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Department of Computer Science

ETH Zurich, Switzerland
capkuns@inf.ethz.ch

Abstract

Within supply chains, the adoption of RFID tech-
nology promises to have a beneficial impact: by shar-
ing serial–level data, supply chain partners can opti-
mize and automate their operations. However, several
partners have expressed concerns on the possible mis-
uses of shared serial–level data; this may act as strong
deterrent on data sharing, resulting in a lost of all po-
tential benefits. This paper analyzes the problem of
leakage of sensitive business information in scenarios
in which business partners share serial–level data, pro-
vides a framework for describing correlations between
sensitive business information and serial–level data,
and presents an architecture called Sensitive Informa-
tion Leakage Monitor (SILM), that, based on defined
correlations, detects and prevents leakages of sensitive
business information while it enables sharing of serial–
level data.

1. Introduction

In supply chains, sharing information among part-
ners can improve coordination between different supply
chain stages. This can lead to several improvements,
like increasing productivity [7], a more efficient flow
of goods [16], reducing inventory level, and cost sav-
ings [25]. The adoption of RFID technology together
with solutions as the EPCglobal architecture [8] can
lead to additional improvements: considering the un-
precedented levels of detailed information that can be
gathered by tagging at serial–level (i.e., tagging single
goods with unique serial numbers), it would be pos-
sible to provide precise information about good loca-
tions, characteristics, and inventory level. This can lead
to larger automation and can speed up processes (re-
ducing costs). Additionally, new services like anti–
counterfeiting [22], real–time tracking, product recall,
and dynamic pricing [18] would be enabled.

However, partners are reluctant to easily share in-

formation related to observations of serial–level–tagged
goods (i.e., serial–level data); they have concerns about
the possible misuses of this information [3], and in par-
ticular, they fear that serial–level data can be used to
infer sensitive business information [14]. That is, they
fear that sharing serial–level data can cause a leakage of
sensitive business information. Moreover, each partner
may know its own sensitive business information, but
it might not be able to identify the leakage of this sen-
sitive business information caused by sharing its own
serial–level data. This could increase fears of possi-
ble (and unidentified) leakages, and consequently, lead
to situations in which a partner, to avoid any sensitive
business information leakage, does not share any serial–
level datum (disregarding the positive impact of infor-
mation sharing). Contrary, ignoring or underestimating
possible leakages through serial–level data could lead
to situations in which a partner shares serial–level data
to benefit from the positive impact of information shar-
ing, but is also hurt by leakages of sensitive business
information.

To overcome those situations, partners first need to
identify their own sensitive business information, define
the relationships (correlations) between this sensitive
business information and serial–level data, and deploy a
security architecture that, based on defined correlations,
guarantees access only to serial–level data that cannot
be used to infer sensitive business information. For this
purpose, traditional access control models might not be
sufficient: they prevent direct unauthorized accesses to
data, but do not prevent the leakage of sensitive busi-
ness information through authorized accesses. That is,
they guarantee access only to selected serial–level data
(i.e., those considered individually harmless), but they
do not prevent from inferring sensitive business infor-
mation from those selected serial–level data.

In this paper, we propose a solution for protecting
sensitive business information while enabling serial–
level data sharing. This solution is composed of a
framework for describing correlations between sensi-
tive business information and serial–level data, and of a



security architecture called Sensitive Information Leak-
age Monitor (SILM) that, based on defined correlations,
detects and prevents the leakage of sensitive business
information for given requested data. SILM extends
traditional access controls: beside detecting and pre-
venting direct security violations through a traditional
mandatory access control, SILM evaluates if sharing
the requested data will cause leakages of sensitive busi-
ness information, and when necessary, it filters the re-
quested data to prevent these leakages. SILM evaluates
at attribute–level (fine–grained), and considers histori-
cal information. To guarantee maximal data availability,
SILM filters out only those requested serial–level data
that will actually cause a leakage. Moreover, SILM is
conceived to overcome possible collusion between dif-
ferent data requesters.

In our presented work, we make the following con-
tributions. First, through an EPCglobal–enhanced sup-
ply chain scenario, we introduce the problem of sensi-
tive business information leakage when business part-
ners share serial–level data, showing examples of cor-
relations between such sensitive information and serial–
level data, and suggesting requirements on how to pro-
tect sensitive business information (Section 2). Second,
we define the framework for describing correlations be-
tween sensitive business information and serial–level
data (Section 3). Third, we introduce the security archi-
tecture called Sensitive Information Leakage Monitor
(Section 4). We conclude the paper in Section 6.

