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Abstract

This paper is a reflection of our experience with the 
specification and subsequent execution of model 
transformations in the QVT Core and Relations 
languages. Since this technology for executing 
transformations written in high-level, declarative 
specification languages is of very recent date, we 
observe that there is little knowledge available on how 
to write such declarative model transformations. 
Consequently, there is a need for a body of knowledge 
on transformation engineering. With this paper we 
intend to make an initial contribution to this emerging 
discipline. Based on our experiences we propose a 
number of useful design patterns for transformation 
specification. In addition we provide a method for 
specifying such transformation patterns in QVT, such 
that others can add their own patterns to a catalogue 
and the body of knowledge can grow as experience is 
built up. Finally, we illustrate how these patterns can 
be used in the specification of complex 
transformations.  

1. Introduction 

OMG’s Model-Driven Architecture (MDA) ([9],
[6]) has emerged as a new approach for the design and 
realisation of software and has eventually evolved in a 
collection of standards that raise the level of 
abstraction at which software solutions are specified. 
The central idea is that computational independent 
models (CIMs), platform independent models (PIMs) 
and platform specific models (PSMs) – defined at 
different levels of abstraction – are derived (semi-) 
automatically from each other through model 
transformations. Model transformations are thus a 
crucial element in OMG’s vision on MDA. 
Transformations relate the different abstractions used 
in a model-driven development scenario. Model-to-
model (M2M) transformations relate CIMs to PIMs 
and PIMs to PSMs, while Model-to-Text (M2T) 

transformations relate the PSMs to code. OMG has 
recently adopted standard languages for the 
specification of model transformations, for which a 
number of implementations are already available. The 
availability of these transformation engines, in addition 
to the existing metamodelling technology, brings us a 
lot closer to the realization of the MDA vision. 
Modelling engineers are now able to define their own 
Domain-Specific Languages (DSLs) and 
transformations between them and existing languages.  

Since the technology for executing transformations 
written in high-level declarative specification 
languages (such as those included in the QVT 
standard) is of very recent date, we observe that there 
is very little knowledge available on how to write such 
declarative model transformations. This led us to the 
conclusion that there is a need for a body of 
knowledge concerning the emerging discipline of 
transformation engineering.  

In this paper we aim to make an initial contribution 
to this emerging discipline. Recently we have had the 
opportunity to experiment with implementations of 
both the QVT Core language (from Compuware) and 
of the QVT Relations language (from IKV++ ). Based 
on these experiences we propose a number of useful 
problem-solution patterns, similar to the well-known 
design patterns in software development. In addition 
we provide a method for documenting and specifying 
such reusable transformation patterns, such that others 
can add their own patterns and the body of knowledge 
can grow as experience is built up. For this purpose we 
have recently started a Wiki catalogue [10] where 
transformation patterns can be documented and 
discussed.

The paper is organised as follows. In Section 2 and 
Section 3 we discuss briefly the QVT model 
transformation specification standard and a few 
modelling languages we use in this paper. In Section 4 
the issue of documenting transformation patterns is 
addressed. Section 5 consists of a catalogue of model 
transformation patterns we believe to be relevant in the 
context of model-driven development.  Each pattern is 



described using a template that includes (for 
illustration purposes) a pattern application example. In 
Section 6 we demonstrate how the patterns can be used 
combined by specifying a transformation for state chart 
models. Finally, Section 7 summarises our conclusions 
and gives some pointers to future work. 

2. The QVT transformation languages 

In order for design patterns to be understood and 
useable by a wide audience, they should be expressed 
in a well-known, preferably standardized language. 
QVT (Query/View/Transformation) provides such 
languages for M2M transformation specification. QVT 
actually defines three different transformation 
languages: Relations, Core and Operational Mappings.
Relations and Core are both declarative languages at 
two different levels of abstraction, with a mapping 
between them. We briefly present the Relation 
language below that has been used for specification 
purposes throughout this paper.  For a complete 
definition of these languages we refer the interested 
reader to the standard specifications [8].

