

Condition cp

Allows users with active role r to
read the value of attribute ao while
o is in state so and the permission
authorization condition cp is true.

Write
Attribute

Role r
Object o

Attribute ao
State so

Condition cp

Allows users with active role r to
write the value of attribute ao
while o is in state so and the

permission authorization condition
cp is true.

Execute
State

Role r
Object o
State so

Condition cp

Allows users with active role r to
open the form for so while o is in

state so and the permission
authorization condition cp is true.

Change
State

Role r
Object o

Transition to
State so

Condition cp

Allows users with active role r to
change the object state using

transition to while o is in state so
and the permission authorization

condition cp is true.
Instantiate

Object
Role r

Object o
Allows users with active role r to

create an instance of object o.

pr. The permission authorization is resolved at run-time and
determines whether a user may activate permission pr. This
depends on the permission authorization condition cp, which,
in turn, can be set to any expression that is based on attributes
of object o, e.g., [Amount > 50.000].

These permission authorization conditions, which exist for
all operations applied to objects that are already instantiated
(i.e., all operations except for instantiate object) become
necessary to satisfy Requirement 5. As the permission autho-
rization conditions are defined depending on attribute values,
they enable such scenarios as presented in Example 5. Further-
more, all permissions that support permission authorization
conditions have parameters referring to an object o as well
as a state so belonging to object o. This allows process
modelers to limit permission assignment to objects that are in
a specific state. Note that such constraints become necessary
to meet Requirement 4, i.e., permission authorization at run-
time depending on the current state of an object. This allows
for far more flexible permission assignment when compared
to systems that are based on the state of the entire process
instance.

Role Assignment: As each permission p is assigned to a role
r at design-time, only users who are authorized to activate
r at may activate pr. Determining the users assigned to r,
and, hence, the users to be considered for role authorization
at run-time, is therefore essential. The role assignment is
done statically at design-time, while role authorization is
resolved at run-time, similar to the above presented concept
for permissions.

In general, roles are assignable to all user objects present in
a PHILharmonicFlows data model at design-time. This means
that for a user object (e.g. Employee) a set of roles may be
statically assigned. In line with the general RBAC concept,
the actual role authorization and activation are, however, run-
time concerns. A role assigned to a user object this ways is
denoted as a global role, as permissions attached to these roles
potentially apply to all object instances of a certain type at
run-time. Additionally, to fulfill Requirement 2, a global role
r may have a role authorization condition cr, which limits role
authorization at run-time to those users whose attribute values
fulfill cr.

However, in order to fulfill Requirement 3, not all roles
can be simply assigned to the various user objects present in
a PHILharmonicFlows data model. Requirement 3 mandates
that role authorization at run-time must be resolvable based
on the relations an object representing the respective user has
to other objects. We tackle the related challenge by allowing
roles to be attached not only to user objects, but also relations,
at design-time. To be more precise, roles may be attached to
a relation between a user and another object, thereby only
assigning the role to the user in respect to objects attached
along that relation. At run-time an instance of that relation
must exist between the user and the target object in order for
role authorization to occur for the user. Therefore, we denote
a role attached to a relation as a relation role. A relation role
may also have a role authorization condition cr, limiting role

authorization at run-time depending on user attribute values.
Note that this allows for even greater flexibility when modeling
a process. Furthermore, it ensures that a large number of
authorization scenarios can be covered by this concept. An
example of one such relation role is shown in Fig. 4.

B. Run-time aspects

Having explained how the static role and permission as-
signment is handled at design-time in PHILharmonicFlows,
we now present the more complex aspects of how role and
permission authorization as well as activation are managed.
Considering that our access control concept extends the classic
RBAC model of role assignment, authorization, and activation
with permission assignment, authorization and activation (cf.
Section III), we have run-time resolution workloads not only
on the role side, but on the permission side as well. These
are necessary, as we not only have to check whether a user is
authorized to activate a certain role, but also if he is authorized
to activate the permission for the operation he wishes to
perform.

At first glance, this might seem to be disadvantageous, as
not only role authorization, but also permission authorization
need to be checked at run-time. However, the increase in
access control flexibility and realizable scenarios is necessary
to enable fine-grained access to object attributes and, there-
fore, the generation of personalized user forms at run-time.
Furthermore, we show that the performance hit is reduced
significantly by the microservice architecture we utilize for
the implementation. As it should be now clear that every
access control scenario in PHILharmonicFlows concerns a role
authorization as well as a permission authorization at run-time,
Example 1 can be modified to more precisely illustrate these
two procedures.