2. Sensitive business information leakage

Generally, sensitive business information is any in-
formation that, when disclosed, can be potentially mis-
used, and consequently cause losses. In the business
world, such sensitive information is described as the
knowledge that can provide competitive advantages,
and therefore must be protected [23]. Sensitive busi-
ness information can be any information that [1, 3, 14]:
releases strategic information (e.g., information that can
be used during negotiation phases, like volumes, prices,
etc.), reconstructs strategic connections (i.e., it reveals
strategic relationships of a company, and helps to iden-
tify its important partners and channels), uncovers un-
fair behaviors or inefficiencies (from the point of view
of the cheater), and helps to identify distribution chan-
nels (i.e., identification of the most important supply
routes, or the exact locations of high–value consign-
ments).

In order to introduce the problem of leakage of sen-
sitive business information in scenarios in which busi-
ness partners share serial–level data, and in particular
to show possible correlations between sensitive busi-
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Figure 1. Three–partner supply chain:
manufacturer–wholesaler–retailer

ness information and serial–level data, we consider a
three–partner EPCglobal–enhanced supply chain (Fig-
ure 1). Following EPCglobal1 standard and specifica-
tion, the service enabling serial–level data sharing is the
EPC Information Services (EPCIS) [9]. EPCIS specifi-
cation defines standard interfaces to capture and query
EPC–related data, i.e., serial–level data also called EP-
CIS events. An EPCIS event describes a specific occur-
rence in the supply chain; it encapsulates information
on which good has been involved in which business
process, at what time, and where. An EPCIS repos-
itory implements the capture interface to receive EP-
CIS events, stores them in a database, and implements
the query interface to make those EPCIS events avail-
able to other applications (for both intra– and extra–
organization data sharing).

Within our scenario, goods flow from the manu-
facturer to the retailer; the wholesaler acts as broker in
the middle. All partners implement the EPCglobal ar-
chitecture. To increase processes automation and goods
recognition, the manufacturer equips all the produced
goods with RFID tags, and assigns to each good a
unique ID (EPC number). Through RFID–readers, each
partner detects RFID–tagged goods, and captures in lo-
cal EPCIS repositories an event associated to each de-
tection. An event is a tuple that encapsulates three at-
tributes: ID, STEP , and TIME, that correspond to
the different business processes (STEP ) and relative
occurrence time (TIME) in which a good (ID) has
been involved. In order to maximize the benefits of
the implementation of RFID technology (e.g., providing
transparency and traceability of goods), each partner al-
lows others2 to retrieve through the query interface EP-
CIS events relative to two specific business processes:
shipping and receiving.

The wholesaler buys large quantities of goods from
one manufacturer, and sells smaller quantities to sev-

1 http://www.epcglobalinc.org, EPC stands for Electronic Product
Code.

2 Using appropriate authentication and access control mechanisms.



eral retailers. Within its business, it might consider
sensitive business information the time that a certain
good remains under its control (stocking time), and the
delivery volume over a certain period of time. Rea-
sons for considering both stocking time and delivery
volume as sensitive information can be the compari-
son with other wholesalers by the retailers (price vs.
goods freshness or price vs. total delivery volume), or
by the manufacturer (market penetration and distribu-
tion times) during negotiation phase (i.e., in order to
use that information to decrease wholesaler’s negotia-
tion power). Both stocking time and delivery volume
cannot be explicitly retrieved from the wholesaler’s EP-
CIS repository, but they can be inferred by combining
EPCIS events retrieved from the wholesaler’s EPCIS
repository: Examples 1 and 2 show the correlations be-
tween the above–mentioned sensitive business informa-
tion and the shared EPCIS events.

Example 1 (Stocking time). The stocking time of a
certain good is the time between the instant when that
good has been received, and the instant when it has been
shipped. Therefore, for a certain good, it is sufficient
to retrieve the receiving (RCV ) and shipping (SHP )
events relative to it. For example, having access to
wholesaler’s events as listed in Table 1, stocking time
for a good with ID = 100 can be obtained by combin-
ing the events #1 and #3.