The QVT Operational language extends both 
Relations and Core and provides a way of specifying 
transformations imperatively. As we focus on 
declarative transformation specification, we will not 
discuss the Operational language further in this paper. 
OMG has recently also approved the MOF Model-to-
Text standard for specifying transformations from 
MOF models to text (i.e., code). However, M2T 
transformations are of a completely different nature 
and therefore also fall outside the scope of this paper.  

In the QVT Relations language transformations are 
specified by defining the relations that should hold 
between source and target domains. Transformation 
rules are described in terms of relations that define a 
mapping between source and target elements and can 
be constrained in the when and where clauses. Only 
model elements that satisfy the constraints will be 
related. Such constraints typically deal with the 
properties of the model element, such as attributes and 
associations to other elements. The when-clause 
specifies a precondition. Only when all conditions in 
this clause evaluate to true the relation between the 
specified domains is established. The where-clause 
specifies a postcondition. Once the relation is 
established then the conditions specified here should 
be enforced to hold. When a domain is marked as 
enforced, the engine may create or update that domain 
in order to establish the relation. 

3. Modelling languages 

Before addressing the main topic of this paper - the 
transformation rule patterns - we briefly describe the 
experimental setting in which our results have been 
devised. The following modelling languages that have 
served as source and target languages in our 
transformation pattern specifications: 

The shape language is a simple, purely syntactical 
language that has been defined in order to illustrate the 
model transformation patterns. It does not require any 
prior knowledge and it basically has only two 
concepts: simple shape and arrow. There are three 
types of simple shapes: square, circle and triangle. 
Furthermore, the Shape language contains a grouping 
concept called Block used to express hierarchy. A 
block may contain simple shapes and other blocks. 
Each shape model should have a unique root element, 
which is an instance of RootBlock, a specialization of 
Block. To express relations between simple shapes and 
blocks the Arrow concept is used. The Shape 
metamodel is given in the Figure 1.

Figure 1. Shape language metamodel 
In order to illustrate the transformation patterns 

proposed in this paper we have used well known 
diagramming notations, namely the UML class, 
activity and statechart diagrams (for the complete 
specifications see [7]). The used statechart metamodel 
can be found in the Figure 2.

4. Transformation design patterns 

Since the publication of “Design Patterns” by 
Gamma et al. [4], patterns are well known in software 
engineering. Patterns describe which problems 
software engineers can encounter, the context in which 
such problems may appear, and a general solution to 
them. Analogously we propose to start a collection of 
reusable design patterns for specifying model 



transformation. A transformation design pattern, or 
transformation pattern for short, is then a reusable 
solution to a general model transformation problem. 

Figure 2. Statechart diagram metamodel 
The need for transformation patterns emerged 

almost immediately after we first started writing model 
transformations in QVT. Transformations are often 
very similar. An existing transformation specification 
is often a good starting point for a new one. 
Unfortunately, the collection of existing and well-
documented transformations is still very small. We 
also noticed that the same transformation can often be 
specified in subtly different ways. On the surface it 
seems to be just a matter of style, but such a different 
‘style’ can have great consequences for performance, 
applicability and reusability of the transformation. 
Finally, our first solution to a particular transformation 
problem often was not entirely correct and had to be 
revised several times. A library of reusable 
transformation patterns should enable engineers to get 
it right more quickly. 

4.1. Transformations, transformation rules and 
rule patterns 

Transformations, transformation rules, transformation 
patterns, rule patterns are just a few concepts which are 
used with different meanings and sometime 
interchangeably in the literature. For example, in [5] a 
definition is given for a transformation pattern which 
corresponds to what we call a transformation 
definition. Somewhat similar definitions to the ones we 
propose are given by [3].  Another interesting view on 
transformation patterns is that taken by the project 
Modelware [1] that considers that a transformation 
pattern (as general repeatable solution to a commonly-
occurring model transformation design problem) is not 

a finished design that can be transformed directly into 
a transformation specification. Although [1] proposes a 
catalogue of transformation patterns, their approach is 
different in two respects. Firstly, Modelware does not 
rely on the QVT standard for the specification of 
proposed patterns. Instead, the hybrid 
imperative/declarative ATL language is used. 
Secondly, the patterns included in [1] do not overlap 
with those proposed in this paper. 
Therefore, before discussing specific transformation 
patterns as mentioned before, we feel compelled to 
provide further clarifications concerning the semantics 
we have attributed to these concepts and the relations 
between them (as depicted in Figure 3). In the 
remainder of this paper the following definitions will 
be used.

