
Well-formed Rules for Viewpoint Correspondences Specification

Jośe Rául Romero
Dept. Inforḿatica y Ańalisis Nuḿerico,

Universidad de Ćordoba, Spain
jrromero@uco.es

Antonio Vallecillo
Dept. Lenguajes y Ciencias de la Computación,

Universidad de Ḿalaga, Spain
av@lcc.uma.es

Abstract

Viewpoint modeling is an effective technique for spec-
ifying complex software systems in terms of a set of in-
dependent viewpoints and correspondences between them.
Each viewpoint focuses on a particular aspect of the sys-
tem, abstracting away from the rest of the concerns. Corre-
spondences specify the relationships between the elements
in different views, together with the constraints that guar-
antee the consistency among these elements. However,
most Enterprise Architectural Frameworks, which follow a
multi-viewpoint approach, either do not consider the ex-
plicit specification of correspondences, or do it in a very
simplistic way. In this paper we examine the representation
of correspondences in the context of the RM-ODP, identify
some of its related issues, and propose some improvements
to the way in which correspondences are modeled. In par-
ticular, we claim that multi-viewpoint modeling approaches
need to specify not only the correspondences between the
system views, but also some well-formed rules on such set
of correspondence specifications.

1. Introduction

We are witnessing an increasing interest in the Software
Engineering community towards the use of models for de-
veloping software systems. Models allow to state features
and properties of systems accurately, at the right level of ab-
straction, and without delving into the implementation de-
tails. Shifting intellectual property and business logic from
source code into models allows organizations to focus on
the important aspects of their systems, which have tradi-
tionally been blurred by the usage of standard programming
languages and underlying technologies. Model-driven en-
gineering (MDE) is an emergent discipline that considers
models as first-class entities enabling new possibilities for
creating, analyzing, and manipulating systems through var-
ious types of tools and languages. Each model usually ad-
dresses one concern, and the transformations between mod-

els provide a chain that enables the automated implementa-
tion of a system from its corresponding models.

Models are specially important in the case of large-
scale heterogeneous distributed systems, which are inher-
ently much more complex to design, specify, develop and
maintain than classical, homogeneous, centralized systems.
One way to cope with such complexity is by dividing the
design activity according to several areas of concerns, or
viewpoints, each one focusing on a specific aspect of the
system, as described in IEEE Std. 1471 [11]. Follow-
ing this standard, current architectural practices for design-
ing open distributed systems define several distinct view-
points. Examples include the viewpoints described in the
“4+1” view model [16], Viewpoints [9], OpenViews [4],
Dijkman’s framework [5], or the growing plethora of En-
terprise Architectural Frameworks (EAF): the Zachman’s
framework [26], ArchiMate [17], the US Department of De-
fense Architectural Framework (DoDAF), The Open Group
Architectural Framework (TOGAF), the Federal Enterprise
Architecture Framework (FEAF), or the Reference Model
of Open Distributed Processing (RM-ODP), among oth-
ers. In particular, the RM-ODP provides five generic and
complementary viewpoints on the system and its environ-
ment [12]. Each viewpoint addresses a particular concern,
and normally uses its own specific (viewpoint)language,
which is defined in terms of a set of concepts specific that
concern, their relationships, and their well-formed rules. A
view (or viewpoint specification, in ODP terms) is a rep-
resentation of the whole system from the perspective of a
viewpoint.

Although separately specified, developed and main-
tained to simplify reasoning about the complete system
specifications, viewpoints are not completely independent:
elements in each viewpoint need to be related to elements
in the other viewpoints in order to ensure the consistency
and completeness of the global specifications. Such rela-
tionships are described in terms ofcorrespondences[18].

However, most viewpoint modeling approaches to sys-
tem specification (including the IEEE 1471 standard itself
and the majority of the existing EAFs) do not consider cor-



respondences between viewpoints, or assume they are triv-
ially based on name equality between correspondent ele-
ments and are implicitly defined. This is a serious problem
for large-scale distributed systems in which the viewpoints
are indeed separately specified, and in which this simplis-
tic assumption does not hold. The majority of approaches
that deal with the problem of inconsistency among view-
points (see, e.g., [6, 7, 8, 9, 10, 24]) are also based on this
oversimplified assumption, which hinders their applicabil-
ity to many complex systems. Making an analogy with the
common 2D representation of 3D figures, this is like draw-
ing independently the three orthographic views of a fig-
ure but without defining any correspondence lines between
them. As we all know, the consistency and completeness of
the specification of the 3D figure cannot be guaranteed un-
less the appropriate correspondences between the three 2D
views are described.