Example 2 (Delivery volume). The delivery volume
over a certain period of time represents the amount of
goods that have been shipped, and presumably sold,
during that period. This information can be inferred
by retrieving and counting all the shipping events oc-
curred during the considered period. For example, hav-
ing access to wholesaler’s events as listed in Table 1,
for any good, the delivery volume over 1 hour between
10:30AM and 11:30AM of the 2008-02-01 is equal to 2
(events #3 and #4).

Starting from the presented scenario, it is possi-
ble to identify both relevant characteristics of sensitive
business information and requirements for protecting
such sensitive information:

Protecting information. What is under protection are
not implicitly the events stored in a database, but
the sensitive business information that could be
inferred by combining those events. In Example
1, sensitive business information will leak when
sharing both receiving and shipping events rela-
tive to a certain good. This means that, for that
good, a shipping event can be shared, or a re-
ceiving event can be shared, but not both. There-
fore, the decision whether to share a certain event

Table 1. Example of wholesaler’s EPCIS
events

# ID STEP TIME
1 100 RCV 2008-02-01 09AM
2 101 RCV 2008-02-01 09AM
3 100 SHP 2008-02-01 11AM
4 101 SHP 2008-02-01 11AM

is taken considering the sensitive business infor-
mation that could potentially leak by sharing that
event. Thus, we identify two protection strategies:
perfect–privacy strategy [5], in which an event is
shared only if it does not disclose any information
about sensitive business information, and max–
sharing strategy, in which an event is shared as
far as it does not actually cause a leakage of sen-
sitive business information. The former guaran-
tees a strong leakage prevention, but a reduced
data availability: in Example 1, not a single re-
ceiving nor shipping event would be shared. The
latter offers a better data availability (in Example
1, a shipping event could be shared, or a receiving
event could be shared, but not both), but it requires
additional efforts to guarantee leakage prevention
(i.e., history of shared events and anti–collusion
solutions). Additionally, other strategies require
metrics to quantify both data availability and in-
formation leakage; the decision whether to share
a certain event is based on an optimal trade–off
or threshold limits. An example of this is to use
entropy as a metric to evaluate the amount of in-
formation contained in different modified datasets,
and choose to publish the one that, guaranteing the
same privacy/security requirements, provides the
biggest amount of information [4].

A data–dependent, fine–grained evaluation. A secu-
rity architecture that aims to detect and prevent
possible leakages needs an evaluation process that
indicates if a requested event can cause a leak-
age. Considering that correlations between sen-
sitive business information and serial–level data
are composed of specific events (e.g., shipping
events) and relations between event attributes (e.g.,
two events having the same ID), the evaluation
process needs to classify events and identify at-
tribute relations. Therefore, it has to consider
data (i.e., it is data–dependent, opposite of data–
independent, which considers only queries [2]),
and fine–grained information.

Answer to query: cleaning the requested data.
A security architecture that aims to detect and



prevent possible leakages needs a cleaning pro-
cess that sanitizes requested events according to
evaluation process results. Considering single
events, possible cleaning strategies would be to
either modify/block single attributes, or consider
an event as a monolithic element and block the
whole event. Considering requested events, a
single query may request more events at once. The
accepting/rejecting approach [2] (i.e., considering
the requested events as a monolithic element)
may not be the optimal solution in terms of data
availability: events that will not cause a leakage
of (or neither disclose any information about)
sensitive business information may be blocked. A
selective–filtering approach, in which the shared
data are the maximum subset of the requested
data (or the most relevant subset) that does not
disclose any sensitive business information guar-
antees higher data availability, but it can be more
computationally expensive.

Requester’s identity. Sensitivity of information de-
pends on the identity of the owner of the informa-
tion (i.e., to whom the information refers to), and
on the identity of the requester (i.e., who might
receive the information). For example, from the
wholesaler’s point of view, stocking time is sensi-
tive business information if associated with the re-
tailers; the same information might not be sensitive
if associated with other partners, e.g., a distribu-
tion center. Differently, from the point of view of
the retailers, stocking time is not considered sen-
sitive at all. Therefore, each owner needs to both
define its own sensitive business information and
have the possibility to individually associate it with
different data requesters. In the case that no indi-
vidual associations can be done (e.g., when pub-
licly releasing datasets, or when all requesters are
assumed to collude with each others), each owner
needs to define its own sensitive business informa-
tion, and simply associate it collectively.