Example 7. Employee1 needs to perform the operation Edit
Balance on CheckingAccount1. Permission p1 associates the
write attribute “Balance” operation of Checking Account
objects to the relation role rr1, which is defined on the
relation between the Employee objects and Customer objects.
Relation role rr1 corresponds to the checking account manager
role from Example 1. Furthermore, p1 has a permission
authorization condition cp1 of [SecurityLevel == 0], limiting
the activation of the permission to Checking Account objects
whose SecurityLevel attribute has the value 0. Finally, the
relation role rr1 has a role authorization condition crr1 of
[Department == “AccountManagement”], limiting the activa-
tion to Employee users whose Department attribute has the
value “AccountManagement”. In summary, this means that
Employee1 needs to be authorized to activate the role rr1,
and permission p1 needs to be authorized to be activated for
CheckingAccount1.

Distributed Approach: The separation of the entire process
logic and data into the individual object instances at run-time
[11] allows spreading the large amounts of requests to the ac-
cess control system that occur during normal process execution
among the various object instances, making the access control

Checking
Account 2

Stock Depot 1

Transfer 2

Customer 2

Employee 2

Savings
Account 1

Customer 3

Savings
Account 2

Checking
Account 1

Transfer 1 Transfer 3 Transfer 4

Customer 1

Employee 1 Employee 3

Customer 4

Fig. 6. PHILharmonicFlows Object Instances at Run-time

system fully distributed. As the microservice implementation
leverages these conceptual opportunities, the resolution of role
and permission authorization can be distributed among the
microservices hosting the process instance at run-time. Note
that this is highly scalable, compared to a classic centralized
database approach with one or more tables holding role and
permission information.

As each of the object instances displayed in Fig. 6 has its
own lifecycle process and attributes, they are independent of
each other, except for the relations existing between them.
The implementation of the object and relation instances as
microservices, that only communicate with each other over
well-defined message interfaces, allows us to replicate the con-
ceptual elements exactly in the implementation architecture.
Assuming that the object and relation instances displayed in
Fig. 6 are part of a currently running PHILharmonicFlows
process instance, we can use them to show how we resolve
both role and permission authorization.

Role and Permission Descriptors: In Example 7, Employee1
needs to perform the edit balance operation on CheckingAc-
count1. Therefore, the access control system has to resolve
whether Employee1 has a permission he may activate to
complete the edit balance operation. The generated form
for CheckingAccount1 can then either display or hide the
operation to Employee1. Assuming that edit balance is a write
attribute operation on the balance attribute, permission p1,
which is assigned to relation role rr1, is defined using the
following permission descriptor

p1



type WriteAttribute

r rr1

o CheckingAccount

ao Balance

so Opened

cp1 [SecurityLevel = 0]

The relation role rr1, in turn, is defined by the following role
descriptor:

rr1


relation CustomerToEmployee

name CheckingAccountManager

perms [p1, p2, p5, ...]

crr1 Department = “AccountManagement”

Obviously, p1 is not the only permission defined in the data
model, just as rr1 is not the only role defined in the data model.

In any real-world process there are many roles and permissions
defined for various scenarios, which necessitates a strategy
for finding role-permission combinations that are assigned to
the user requesting access. As Section IV-A explained, the
role and permission assignments are static, as opposed to role
and permission authorizations. We use this fact to optimize
the way we spread role and permission information across
the microservices at run-time in order to reduce unnecessary
communication overhead. We replicate the static permission
assignment information, such as the permission descriptor for
p1 shown above, to all user instances present in the process
instance. This way, the information which permissions can
be authorized, is available to all microservices representing
user instances. As every byte of information that is locally
available to a microservice, i.e., is present in-memory at
run-time, must be stored redundantly for every microservice,
reducing memory consumption is necessary in microservice
based architectures. To facilitate this, we analyze which roles
are assignable to a given user during object instantiation.
The goal hereby is to only replicate information concerning
permissions attached to roles that are assigned to the user in
question.