Source 
model

Source 
metamodel

Target 
metamodel

Target 
modelTransformation

Transformation 
definition

1
*

Rule definitionMapping Relation

1..* 0..* 0..* 1..*

1..* 0..* 0..* 1..*

Rule pattern

Figure 3. Model transformation concepts and 
relations between them 

A transformation definition is a formal specification 
that consists of a set of rule definitions. A rule
definition is a formal specification in the form of a 
mapping (in the sense of the QVT - Core language) or 
of a relation (in the sense of the QVT - Relations 
language). In its simplest form (and in line with the 
MDA), a model transformation is the process of 
converting a source model that conforms to a source
metamodel into a target model that conforms to a 
target metamodel, using an existing transformation 
definition between the two metamodels. When a 
source model is transformed into the target model the 
transformation definition prescribes the manner in 
which the different rule definitions that are included in 
the transformation definition are “executed”. In this 
paper we argue that rule definitions can be created by 
instantiating so called rule patterns. More specifically, 
we regard a rule pattern as a generic (possibly 
parameterized) formal specification that describes at a 
higher level of abstraction a whole class of recurring 
rule definitions. 



4.2. Documenting transformation patterns 

A design pattern names, abstracts, and identifies the 
key aspects of a common design structure, such that it 
can be reused and applied over and over again in 
creating new designs. According to [1] and [4], a 
pattern description should contain the following four 
essential elements: the pattern name, a description of 
the problem and the contexts in which it is applicable, 
the solution to the problem, and the consequences of 
using the pattern. In addition, pattern descriptions 
should provide an example to clarify the provided 
solution.  
Likewise, we use a fixed template for documenting the 
transformation patterns, consisting of the following 
elements: the name of the pattern, the goal of the 
pattern, motivation for the pattern, describing the class 
of problems that the pattern solves, specification of 
the solution using the QVT Relations language, an 
example in which the pattern is applied and 
considerations regarding the pattern’s applicability.

5. A catalogue of rule patterns 

In this section, we document a number of 
transformation patterns using the template described 
above. These are: Mapping, Refinement, Abstraction, 
Duality and Flattening. 

5.1. The Mapping pattern 

Goal: Establish one-to-one relations between elements 
from the source model and elements from the target 
model.  
Motivation: Mapping is the most common and 
straightforward transformation problem. It occurs 
when source and target models use different languages 
or syntax, but otherwise express more or less the same 
semantics. This pattern is used to a greater or lesser 
extent in virtually any transformation.  
This is the most basic transformation pattern. Typical 
examples of transformation rules that are based on this 
pattern are 1-to-1 model transformation rules. It is in 
general bidirectional (unless different concepts from 
the left domain are mapped onto the same concept in 
the right domain). All other transformation patterns 
use/include this pattern. 
Specification:

top relation XYMapping { 
 inm: Str ng; 

enforce domain left x: X {
 context = c1 : XContext {}, 
  name = nm }; 

enforce domain right y: Y { 
  context = c2 : YContext {}, 
  name = nm }; 

when { 
  ContextMapping(c1,c2); 
 } 
}

This rule specifies that some element x of type X is 
related to some element y of type Y, whenever their 
respective contexts are related by ContextMapping and 
their names are equal. When the respective model 
elements have more properties than a context and a 
name, these should also be mapped. Consider for 
example the case where the model elements to be 
mapped represent associations or relationships 
between other model elements, their sources and 
targets. The pattern for this case is specified below: 

top relation RelationshipMapping { 
 inm: Str ng; 

enforce domain left a: A {
  context = c1 : AContext {}, 
  name = nm, 
  source = as : AS {},  
  target = at : AT {}  