The only EAF that we know allows the explicit defini-
tion of correspondences is RM-ODP. This paper reviews
the explicit specification of correspondences between view-
points in the light of that approach, identifies some issues of
the existing ISO and ITU-T solution, and proposes a set of
improvements that might be required to model correspon-
dences. In particular, we show that the explicit representa-
tion of correspondences between elements in the different
views is not enough. There are some well-formed rules that
constrain this set of correspondences, and that also need to
be explicitly specified in any multi-viewpoint modeling ap-
proach. We show how to model these well-formed rules,
and how they can be supported by tools that check the asso-
ciated constraints on the sets of correspondences.

2. Viewpoint Correspondences

As mentioned in the introduction, most of the software
engineering community efforts have focused on the defini-
tion of viewpoints and their corresponding viewpoint lan-
guages. However, having a set of independent viewpoints
on a system is not enough. These viewpoints should be
somehow related, and these relationships made explicit in
order to provide acompleteandconsistentspecification of
the system. The questions are: how can it be assured that
indeedonesystem is specified? And, how can it be assured
that no views impose contradictory requirements? The first
problem concerns the conceptualintegrationof viewpoints,
while the second one concerns theconsistencyof the view-
points.

The most general way to address these issues by es-
tablishing correspondences between viewpoint elements,
which is precisely the approach chosen by the RM-ODP.

In ODP, acorrespondenceis a statement by which some
terms or other linguistic constructs in the specification of a
viewpoint are associated with (e.g. describe the same enti-

ties as) terms or constructs in the specification of a second
viewpoint [14].

ODP correspondences do not form part of any one of the
five viewpoints, but provide statements that relate the vari-
ous different viewpoint specifications—expressing their se-
mantic relationships. Hence, we could initially say that a
proper ODP system specification consists of a set of view-
point specifications, together with a set of correspondences
between them.

The specifications produced in different ODP viewpoints
are each complete statements in their respective viewpoint
languages, with their own locally significant names, possi-
bly with different granularity, and so cannot be related with-
out additional information in the form ofcorrespondence
statementsthat make clear how elements of different view-
points are related, and how constraints from different view-
points apply to particular elements of a single system to de-
termine its overall behavior.

The correspondence statements relate the various differ-
ent viewpoint specifications, but do not form part of any
one of the five basic viewpoints. They fall into two cate-
gories [12, Part 3]:

• Some correspondences are required in all ODP speci-
fications; these are calledrequired correspondences.
If the correspondence is not valid in all instances in
which the concepts related occur, the specification is
not a valid ODP specification.

• In other cases, there is a requirement that the speci-
fier provides a list of items in two specifications that
correspond, but the content of this list is the result of
a design choice; these are calledrequired correspon-
dence statements.

Examples of required correspondencesbetween the
ODP computational and engineering viewpoints are [12]:

RC1. Each computational object that is not a binding object
corresponds to a set of one or more basic engineering
objects (and any channels which connect them). All
the basic engineering objects in the set correspond only
to that computational object.

RC2. Except where transparencies which replicate objects
are involved, each computational interface corre-
sponds exactly to one engineering interface, and that
engineering interface corresponds only to that compu-
tational interface. The engineering interface is sup-
ported by one of the basic engineering objects which
corresponds to the computational object supporting the
computational interface.

RC3. Where transparencies that replicate objects are in-
volved, each computational interface of the objects be-



ing replicated corresponds to a set of engineering in-
terfaces, one for each of the basic engineering objects
resulting from the replication. Each of these engineer-
ing interfaces corresponds only to the original compu-
tational interface.

Similarly, examples of required correspondences be-
tween the ODP engineering and technology viewpoints are:

RC4. Each engineering object corresponds to a set of one
or more technology objects. The implementable stan-
dards for each technology object is dependent on the
choice of technology.

RC5. Engineering interfaces correspond to technology inter-
faces.