Authorization Queries: The interfaces we define in the user
microservices are very simple, as shown by the following
example for the write permission:
boo l hasWri tePerm (long o b j I n s t I d , i n t a t t r I d , i n t s t a t e I d)

As each user microservice has one such interface for every
permission, queries can be directed to the respective user
microservice when generating a form. An example of the entire
resolution procedure is shown in Fig. 7.

If there is no permission-role combination allowing an
Employee user to write the Balance attribute on Checking
Account objects, which are in the Opened state, this can be
detected in-memory, by an an Employee microservice. This
is possible without communicating with other microservices,
as all necessary information for a negative answer is present
in all Employee user instances. Alternatively, a microservice
may find a write permission in its memory that matches
the attributeId and stateId passed to the hasWritePermission
interface (1). Searching for a matching permission requires
an O(n) search over the list of permissions contained in the
object (2). If a permission is found, the role authorization for
corresponding role must be resolved (3).

Role Authorization: The role authorization is always
checked before the permission authorization, as role authoriza-
tion always depends on data locally available to the microser-
vice, whereas the permission authorization condition always
depends on attribute values of the object instance referenced
by the objectInstanceId parameter. This can reduce commu-
nication overhead as, in Example 7, if the role authorization
fails, the Employee1 microservice does not have to contact the
CheckingAccount1 microservice to request the current value of
the SecurityLevel attribute.

The role authorization itself can be checked entirely without
communicating with other microservices, as each microservice

Employee1

(1) hasWritePermission(CheckingAccount1,Balance,Opened)

P1(write,rr1,CheckingAccount,Balance,Opened,[SecurityLevel=0])P1(write,rr1,CheckingAccount,Balance,Opened,[SecurityLevel=0])P1(write,rr1,CheckingAccount,Balance,Opened,[SecurityLevel=0])

P2(write,rr2,Transaction,Amount,Sent,[])P2(write,rr2,Transaction,Amount,Sent,[])P2(write,rr2,Transaction,Amount,Sent,[])

Pn(...)Pn(...)Pn(...)

RR1(CustomerToEmployee,[Department= AccountManagement RR1(CustomerToEmployee,[Department= AccountManagement

RR2(CustomerToTransaction,[Department= AccountManagement

RR2(CustomerToTransaction,[Department= AccountManagement

RRN(...)RRN(...)

Permissions Roles

Lifecycle Instance Attribute Instances

Department[String] : AccountManagement Department[String] : AccountManagement Department[String] : AccountManagement

Name[String] : Paul Denton Name[String] : Paul Denton Name[String] : Paul Denton

Related Object Instances
[Customer1,CheckingAccount1,
Transfer1,Transfer2,Transfer3]

(2) Search matching permission

(3) Get role information

(4) Check relation restriction

(5) Check attribute restriction

(6) Request attribute value

(8) return true

CheckingAccount1

Lifecycle Instance
Attribute Instances

SecurityLevel[Byte] : 0SecurityLevel[Byte] : 0SecurityLevel[Byte] : 0

Balance[Integer] : 133700Balance[Integer] : 133700Balance[Integer] : 133700

Interest[Float] : 1.2Interest[Float] : 1.2Interest[Float] : 1.2

Initialized Opened

Closed

Frozen

(7) Get attribute value

Fig. 7. Access Control Query Processing

representing a user instance at run-time has the following
information locally available:

• role descriptors for all assigned roles,
• current attribute values of all attributes,
• list of object instance ids connected via relations.

The static role descriptors are transferred to the user mi-
croservice along with the permission descriptors during in-
stantiation, whereas the attribute values are always available
as the microservice for a user, just as for any other object,
manages the data storage for all locally available attribute
values. Finally, the list of related objects is updated with
every instantiated or deleted relation at run-time, to avoid
unnecessary traversals of the entire object graph to determine
if a relationship to another object exits. Utilizing this locally
available information, a microservice can determine whether
the user it represents is authorized to activate the role for
a given permission without any communication overhead,
simply by searching common map data structures. For global
roles, this merely involves checking the current attribute values
for the attribute referred in the role authorization condition.
Additionally, relation roles require a contains-search for the
object id passed to the permission interface in the list of related
object instances. In particular, for role rr1 from Example 7,
this means searching for the object id CheckingAccount1 in
the related object instances list (4). This ensures that the
relation required by the relation role descriptor exists. If it
does, a search for the the Department attribute is conducted
and its current value is compared to “AccountManagement”
(5). As the attributes and related objects are stored in map data
structures, the search complexity for both these operations is
O(1).