};
enforce domain right b: B  {

  context = c2 : BContext {}, 
  name = nm, 
  source = bs : BS {},  
  target = bt : BT {} 
 }; 

when { 
  ContextMapping(c1,c2);  
  ElementMapping(as,bs); 
  ElementMapping(at,bt); 
 } 
}

Example: For an example of mapping pattern instance 
one may refer to the relation TransitionMapping in 
Section 6. Besides, we have applied this pattern to 
relate Circles to Squares in the Shape language. The 
complete specification of this transformation can be 
downloaded from our Wiki catalogue [10].
Applicability: The mapping pattern can be used to: 

translate a model from one syntax into 
another syntax, e.g. from ecore to XML, or 
from UML to Java; 
relate concepts one-to-one in source and 
target model. 

5.2. The Refinement pattern 

The refinement pattern is the key design pattern in 
stepwise refinement, which is a method to create lower 
level (or: concrete) models from models from higher 
level (or: abstract) models in a number of successive 
refinement steps. Refinement is a key ingredient of 
MDA, which advocates the realization of software 



systems through systematic stepwise refinement from 
models. Depending on the subject, different refinement 
types can be distinguished, e.g., relation refinement 
and node refinement. 

Relation refinement pattern 

Goal: To obtain a more detailed target model by 
refining an edge to multiple, possibly interrelated, 
edges.
Motivation: Relation refinement is typically used to 
detail steps (which are often modelled as edges) into 
sub steps. An example is e.g., by adding process steps 
to an existing UML activity diagram.  
Specification: In relation refinement an edge is refined 
to (a set of) edges, possibly interleaved with nodes. 
The corresponding pattern is characterized by a single 
relation mapping on the left and multiple relation 
and/or node mapping on the right. The pattern for 
relation refinement is straightforward, and closely 
resembles the Mapping Pattern. The specification 
below demonstrates the mapping of an edge e1 to an 
edge-node-edge pattern. 

top relation RelationRefinementMapping { 
n : String; 
enforce domain left e1 : Edge { 

  name = n,  
  context = c1 : Context {}, 
  source = s_left : Node {}, 
  target = t_left : Node {} 

};
enforce domain right im_node { 

  context = c2 : Context {} 
 -- an intermediate node 
  }; 
-- potentially more nodes and edges 

enforce domain right e2 : Edge { 
  source = s_right : Node {}, 
  name = s_right.name + '_to_' + 
im_node.name,
  context = c2, 
  target = im_node 

};
enforce domain right e3 : Edge { 

  target = t_right : Node {}, 
  name = im_node.name + '_to_' + 
t_right.name,
  block = c2, 
  source = im_node 
 }; 

when {  
  ContextMapping(c1,c2); 
  ElementMapping(s_left,s_right); 
  ElementMapping(t_left,t_right); 
 } 
}
}

Example: An example of relation refinement in the 
Shape language is the refinement of any Arrow into an 
Arrow-Square-Arrow combination. The corresponding 

specification in QVT Relations can be downloaded 
from our Wiki catalogue [10].

Node refinement pattern 

To obtain a more detailed target model by refining a 
node to multiple, possibly interrelated, nodes a node 
refinement pattern (similar to the relation pattern) has 
been documented. However due to space limitations 
has not been included in this paper, but can be found 
on our Wiki catalogue [10]. Node refinement is used to 
provide more detail to a node. For example, an UML 
class diagram that leaves the methods and attributes 
unspecified can be refined to class diagrams that do 
specify methods and attributes. Another example is to 
refine a super state in a hierarchical statechart to 
several interrelated sub-states. 

5.3. The Node Abstraction pattern 

Goal: Abstracts from nodes in the source model while 
keeping the incidence relations of these nodes. 
Motivation: The node abstraction pattern removes 
specific nodes from the source model to create a target 
model whilst preserving the incidence relations. The 
node abstraction pattern can be used to abstract from 
specific information from models. The specification 
below shows a simplified node abstraction pattern that 
abstracts from a node X and produces an edge between 
the incidences. It is assumed that source and target 
have the same metamodel, that node X is a subtype of 
the abstract type Node, that each node contains 
references to its incidence edges, and that each edge 
contains references to its source and target nodes. The 
pattern below can only handle sequence of X of length 
1, multiple in-sequence occurrences of X cannot be 
handled. 
Specification:

top relation Node_X_Abstraction {  
enforce domain left s1 : X { 

  inEdge = e_in : Edge { 
   name = na_in : String;, 
   source = ss1 : Node {} 
  }, 
  outEdge = a_out : Edge { 
   name = na_out, 
   target = tt1 : Node{} 
  } 