RM-ODP only provides required correspondences be-
tween the computational and engineering viewpoints, and
between the engineering and the technology viewpoints.
For the rest of the viewpoints, RM-ODP only states that
elements of every viewpoint should be consistent with the
specification of the corresponding elements in the rest of the
viewpoints, and with the restrictions that apply to them. For
instance, the elements of the information viewpoint should
conform to the policies of the enterprise viewpoint and, like-
wise, all enterprise policies should be consistent with the
static, dynamic, and invariant schemata defined by the in-
formation specification.

The interested reader can consult Part 3 of
RM-ODP [12], the Enterprise Language [15] and
UML4ODP [13] for the complete set of correspondences
between pairs of viewpoints defined by the RM-ODP.

In any case, it is important to distinguish between cor-
respondences between elements of pairs of views, and the
constraints on the correspondences themselves, as imposed
by the required correspondences. For example, we need to
count on mechanisms for specifying a correspondence be-
tween two individual objects in two views (a required cor-
respondence statement) and also for specifying and enforc-
ing that everyobject in a view should be related through
a correspondence to another object in a second view (as
described by a required correspondence). This distinction
has not been taken into account in most existing approaches
when modeling correspondences, which has somehow lim-
ited their expressiveness and analysis capabilities, as we
discuss in the next section.

3. Expressing Correspondences: Related Work

Originally, none of the viewpoint-based modeling ap-
proaches defined a language or notation to represent cor-
respondences. As mentioned above, relationships between
viewpoints were either ignored or briefly mentioned (as it

happens, e.g., in the IEEE Std. 1471, the Zachman frame-
work, or most EAFs), or implicitly defined using the names
of the related elements (e.g., [6, 7, 8, 9, 10, 24]). The prob-
lem is that without explicitly representing correspondences
we cannot reason about them, nor properly tackle the inte-
gration and consistency issues mentioned above.

Different authors have dealt with the problem of explic-
itly defining and expressing correspondences between view-
points, mainly when trying to address the issue of viewpoint
consistency checking.

Some of the proposals, e.g. [4, 5, 9, 10, 17, 24], highlight
the need to explicitly define and establish these correspon-
dences but do not represent them as independent entities.
Rather, they form part of the logical framework they define
for checking the consistency of viewpoint specifications.

Other authors explicitly represent correspondences, spe-
cially when viewpoint specifications are expressed as UML
models, using different alternatives. One interesting possi-
bility is the use of OCL [20] to define relationships between
the metamodel elements that represent the appropriate mod-
eling concepts, as suggested by, e.g., Akehurst [1, 2].This
approach works very well when the correspondences are
defined as constraints between all the instances of certain
modeling concepts, e.g., when every computational inter-
face corresponds exactly to one engineering interface (see
required correspondenceRC2). However, there are cases
in which correspondences need to be established between
particular objects of a specification. The problem is that
it is not simple at the metalevel to determine which partic-
ular objects should be related. Therefore, it is important
that correspondences can be established between specific
model elements, too. In addition, not all kinds of corre-
spondences can be modeled as constraints, as it happens for
instance when correspondences only express simple rela-
tionships (e.g., traces) between the elements

The UML 2.0 language definesabstraction dependen-
cies, possibly constrained by OCL statements, as the nat-
ural mechanism to represent a relationship that relates two
elements or sets of elements that represent the same con-
cept at different levels of abstraction or from different view-
points [21]. Thus, ODP correspondences between view-
point specifications (for example, between enterprise ob-
jects and information objects, or between enterprise poli-
cies and information schemata) can be expressed as UML
abstraction dependencies between the corresponding UML
model elements. However, as suggested by N. Yahiaoui et
al. [25], viewpoint correspondences can also be used for
other purposes, e.g., change management in multi-view sys-
tems. Change management implies consistent evolution of
system specifications: if a view is modified for any reason
(e.g., change of some business rules or some QoS require-
ments), several changes may need to be performed in other
views in order to maintain the overall viewpoint consis-



tency. In this context, correspondences act as “binds” that
link together the related elements, transforming them if a
change in one of them occurs, i.e., propagating the changes
to maintain consistency. UML abstraction dependencies
show to be insufficient for these purposes. The main rea-
sons are that they cannot store all the required information
about the correspondence they represent, and because they
can be used to express existence of the correspondence but
not to enforce it.