Requester’s history. Events used to infer sensitive
business information can be collected singularly
(i.e., through different queries), and at different in-
stants in time. So, unless perfect–privacy strategy
is adopted, it is not sufficient to consider only the
on–going request; the evaluation of leakage of sen-
sitive business information should also then con-
sider historical information, i.e., events previously
shared.

Collusion. Events in an EPCIS repository are the direct
consequence of specific occurrences in the supply
chain. In a EPCIS repository, there is no insertion
of events associated to events gathered from other

partners. However, it is reasonable to consider that
partners, during business analysis, could merge the
events that have been collected. Therefore, unless
perfect–privacy strategy is adopted, when sharing
events, the evaluation of sensitive business infor-
mation leakage should not only consider the cur-
rent requester and its history, but also the possi-
ble collusion of this requester with other requesters
(and therefore, other requesters’ history).

3. Assumptions and formal definitions

We consider the evaluation of sensitive business in-
formation leakage in a relational database with a sin-
gle table. A database with multiple tables can be trans-
formed into a universal relation [13].

A local databases D is composed of one relation
rel. Ai denotes an attribute in the relation rel. RS is
the relation schema of rel, and lists all the attributes
Ai. ai denotes an attribute value from the domain of
Ai. t[Ai] denotes the value of attribute Ai of a single
tuple t in the relation rel.

An element ele can be a tuple ti, a set of tuples
Ti = {t1, ..., tn}, a set of sets–of–tuples {T1, ..., Tn},
and so on.

A restriction ri represents the permitted values ai

of an attribute Ai within the domain of Ai. ri can
be a constant, a list of constants, a range of values,
or refer to another attribute (where attributes domains
are compatible). res can be a set of restrictions ri

equal to Ri = {r1, ..., rn}, a set of sets–of–restrictions
{R1, ..., Rn}, and so on.

Definition 1 (General constraint). A constraint ci is a
pair (ele(ci), res(ci)), in which for an attribute Ak ∈
ele(ci), the corresponding rk ∈ res(ci) denotes the
constraints on the value of ak.

A general constraint ci can refer to different ele-
ments: tuple, set of tuples, set of sets–of–tuples, and so
on. A n–order constraint cn

i refers to one particular el-
ement with order n as follows: for a tuple n = 1, for a
set of tuples n = 2, for a set of sets–of–tuples n = 3,
and so on.

Definition 2 (First–order constraint). A first–order
constraint c1

i is a pair (ele(c1
i ), res(c

1
i )) where

ele(c1
i ) ⊂ RS is a subset of attributes Ak, and res(c1

i )
is a set of restrictions rk that specifies the allowed value
for each attribute Ak ∈ ele(c1

i ) (|ele(c1
i )|= |res(c1

i )|)3.

Definition 3 (First–order constraint satisfaction). A
tuple t satisfies a first–order constraint c1

i if, for each

3 |x| indicates the cardinality of x.



attribute Ak ∈ ele(c1
i ), the value t[Ak] respects the

correspondent restriction rk ∈ res(c1
i ). The function

S(t, c1
i ) evaluating the constraint satisfaction for a con-

straint c1
i against a tuple t is defined as:

S(t, c1
i ) =

⎧⎪⎨
⎪⎩

1, if
∀Ak ∈ ele(c1

i ),
t[Ak] ∈ res(c1

i )[Ak]

0, otherwise

where S(t, c1
i ) = 1 means that the tuple t satisfies the

constraint c1
i .

Example 3. Let (ID, STEP, T IME) be the re-
lation schema RS of D, t1(200, SHP, 11:10AM)
and t2(100, SHP, 12:10AM) two tuples in D, and
c1
1 = ({ID, STEP, T IME}, {1∗, SHP, ∗}) a first–

order constraint4. The function evaluating the constraint
satisfaction for c1

1 against tuples t1 and t2 gives as result
S(t1, c1

1) = 0 and S(t2, c1
1) = 1 respectively.