Permission Authorization: Once role authorization has been
determined, the final step a user microservice has to complete
is to determine permission authorization. As the latter depends
on a permission authorization condition such as cp1, permis-
sion authorization requires communication with CheckingAc-
count1 to determine the attribute value of SecurityLevel. In
turn, this requires communication between Employee1 and
CheckingAccount1 (6), as well as an O(1) search for the
SecurityLevel attribute, conducted in the CheckingAccount1

microservice (7). Finally the, Employee1 microservice returns
the result of the permission query to the caller (8).

In summary, through the optimizations we apply to the
conceptual access control system of PHILharmonicFlows, we
have been able to realize a scalable real-time access control
solution, thereby fulfilling Requirement 6. Currently, we are
working on further optimizations, such as eliminating the O(n)
search necessary for finding a matching permission assignment
at the start of each access control query (cf. Fig. 7). We aim at
finding a data structure that allows us to improve search times
to O(1), while keeping memory consumption acceptable, alter-
natively we propose using techniques developed for databases,
such as indexes or binary search sorting.

Our claim of having created a scalable access control
system which is well integrated with the PHILharmonicFlows
concept is supported by the fact that the query processing,
as shown in Fig. 7, can run on as many microservices
spread across a cluster as there are users represented by those
microservices. This is enabled by our microservice based
architecture, implemented using the Microsoft Service Fabric
Reliable Actors Framework. Additionally, we can use the
reliable actors framework to deal with the single bottleneck
scenario we have identified: multiple user objects resolving ac-
cess control queries that involve permissions with permission
authorization conditions requiring concurrent access to the
same object instance. In this scenario, multiple queries would
have to wait for concurrent access to an attribute value of the
same object instance and, therefore, microservice. However,
we can alleviate this bottleneck using read-only replicas of
the microservice in question, a feature of the reliable actors
framework.

V. RELATED WORK

As an access control system is mandatory for most informa-
tion systems, there exist numerous works on the topic, most
of which concern some form of RBAC-based system [12]. As
this paper focuses on access control in process management
systems, and specifically in object-aware process management
systems, we choose to exclude related work on access control
in other information systems.

[14] presents an access control system for activity-centric
workflow management systems, which relies on predicate-
based access to data. Additionally, [14] offers a concept for
process instance-based roles, which we address for object-
aware process management with relation roles (cf. Section
IV-B). Furthermore, [14] identified the need for permission
authorization based on the data context of a business object,
akin to Requirement 5. However, the solutions presented
in [14] fall short in the granularity aspect, as the actual
assignment of permissions is done per activity.

The work presented in [15] introduces the “conflicting
entities” paradigm for supporting separation of duties in ways
standard RBAC cannot. This extension to RBAC allows for
the specification of constraints to ensure that users can not
have conflicting permissions or roles activated simultaneously
in process environments. The run-time implementation can
then check for conflicting role or permission assignments,
and force users to choose one of the conflicting options. This
would be an interesting extension to our access control system
in the PHILharmonicFlows concept and will be taken into
consideration in the future.

[16] presents a language to express both static and dy-
namic authorization constraints. These notions are very similar
to the general RBAC notions of role assignment and role
authorization, and are presented in a formalized manner in
the paper. The authors propose precomputing the static (i.e.,
assignment) constraints and merely evaluating the dynamic
(i.e., authorization) constraints at run-time. The paper offers
good theoretical and formal groundwork for an access control
system, however, performance and flexibility of the solution
are not analyzed in detail.

Finally, [17] describes a formal framework for an aspect that
we have not yet covered in our current research, adapting the
access control system to changes in organizational structure.
The authors introduce a formal framework for the controlled
evolution of organizational models and related access control
constraints. In PHILharmonicFlows, we plan on covering this
aspect when tackling ad-hoc changes and schema evolution
challenges in the context of object-aware data models, as the
organizational structure in object-aware process management
is an integral part of the data models themselves.

VI. SUMMARY AND OUTLOOK

The access control system presented in this paper is opti-
mized to be as scalable and flexible as possible, supporting
a multitude of access control scenarios, while still ensuring
that there are no bottlenecks present. To achieve this, we
leveraged not only the conceptual possibilities offered by
the object-aware process management approach, but also a
fully distributed implementation, built using microservices for
execution in cloud-based compute clusters.