};
enforce domain right a : Node { 

  name = na_in + na_out, 
  source = ss2 : Node {}, 
  target = tt2 : Node {} 
 }; 

when { 
  NodeMapping(ss1,ss2); 
  NodeMapping(tt1,tt2); 



 } 
}

Example As node abstraction is quite intuitive we do 
not provide a code fragment of node abstraction. 
However, specification of example transformations can 
be downloaded from our Wiki catalogue [10].
Applicability: Remove model elements from models, 
for example, remove processes that conform to certain 
criteria from a process diagram. 

5.4. The Duality pattern 

Goal: Given a model, to generate its semantic dual. 
Motivation: Various modelling languages exist that 
rely on the (acyclic) directed graph formalism to 
represent dynamic behaviour (e.g., Petri nets, BPMN 
and UML statechart diagrams, sequence diagrams, 
collaborations diagrams and activity diagrams). 
Nevertheless the semantics attributed to nodes and 
arrows in these graph-like models differs. There are 
roughly two main categories of such languages:  

languages that focus on modelling the procedural 
flow of activities that make up a larger activity, 
namely a process - in this case vertices generally 
represent (branching, assembling) activities, while 
arrows depict causality relations between activities 
(e.g., BPMN, UML activity diagrams); 
languages that focus on modelling the flow of 
control from state to state for a particular object 
undergoing a process - in this case a vertex 
generally represent one state of that object, while 
an arrow depict the transition from one state to the 
other (i.e., indicating that the object being in the 
first state will enter the second state as a result of 
reacting to discrete events; e.g., Petri nets, UML 
statechart diagrams). 

Defining transformations between modelling 
languages that belong to these two different categories 
requires the application of what we will refer to as 
duality pattern (explained in more detail in the sequel). 
This pattern is based on the dual character of these two 
types of languages. More specifically, an activity (in 
the sense of the first category of languages) can be 
seen as the procedure that leads to a state change of the 
object(s) undergoing a process, that is a transition in 
the sense of the second type of languages, while a 
causality relationship may be interpreted as the 
moment when the object(s) have reached a certain state 
as a result of an activity’s completion, which makes 
possible the initiation of the subsequent one(s). In 
other words, the duality rule pattern will map vertices 
from the source model onto arrows in the target model 
and arrows from the source model onto vertices in the 

target model. However, it should be noted that the 
mapping of branching/assembling nodes deserves 
special consideration. 
Specification: Our transformation strategy is as 
follows: All Arrows on the left are related Nodes on 
the right using the mapping rule pattern, as indicated 
below:  

top relation ArrowNodeMapping { 
 nm: String; 

enforce domain left a: Arrow { 
  context = c1: AContext {}, 
  name=nm 

};
enforce domain right v: Vertex { 

  context = c2: VContext {}, 
  name=nm 
 }; 

when { 
  ContextMapping(c1, c2); 
 } 
}

Rules must be defined for relating a node on the left 
with one or more arrows on the right for each of the 
following cases: 

a node on the left, having an incoming arrow e1 
and an outgoing arrow e2, is related to an arrow a 
on the right if e1 has been related to the source of 
a and e2 to the target of a. 

top relation NodeArrowMapping { 
 inm: Str ng; 

enforce domain left v:Vertex { 
  context = c1: NContext{}, 
  incoming = e1: Arrow {}, 
  outgoing = e2: Arrow {}, 
  name = nm 

};
enforce domain right a:Arrow { 

  context = c2: AContext {}, 
  source = v1: Vertex {}, 
  target = v2: Vertex {}, 
  name = nm 
 }; 

when { 
  ContextMapping(c1, c2); 

v.outgoing->size()=1;
  v.incoming->size()=1; 