The fact that change propagations can be considered par-
ticular cases of model transformations suggests the use of
model transformation languages as a good solution to the
problem of representing viewpoint correspondences. RM-
ODP itself explicitly states that correspondences can be
used to define transformations between viewpoint elements
to implement consistency checks: “One form of consistency
involves a set of correspondence rules to steer a transfor-
mation from one language to another. Thus given a speci-
fication S1 in viewpoint languageL1 and specificationS2

in viewpoint languageL2, whereS1 andS2 both specify
the same system, a transformationT can be applied toS1

resulting in a new specificationT (S1) in viewpoint lan-
guageL2 which can be compared directly toS2 to check,
for example, for behavioral compatibility between allegedly
equivalent objects or configurations of objects.” [12, Part 3]

The use ofrelations was initially indicated by Ake-
hurst [1, 2] for relating concepts from different viewpoint
at the metalevel but not explored any further for relating
instances, which is essential for establishing proper corre-
spondences. Dijkman also uses relations and consistency
rules in his framework for preserving consistency among
viewpoints [5], and shows how they can be effectively used
for this purpose. We also explored in a previous work [22]
the use of QVT for defining viewpoint correspondences as
model transformations. The major limitation of this ap-
proach is that it is defined at the metamodel level, which
makes it very appropriate for expressing correspondences
between all instances of some modeling concepts, e.g.,ev-
ery computational object should correspond to one or more
engineering objects. However, modeling the correspon-
dence between individual elements of a view does not be-
come very simple and natural. Besides, the current lack of
full tool support for the QVT language greatly hampers its
application in real settings.

An alternative approach to represent correspondences
was finally adopted by ISO/IEC and ITU-T, based on the
previous works by Yahiaoui and Traverson [25], in the
context of the UML4ODP standardization project [13].
RM-ODP was consciously defined in a notation- and
representation-neutral manner to increase its use and flex-
ibility. The need to count with a concrete syntax for RM-
ODP motivated ISO/IEC and the ITU-T to start a joint
project, launched in 2004, to define a standard (ISO/IEC

Figure 1. Correspondence metamodel
(from [13])

19793 — ITU-T Rec. X.906) for the use of UML for
ODP system specifications [13]. This document (usually
referred to as UML4ODP) defines a set of UML profiles,
one for each viewpoint language, and one to express the
correspondences between viewpoints. This correspondence
UML profile provides the concrete syntax for a correspon-
dence language, whose abstract syntax is defined by the
metamodel depicted in Fig. 1.

In this approach, acorrespondence specificationis com-
posed of a set of correspondencerules and a set of corre-
spondencelinks. It describes consistency relationships be-
tween terms belonging to two specifications based on dif-
ferent viewpoints. In ODP, aterm is a linguistic construct
which may be used to refer to an entity. The reference may
be to any kind of entity including a model of an entity or
another linguistic construct. When a correspondence rule
and a correspondence link are related, this means that the
constraint in the correspondence rule must be enforced by
the set of terms referenced by the correspondence link.

In UML4ODP, a correspondence rule is expressed by a
constraint that must be enforced by a set of terms belong-
ing to two specifications from different viewpoints. A cor-
respondence link is established between two specifications
from different viewpoints. Each end of the correspondence
link is called acorrespondence endpoint, which is com-
posed of terms involved in the consistency relationship.

Two examples of correspondence specifications mod-
eled using this approach are depicted in Fig. 2. It
shows first an example of a correspondence betweenLoan

information and computational objects: correspondence
LoanCorrespondence links these two types of objects.
The other correspondence establishes that the sets ofLoan

instances in the information view should be consistent with
the objects stored by theLoanMgr component of the com-



Figure 2. Example of a correspondence specification with UML4ODP (from [13])

putational view, which contains the loans stored in the ap-
plication’s database. This is specified by stating that the set
of names of the instances of information object loan should
coincide with the set of names of the instances stored by
LoanMgr .

One of the major benefits of this way of modeling cor-
respondences is that it combines the abilities of previous
approaches: allowing not only to establish correspondences
that express simple relationships (e.g., traces) between mul-
tiple elements, but also to express correspondences which
need to be modeled as constraints between the related ele-
ments (to achieve, e.g., consistency management and syn-
chronization enforcement).