Definition 4 (Second–order constraint). A second–
order constraint c2

i is a pair (ele(c2
i ), res(c

2
i )) where

ele(c2
i ) is a set of tuples, and res(c2

i ) is set of sets–
of–restrictions (|ele(c2

i )|= |res(c2
i )|). ele(c2

i ) =
{t1, ..., tn}, where each tk ∈ ele(c2

i ) is a set of at-
tributes Ap. res(c2

i ) = {R1, ..., Rn}, where each
Rk ∈ res(c2

i ) is a set of restrictions rm that specifies
the relations between attributes of the different tuples in
ele(c2

i ) (|tk|= |Rk|).
Definition 5 (Second–order constraint satisfaction).
A set of tuples T satisfies a second–order constraint c2

i

if, for each attribute Am specified in each tuple tk in
ele(c2

i ), the value T [tk][Am] respects the correspondent
restriction Rk[Am] in res(c2

i ). The function S(T, c2
i )

evaluating the constraint satisfaction for a constraint
c2
i against set of tuples T is defined as:

S(T, c2
i ) =

⎧⎪⎨
⎪⎩

1, if
∀tk ∈ ele(c2

i ) and ∀Am ∈ tk,
T [tk][Am] ∈ res(c2

i )[Rk][Am]

0, otherwise

where S(T, c2
i ) = 1 means that the set of tuples T sat-

isfies the constraint c2
i .

Example 4. Let (ID, STEP, T IME)
be the relation schema RS of D,
t1(200, SHP, 11:10AM), t2(100, SHP, 12:10AM),
and t3(100, RCV, 10:10AM) three tuples in D.
A second–order constraint representing the re-
striction ”two tuples must have the same ID”
can be defined as c2

1 = ({ti, tj}, {Ri, Rj}) =

4 Asterisk is used as ”any value”: (TIME = ∗) means ”any value
within the domain of TIME”, (ID = 1∗) means ”any value
within the domain of ID that has the first digit equal to 1”.

({{ID}, {ID}}, {{tj[ID]}, {ti[ID]}}). The function
evaluating the constraint satisfaction for c2

1 gives
as result S({t1, t2}, c2

1) = 0 against t1 and t2, and
S({t2, t3}, c2

1) = 1 against t2 and t3.

More complex n–order constraints (i.e., where n >
2) can be obtained by adapting ele(cn

i ) and res(cn
i ).

Definition 6 (Sensitive business information). A cor-
relation si between sensitive business information and
serial–level data can be represented as a set of con-
straints (of different orders), where a constraint of order
n1 can nest constraints with order n < n1. si is defined
as:

si = {cq
1, ..., c

t
x}

where each cn
i ∈ si can nest other constraints as fol-

lows:

cn
i {cn−1

1 {cn−2
1 , ..., cn−2

p }, ..., cn−1
k {cn−2

1 , ..., cn−2
o }}

where k = |ele(cn
i )|, p = |ele(cn−1

1 )|, and o =
|ele(cn−1

k )|.
Example 5. Let’s consider the sensitive business in-
formation as described in Section 2: stocking time
of a certain good can be computed from a ship-
ping event and a receiving event related to that good.
Therefore, the correlation siST between the sensitive
business information stocking time and serial–level
data is composed of a tuple t1(∗, RCV, ∗) and a tu-
ple t2(∗, SHP, ∗) having t1[ID] = t2[ID]. siST

can be represented as siST = c2
1{c1

1, c
1
2} where

c1
1 = (t1, R1,1) = ({STEP}, {RCV }) and c1

2 =
(t2, R2,1) = ({STEP}, {SHP}) are the two first–
order constraints needed to specify t1 and t2 re-
spectively, and c2

1 = ({t1, t2}, {R1,2, R2,2}) =
({{ID}, {ID}}, {{t2[ID]}, {t1[ID]}}) is the second–
order constraint needed to specify the relation between
t1 and t2.

Definition 7 (Sensitive business information leak-
age). An element ele causes a leakage of sensitive busi-
ness information when it satisfies all the constraints cn

i

composing the correlation si representing that sensitive
business information. The function L(ele, si) which
evaluates the leakage of sensitive business information
with respect to its correlation si and an element ele is
defined as:

L(ele, si) =
{

1, if ∀cn
i ∈ si, S(ele, cn

i ) = 1
0, otherwise

where L(ele, si) = 1 means that the element ele causes
a leakage of the sensitive business information repre-
sented by the correlation si.