ArrowNodeMapping(e1, v1); 
  ArrowNodeMapping(e2, v2); 
 } 
}

a node on the left that has an incoming arrow e1 
and n ( n>1) outgoing arrows (i.e., the node is a 
“split node”) will be mapped on n arrows on the 
right (one for each outgoing arrow on the left) 
using the rule indicated below. As in the case of 
the previous rule, the rule fires when contexts 
have been related and the incoming arrow e1 has 
been related to the source of the arrow a (on the 
right) and an outgoing arrow e2 to the target of a. 



top relation SplitArrowMapping { 
: g; nm, nm2  Strin

enforce domain left e2:Arrow { 
  source = v:SplitNode { 
   context = c1: SContext 
{},
   incoming = e1: Arrow 
{},
   name = nm 
  }, 
  name = nm2 
 }; 

enforce domain right a: Arrow { 
  context = c2: AContext {}, 
  source = v1: Vertex {}, 
  target = v2: Vertext {}, 
  name = nm.concat(nm2)
 }; 

when { 
  ContextMapping(c1,c2); 

v.outgoing->size()>1;
  v.incoming->size()=1; 
  ArrowVertexMapping(e1, v1); 
  ArrowVertexMapping(e2, v2); 

}
}

a similar rules can be defined when the node on 
the left is a “join node”; 
rules must also be defined  when the node on the 
left is a start node/final node (no 
incoming/outgoing arrows) or the node is 
simultaneously join and split node (two or more 
incoming arrows and two or more outgoing 
arrows). Because of space limitations we do not 
provide the specification of these rules, although 
for a complete transformation these situations 
must be equally considered. 

Example: An example duality pattern application is 
the generation of a statechart diagram from an activity 
diagram. The corresponding QVT specification can be 
downloaded from our Wiki catalogue [10].
Applicability: The duality pattern can be used to 
related models expressed in languages between which 
a duality relationship can be established (i.e., 
nodes/constructs from the source language can be 
semantically related/mapped to arrows/relations in the 
target language and, relations/arrows in the source 
language can be related/mapped to nodes/constructs in 
the target language). For example it can be used to 
define transformations between UML activity 
diagrams and UML statechart diagrams. It should be 
noted, that situations may occur (depending on the 
metamodels of the involved languages) when this type 
of pattern is not bidirectional. 

5.5. The Flattening pattern 

Goal: Remove the hierarchy from the source model. 
Motivation: Models are often hierarchically 
structured. Consider for example package hierarchy in 
UML, composite states in Statecharts or Hierarchical 
PetriNets. Such hierarchical structuring usually is 
intended to make the models easier to understand and 
do not have inherent semantics. In order to realize such 
hierarchical models in code or formally analyze them 
using some tool, it may be necessary to first flatten the 
model to a model without hierarchy.  
Specification: We make the following assumptions: 

Source and target models have the same 
metamodel. 
Source and target models both have a unique 
RootElement, which are related by the 
RootMapping relation, an instance of the mapping 
pattern. 
Model elements in the source model belong to 
(have as their context) the RootElement or to a 
Composite element, representing the hierarchy. 

Our transformation strategy is as follows. All 
Composites on the left are related to the RootElement 
on the right. The CompositeContext here is either the 
RootElement or another Composite. Thus the 
CompositeContext c1 should be related to the 
RootElement r via RootMapping or 
CompositeFlattening itself. 

top relation CompositeFlattening { 
checkonly domain left c: Composite {

 context = c1 : CompositeContext {} }; 
enforce domain right r: RootElement{}; 

when { 
  RootMapping(c1,r) or
CompositeFlattening(c1,r);
 } 
}

All other elements will be simply copied using 
instances of the mapping pattern above. In these rules 
the ContextMapping should be replaced by the when 
clause of the CompositeFlattening rule.  