Our intent for the future is to show that both are viable,
i.e., that the object-aware approach is applicable to many
real-world scenarios and that the implementation of the core
components, such as the access control system, are better and
more scalable than existing solutions.

As the basic PHILharmonicFlows framework is concep-
tually complete, we are currently working on details, such
as access control or ad-hoc changes to running processes
instances. Additionally, we are developing test scenarios for
large scale performance evaluations using the cloud. Up until
now, we have examined most performance and scalability
factors from an architectural and mathematical standpoint.
However, we intend to fully evaluate the scalability of the
implemented engine empirically in future research.

REFERENCES

[1] M. Reichert and B. Weber, Enabling flexibility in process-aware
information systems: challenges, methods, technologies. Springer
Science & Business Media, 2012.

[2] N. Haddar, M. Tmar, and F. Gargouri, “A data-centric approach to
manage business processes,” Computing, vol. 98, no. 4, pp. 375–406,
2016.

[3] R. Hull, E. Damaggio, F. Fournier, M. Gupta, F. T. Heath III,
S. Hobson, M. Linehan, S. Maradugu, A. Nigam, P. Sukaviriya et al.,
“Introducing the guard-stage-milestone approach for specifying
business entity lifecycles,” in International Workshop on Web Services
and Formal Methods. Springer, 2010, pp. 1–24.

[4] W. M. Van der Aalst, M. Weske, and D. Grünbauer, “Case handling: a
new paradigm for business process support,” Data & Knowledge
Engineering, vol. 53, no. 2, pp. 129–162, 2005.

[5] D. Cohn and R. Hull, “Business artifacts: A data-centric approach to
modeling business operations and processes,” Bulletin of the IEEE
Computer Society Technical Committee on Data Engineering, vol. 32,
no. 3, pp. 3–9, 2009.

[6] V. Künzle and M. Reichert, “Integrating users in object-aware process
management systems: Issues and challenges,” in International
Conference on Business Process Management. Springer, 2009, pp.
29–41.

[7] V. Künzle and M. Reichert, “Philharmonicflows: towards a framework
for object-aware process management,” Journal of Software
Maintenance and Evolution: Research and Practice, vol. 23, no. 4, pp.
205–244, 2011.

[8] V. Künzle, B. Weber, and M. Reichert, “Object-aware business
processes: Fundamental requirements and their support in existing
approaches,” International Journal of Information System Modeling
and Design (IJISMD), vol. 2, no. 2, pp. 19–46, April 2011.

[9] V. Künzle, “Object-aware process management,” Ph.D. dissertation,
University of Ulm, 2013.

[10] S. Steinau, V. Künzle, K. Andrews, and M. Reichert, “Coordinating
business processes using semantic relationships,” in IEEE 19th
Conference on Business Informatics (CBI), 2017.

[11] K. Andrews, S. Steinau, and M. Reichert, “Towards hyperscale process
management,” in Proceedings of the 8th International Workshop on
Enterprise Modeling and Information Systems Architectures (EMISA),
2017.

[12] D. Ferraiolo, J. Cugini, and D. R. Kuhn, “Role-based access control
(rbac): Features and motivations,” in Proceedings of 11th annual
computer security application conference, 1995, pp. 241–48.

[13] M. Swanson and B. Guttman, Generally accepted principles and
practices for securing information technology systems. National
Institute of Standards and Technology, Technology Administration, US
Department of Commerce, 1996.

[14] S. Wu, A. Sheth, J. Miller, and Z. Luo, “Authorization and access
control of application data in workflow systems,” Journal of Intelligent
Information Systems, vol. 18, no. 1, pp. 71–94, 2002.

[15] R. A. Botha and J. H. P. Eloff, “Separation of duties for access control
enforcement in workflow environments,” IBM Systems Journal,
vol. 40, no. 3, pp. 666–682, 2001.

[16] E. Bertino, E. Ferrari, and V. Atluri, “The specification and
enforcement of authorization constraints in workflow management
systems,” ACM Transactions on Information and System Security
(TISSEC), vol. 2, no. 1, pp. 65–104, 1999.

[17] S. Rinderle and M. Reichert, “A formal framework for adaptive access
control models,” in Journal on data semantics IX. Springer, 2007, pp.
82–112.