Example 6. From Example 5: the sensitive business
information represented by the correlation siST leaks
if it exists a set of tuples T such that L(T, siST ) = 1.
Since siST = c2

1{c1
1, c

1
2}, the considered sensitive busi-

ness information leaks if S({tk, tp} ∈ T, c2
1) = 1,

S(tk ∈ T, c1
1) = 1, and S(tp ∈ T, c1

2) = 1. Consid-
ering the following three sets of tuples:

T1 = {(100, RCV, 11:10AM), (100, STO, 12:10AM)}
T2 = {(100, RCV, 11:10AM), (200, SHP, 12:10AM)}
T3 = {(100, RCV, 11:10AM), (100, SHP, 12:10AM)}

Sets T1 and T2 will not cause a leakage, since S(t2 ∈
T1, c

1
2) = 0 and S(T2, c

2
1) = 0 respectively. Set T3

will cause a leakage, since S({t1, t2} ∈ T3, c
2
1) = 1,

S(t1 ∈ T3, c
1
1) = 1, and S(t2 ∈ T3, c

1
2) = 1.

Definition 8 (Query - Answer). A query Qi is equiva-
lent to a first–order constraint c1

i as introduced in Defi-
nition 2: it is a pair (ele(c1

i ), res(c
1
i )), where ele(c1

i ) ⊂
RS is a subset of attributes Ak , and res(c1

i ) is a set of
restrictions rk that specifies the allowed values for each
attribute Ak ∈ ele(c1

i ).
An answer Ti of a query Qi over a database D

equal to Ti = Qi(D) = {t1, ..., tn} is a set of tuples
where each tuple tk ∈ Ti satisfies the first–order con-
straint c1

i equivalent to the query Qi.

4. Sensitive Information Leakage Monitor

The Sensitive Information Leakage Monitor
(SILM, Figure 2) detects and prevents both direct
security violation and leakage of sensitive business
information. The former can be obtained through a
traditional Mandatory Access Control (MAC)5, while
the latter through a mechanism which we call the
Leakage Access Control (LAC). Given (a) a set of
users U = {u1, ..., up} in which a user uk ∈ U can
be authenticated by any other user uq ∈ U , (b) two
users ul and ui, both members of U , (c) a ul’s set
of correlations SI , (d) ul’s database D, (e) a query
Qi from user ui to user ul, and (f) the requested data
Ti = {t1, ..., tn} ⊂ D satisfying query Qi, SILM
performs as follows: triggered by the query Qi, (i) it
invokes the MAC, which evaluates and prevents direct
security violations according to its defined method
(e.g., through query rewriting techniques [11, 20] or
directly operating on Ti to prevent such violations).
Then, (ii) it invokes the LAC that, based on defined SI ,
evaluates (through the evaluation process) the leakages
of sensitive business information, and if necessary,
it additionally operates on Ti (through the cleaning

5 The definition of a MAC mechanism is beyond the scope of this
paper.

1 n

1 n

Figure 2. Components of the Sensitive In-
formation Leakage Monitor (SILM)

process) to prevent these leakages. Finally, (iii) it
answers to the user ui with the secure version of Ti.

According to requirements for protecting sensitive
business information as described in Section 2, LAC
evaluates serial–level data (tuples) at attribute level
(data–dependent and fine–grained). Moreover, to in-
crease data availability, the evaluation process follows
the max–sharing strategy, in which a tuple is shared as
far as it does not actually cause a leakage of sensitive
business information. Thus, if sensitive business infor-
mation can be inferred by combining n different tuples,
LAC detects a leakage only when evaluating the n–th
tuple, allowing the sharing of n−1 among the n tuples.
As a consequence of adopting the max–sharing strategy,
the evaluation process needs to consider historical infor-
mation and possible collusion between data requesters
(through history databases and user–identity associa-
tions respectively). To additionally increase data avail-
ability, LAC cleaning process deploys the selective–
filtering approach, i.e., it considers requested data as
composite elements (in opposite of consider them as
monolithic elements), and removes from the requested
data only those tuples that actually cause a leakage.

LAC needs additional components to perform the
above–mentioned features (Figure 2): a database ID,
that stores the identity id associated to each user uk ∈
U , a group of databases SIid, storing the set of corre-
lations SI associated to each identity id (correlations
as defined in Definition 6), and a group of databases
Hid, storing relevant historical information (i.e., rele-
vant shared events) for each identity id. Based on those
components, and given a user ui ∈ U querying for
data Ti = {t1, ..., tn}, LAC performs as follows (Al-
gorithm 1): for the identity id relative to the data re-
quester ui, the associated history database Hid and the
associated set of correlations SIid are retrieved. To pro-
vide a selective–filtered answer, the evaluation is done
separately for each tuple t in the requested data Ti; if



the union of t with the history database Hid will cause
a leakage of any of the sensitive business information
represented in SIid, the tuple t is filtered out from Ti,
and consequently not shared. After the evaluation of a
single tuple t, the history database Hid is updated under
certain conditions.