relation ElementMapping { 
 i  nm: Str ng; 

enforce domain left x: Element { 
       name = nm,  
       context = c1 : Context {} 
 }; 

enforce domain right y: Element { 
       name = nm,  
       context = c2 : Context {} 
 }; 

when { 
       RootMapping(c1,c2) or
CompositeFlattening(c1,c2);
 } 
}



Examples: Below we have applied this pattern to 
flatten the Block hierarchy from a Shapes model. The 
additional condition 
not(RootBlockMapping(b1,b2)) is required 
to make sure that the Block b1 is not the RootBlock. 

top relation BlockFlattening { 
checkonly domain left b1: Block { 

  block = c1 : Block {} }; 
enforce domain right b2: RootBlock {}; 
when { 

not(RootBlockMapping(b1,b2));
RootBlockMapping(c1,b2) or

BlockFlattening(c1,b2);
 } 
}

Applicability: The flattening pattern can be used to 
remove hierarchical structure from a model. 

6. Applying transformation patterns 

Transformation specifications are made up of rule 
definitions (see Section 4.1). Each rule tackles a small 
part of the transformation problem. Transformation 
patterns can help to identify solutions to these partial 
transformation problems. In this section, we show how 
a complete transformation definition can be 
constructed and specified by combining rule 
definitions, which in turn are obtained by applying the 
rule patterns. The example illustrates how several 
different rule patterns are combined to provide a 
complete solution for a particular transformation 
problem. To demonstrate the viability of the approach 
the transformation is applied to statecharts, which is a 
well-known and frequently used formalism of UML. 
The problem statement is: 
Given a hierarchical statechart, i.e., a statechart with 
composite states, produce a flat statechart without any 
hierarchy describing the same behaviour (Figure 4). 

Figure 4. Statechart problem definition 
We start the transformation specification with the 
declaration of the source and target domains. The 
source and target models are of the same type here, 
i.e., a statechart (see Figure 2 for the statechart 
metamodel). 

Transformation
StatechartFlattening(left:StateChart,right:Sta
teChart) {} 

Obviously, the problem statement is a Flattening 
problem. Thus we first apply the Flattening pattern to 
define a rule for flattening composite states. Here the 
Composite is a CompositeState, the CompositeContext 
is a Container (which is another CompositeState or the 
StateMachine), and the RootElement is a 
StateMachine.
top relation CompositeFlattening { 
    enforce domain left cs: CompositeState 
    }; { 
        container = c1 : Container {} 
    enforce domain right sm: StateMachine {}; 
    when { 
        StateMachineMapping(c1,sm) or
         CompositeFlattening(c1,sm);}}

Composite 
CompositeContext 

RootElement 

Flattening pattern 

The above rule depends on a mapping between the root 
elements, i.e., the encompassing state machines. This 
relation is a simple instance of the Mapping pattern, in 
which a state machine on the left is related to a state 
machine on the right, such that their names are equal. 
As StateMachine is the root hierarchical concept no 
ContextMapping needs to be specified. 

X

Y

Mapping pattern top relation StateMachineMapping { 
    nm: String; 
    enforce domain left sm1: StateMachine { 
        name = nm}; 
    enforce domain right sm2: StateMachine { 

name = nm};}

The remaining elements of the state machine are also 
instances of the Mapping pattern. The rule for 
transforming SimpleStates, for example, is obtained by 
instantiating the Mapping pattern. 
Also transitions between states from the source model 
are simply mapped onto transitions in the target model 
(as shown below), which is an instance of the 
Relationship Mapping pattern.  

top relation SimpleStateMapping { 
    nm: String; 

enforce domain left s1: SimpleState { 
        container = c1 : Container {}, 
        name = nm}; 

enforce domain right s2: SimpleState { 
        container = c2 : Container {}, 
        name = nm};    

when {StateMachineMapping(c1,c2) or
CompositeFlattening(c1,c2);}}

X

Mapping pattern 

ContextMapping 

Y

transformation?

In the statechart metamodel, a Vertex is defined as a 
generalization of a State that can be used to distinguish 
between different types of states, e.g., Start State or 
Final State. It has been introduced to cope with a 
deficiency in the transformation execution engine to 
handle enumerations. 



top relation TransitionMapping { 
    nm: String; g: String; 
    enforce domain left t1: Transition { 
       container = c1 : Container {},  
        source = ss1 : Vertex {},  
        target = ts1 : Vertex {}, 
        name = nm, 
        guard = g}; 
    enforce domain right t2: Transition  {  
        container = c2 : Container {},  
        source = ss2 : Vertex {},  
        target = ts2 : Vertex {}, 
        name = nm, 
        guard = g}; 
    when { 
        StateMachineMapping(c1,c2) or
        CompositeFlattening(c1,c2); 
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In order to obtain a semantically correct model, we 
additionally need to remove the initial and final states 
of all composite states. Moreover, we need to make 
sure that transitions that originally had a composite 
state as their target are now redirected to the target of 
the outgoing transition of the initial state of that 
composite state. And, conversely, that transitions that 
originally had a composite state as their source are now 
moved to the source of incoming transitions of the 
final state of that composite state. In principle we can 
do this by applying the node abstraction pattern, which 
takes a node and replaces it by a simpler structure. This 
pattern can be applied twice, first to remove the 
composite states and second to remove initial and final 
states. The next figure depicts the abstraction of 
pseudostates.  

top relation InitialStateAbstraction { 
    nm1, nm2: String; 
    checkonly domain left ps: PseudoState {  
        kind = PseudostateKind::pk_initial, 
        container = c1 : CompositeState { 
            incoming = inc : Transition { 
              source = s1 : Vertex {}, 
              name = nm}},  
        outgoing = out : Transition { 
            target = t1 : Vertex {}, 
            name = nm2}}; 
    enforce domain right t: Transition { 
        container = c2 : Container {}, 
        source = s2 : Vertex {}, 
        target = t2 : Vertex {}, 
        name = nm1 + nm2}; 
   when {CompositeFlattening(c1,c2); 

VertexMapping(s1 s2);

X

Abstraction
pattern

The next figure depicts the abstraction of the 
FinalState by instantiating the node abstraction pattern. 

top relation FinalStateAbstraction { 
    nm1, nm2: String; 
    checkonly domain left fs: FinalState { 
        container = c1 : CompositeState { 
            outgoing = tr : Transition { 
                target = t1 : Vertex {}, 
                name = nm1}},  
        incoming = inc : Transition { 
            source = s1 : Vertex {}, 
            name = nm2}}; 
    enforce domain right t: Transition { 
        container = c2 : Container {}, 
        name = nm1 + nm2, 
        source = s2 : Vertex {}, 
        target = t2 : Vertex {}}; 
    when {CompositeFlattening(c1,c2); 

VertexMapping(s1 s2);

X

Abstraction
pattern 

By combining all these transformation rules a 
transformation specification is obtained that is able to 
flatten the statechart.

7. Conclusions 

Writing model-to-model transformations can be a 
tedious undertaking. In most model transformations 
there are certain underlying principles that can be used 
to facilitate the production of model transformations. 
This paper has identified basic transformation patterns 
that frequently occur in model-to-model 
transformations such as the mapping pattern, the 
duality pattern, the refinement/abstraction pattern, the 
flattening pattern. These patterns have been described 
and specified in QVT Relations, resulting in a 
catalogue of basic transformation patterns. A simple 
Shape language has been introduced to illustrate most 
of the patterns. The catalogue of transformation 
patterns provided in this paper is a first attempt to 
categorize transformation principles in QVT Relations. 
This list is, however, not complete. A natural way to 
enrich this collection of pattern, would be to try to join 
our approach with similar initiatives in this area, such 
that the Modelware project ([1]). It remains however to 
investigate to what extent patterns proposed in [1] are 
implementable using the declarative QVT languages. 
Furthermore, we challenge the community to elaborate 
on this kind of work and extend the list of patterns. 
Composition of model-to-model transformation should 
be guided, in our view, by the usability of the resulting 
transformation. In this respect we believe that it is not 
always meaningful to compose patterns. In practice, 
some particular compositions of patterns will occur 
more frequently than others. For example, the mapping 
pattern is often composed with many other patterns, 
but composition of node refinement with duality seems 
to make less sense in practical situations.  
Nevertheless, an analysis of pattern compositionality 
and parameterization makes the object of future work. 
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