4.1. Evaluation strategy

The possible leakage of sensitive business infor-
mation to an identity id is evaluated against the cor-
relation si representing the concerned sensitive busi-
ness information, a requested tuple t, and the history
database Hid. This operation is represented by the func-
tion L(Hid ∪ t, si) as defined in Definition 7. The eval-
uation process needs to verify the constraint satisfac-
tion S(Hid ∪ t, ck

i ) for all the constraints ck
i compos-

ing si; if all the constraints are satisfied by Hid ∪ t,
then sharing t will cause the leakage of the concerned
sensitive business information. According to Defini-
tion 8, a first–order constraint can be represented as a
query; by extension, a n–order constraint can be rep-
resented by multiple, nested queries. Therefore, a set
of tuples T satisfies a constraint ck

i if the answer to the
ck
i –query–representation Qck

i
over T is non–null. For

a si composed of a set of constraints {cm
1 , ..., cp

n}, the
evaluation process verifies the answers to all ck

i –query–
representations Qck

i
over Hid ∪ t. If all are non–null, t

will cause a leakage of the concerned sensitive business
information. Contrary, if at least one constraint is not
satisfied, t is declared secure, and can be shared.

4.2. History databases

To reduce both overheads and the computation time
needed for the evaluation (i.e., to reduce the size of his-
tory databases), a tuple t that has been evaluated as se-
cure and shared with a user ui is stored into the history
database Hid associated to ui’s identity id only if t is
relevant to infer any sensitive business information as-
sociated with entity id. That is, a tuple t is stored into
the history database when it can be used to obtain sen-
sitive business information, but at the time of the evalu-
ation, sharing t will not actually cause a leakage of sen-
sitive business information. For example, a correlation
si1 is composed of t1 and t2 such that si1 = {t1, t2}. If
a request for t1 occurs, and at the time of the request, t2
was not shared, the evaluation process considers t1 as
secure: t1 will be shared. Since t1 is one of the compo-
nents of si1, it will be stored into the requester’s history
database. More formally, a tuple t is stored into a his-
tory database Hid if it satisfies at least one first–order
constraint c1

i among all first–order constraints present
in each correlation sii ∈ SIid (Algorithm 1 - line 9).

Algorithm 1. Leakage Access Control

Input: Authenticated user ui

Set of tuples Ti

Output: Secure version of the set of tuples Ti

begin
find identity id associated with user ui1

collect correlations associated with id:2

SIid = {si1, ..., sip}
retrieve history database Hid associated with id3

// Evaluation for each tuple.

foreach t ∈ Ti do4

// Eval for each correlation.

foreach si ∈ SIid do5

// Eval if Hid ∪ t causes a

leakage of the sensitive

info represented by si.

if L(Hid ∪ t, si) = 1 then6

// Sharing t causes a

leakage. So, clean Ti.

remove t from Ti: Ti = Ti \ t7

jump to the next t ∈ Ti8

end
end
// Updated Hid with t, iff at

least one 1st-order

constraint in SIid is

satisfied.

Hid = Hid ∪ t iff9

∃(c1
i ∈ SIid)|S(t, ci1i ) = 1

end
end

4.3. User/Identity association

To different users, different sensitive business in-
formation may be associated, but if a collusion between
these users can be assumed, sensitive business informa-
tion associated to each single user becomes collective,
and associated to all colluders. To represent this, and
overcome leakages by collusion, an identity is associ-
ated to each user. A user has one single associated
identity, while the same identity can be associated to
more users. Since the evaluation is executed per en-
tity, users sharing the same identity id can be seen as a
single requester; this means that they collectively share
the same set of correlations SIid and the same history
database Hid. For example, a correlation si1 is com-
posed of t1 and t2 such that si1 = {t1, t2}. si1 is listed
in the correlation set SIid1 associated to identity id1.
id1 is associated to both users u1 and u2. If u1 re-



quests for t1, and at the time of the request, t2 was not
shared, the evaluation process considers t1 as secure: t1
is shared and stored into history database Hid1 (since
it is a component of si1). Now, if u2 requests for t2,
the evaluation process considers its associated identity
id1, and since t1 was already shared (it is in Hid1), t2 is
not shared with u2. An identity set IDi = {u1, ..., un}
contains all the users sharing the same sensitive busi-
ness information and historical information. Two iden-
tity sets cannot share a common user; in the case that
a new collusion is supposed, the sets of colluding users
are merged (and consequently, also correlations sets and
history databases are merged), creating a new identity
and deleting the previous ones.

5. Related work

Confidentiality ensures that certain information is
accessible only to those authorized to have access. In-
ference channels can be used by an user to access
information it has no access right, i.e., in multilevel
databases, it is a means by which one can infer data
classified at a high level from data classified at a low
level [15]. Inference problem, i.e., how to detect and
remove inference channels, has been intensively stud-
ied in the past years; a general overview over the infer-
ence problem can be found in the work of Farkas and
Jajodia [10]. Proposed solutions can be mainly divided
into two groups: detect and remove inferences at the
database design phase [6,19,21], and detect and remove
inferences at query time [12, 17, 24]. The former ana-
lyzes attributes and relations between attributes; it will
not introduce any additional evaluation during query
time, but it can lead to over–classification. The latter
analyzes queries (data–independent) and query results
(data–dependent), and can consider both past shared
data and queries; it is more computationally expensive,
but it can lead to a better data availability.

Our work extends the traditional notion of data con-
fidentially and inference problem: we consider, and
consequently protect, not only data stored in a database,
but also the information that can be inferred by com-
bining those data. Similarly to Brodsky et al. [2], our
work considers data–dependent analysis, and proposes
a security architecture which guarantees data confiden-
tiality based on constraints. Furthermore, we provide
a more flexible definition of constraints. Regarding
access control for EPCIS, Grummt and Müller [11]
propose a fine–grained access control based on query
rewriting, but without considering the inference prob-
lem. To our knowledge, our work is the first on infer-
ence control for EPCIS.

6. Conclusion

Supply chain partners may be willing to share
serial–level data to benefit from the numerous advan-
tages that such detailed information can give, but con-
cerns and fears on the misuses of shared data to infer
sensitive business information acts as a strong deterrent
on data sharing, resulting in a lost of all potential ben-
efits of information sharing. Moreover, partners may
not be able to correlate serial–level data with sensitive
business information. This could lead to several unde-
sired situations, like those in which data are not shared,
or in which data are shared without paying attention on
sensitive business information leakage.

Our work overcomes those undesired situations: it
protects sensitive business information while it enables
serial–level data sharing, which allows partners to ben-
efit from information sharing, and at the same time, to
avoid potential losses caused by leakages of sensitive
business information. Our solution consists of a frame-
work for describing correlations between sensitive busi-
ness information and serial–level data, and in a secu-
rity architecture, SILM, that, based on defined corre-
lations, detects and prevents leakages of sensitive busi-
ness information in scenarios in which business partners
share serial–level data. Through our framework, it is
possible to represent elements like tuples, set of tuples,
set of sets–of–tuples, and so on, and relations between
single tuple attributes within all these elements. Our
architecture, SILM, executes a data–dependent, fine–
grained sensitive–business–information–leakage evalu-
ation on current requested data and historical informa-
tion. To increase data availability, SILM deploys both
max–sharing strategy and selective–filtering approach.
The former detects a leakage only on requested data
that actually cause a leakage, while the latter defines
the shared data as the maximum subset of the requested
data that does not cause a leakage of sensitive busi-
ness information. Additionally, SILM considers the re-
questers’ identity and deals with possible collusion.

In our future work we will explore (i) different vali-
dation methods, (ii) possible optimizations, and (iii) the
definition of administrative tasks. The first point refers
to the formal proof of effective leakage prevention, the
validation of SILM by scalability, performance, and us-
ability, as well as the implementation of SILM within
a real–world supply chain scenario (showing implica-
tions, deployment on current IT infrastructures, and
cost–benefit analysis). The second point includes the
definition of metrics for both leakage and data avail-
ability, the definition of metrics–based evaluation pro-
cesses, and the extension of SILM to consider exist-
ing knowledge, publicly available data, database up-



dates, and time–validity of constraints (and more in
general, optimize for both reducing the time needed for
the evaluation and guaranteeing a better data availabil-
ity). The third point addresses problems like how, and
by which means, to define and maintain access policies,
and who defines and maintains these policies. This can
include adopting standardize access control languages
to support policies, designing a user–friendly interface
in which to define sensitive business information and
policies, and dealing with changes and time–validity of
policies.
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