The problem with this approach is that it is very well
suited for modeling correspondences between individual el-
ements of the views (i.e., required correspondence state-
ments), but it is not so natural for modeling required corre-
spondences, which define constraints (i.e., rules) that the set
of correspondences that comprise the specification should
fulfil. This problem is precisely the one that we tackle in
this paper.

4. Modeling Viewpoint, Views and Correspon-
dences

In this section we will formulate the specification of
viewpoints, views and correspondences from a metamod-
eling approach. Metamodeling is intended as a common
technique for defining the abstract syntax of models and
the interrelationships between model elements. A model
is an abstraction of a system from a given perspective, and
a metamodel is yet another abstraction, describing proper-

ties of the model itself. A model is said toconform toits
metamodelin an analogous way a program conforms to the
programming language in which it is written, or a XML
document conforms to an XML schema [3, 23].

In this context, a view is an abstraction of a software sys-
tem, highlighting properties of the model itself. Correspon-
dence specification between viewpoints is yet an another
abstraction, tracing relations between viewpoint elements.
Thus, the natural way to define viewpoint languages in this
scenario is by using metamodels, and then views (i.e., view-
point specifications) are just models that conform to these
metamodels.

The way to specify correspondences is by using models,
too, which conform to the appropriate metamodels. Such
correspondence metamodels can be defined either ad-hoc
(e.g., the one defined in UML4ODP, and shown in Fig. 1),
using OCL constraints [2], or using a Model Transforma-
tion language to define viewpoint correspondences as model
transformations (e.g., using the QVT metamodel [19]).

We can then formulate from a modeling perspective the
initial approaches (including, e.g., the Zachman framework,
IEEE Std. 1471 and most EAFs: TOGAF, DoDAF, FEAF,
etc.) to define a multi-viewpoint specification of a system
as follows:

Definition 1 (Initial) A System Specificationconsists of a
set of viewsV = {V1, . . . , Vn}. Each viewVi is a model
that conforms to a metamodelMi (the viewpoint language).

Although the relationships (i.e., correspondences) be-
tween the views are mentioned, these approaches neither
define precise concepts and mechanisms for specifying cor-
respondences, nor notations for modeling them. In this



sense, correspondences areimplicitly defined in these ap-
proaches.

Other approaches, such as those mentioned in Section 3,
propose the explicit specification of correspondences be-
tween viewpoints:

Definition 2 (With explicit correspondences)A
System Specification consists of a set of views
V = {V1, . . . , Vn} and a set of correspondences
C = {C(1,2), C(1,3), . . . , C(n−1,n)} between the views.
Each viewVi is a model that conforms to a metamodel
Mi (the viewpoint language). Correspondences are also
models, and eachC(i,j) conforms to a correspondence
metamodelC. 1

However, one of the problems of these approaches is that
they define correspondences either(a) at model level (e.g.,
UML4ODP); or(b) at metamodel level (e.g., OCL or QVT).
In the first case, correspondences are defined as models that
link elements of the views. In the second case, correspon-
dences are defined between metamodel elements. This is
why the first ones are more appropriate for modeling cor-
respondences between individual elements, and the second
ones are more apt for modeling correspondences that hap-
pen between all the instances of a given metamodel element.
However, none of the two approaches allow a natural rep-
resentation of both kinds of correspondences, as mentioned
above in Section 3, and neither of them allow the specifi-
cation of the required correspondences (which describe the
well-formed rules that the set of correspondences between
views elements should obey).

This justifies the following definition of multi-viewpoint
system specification:

Definition 3 (With well-formed correspondences)
A System Specificationconsists of a set of views
V = {V1, . . . , Vn}, a set of correspondences
C = {C(1,2), C(1,3), . . . , C(n−1,n)} between the views,
and a set of rulesR = {r1, . . . , rk} that describe the
constraints that the correspondences ofC should fulfil in
order for a specification to be well-formed. Each viewVi is
a model that conforms to a metamodelMi (the viewpoint
language). Correspondences are also models, andC(i,j)

conforms to a correspondence metamodelC. Rules are
expressed as constraints on the correspondence elements,
using any constraint language (e.g., OCL).

Thus, our proposal is to use the UML4ODP correspon-
dence metamodel and profile for modeling the required
correspondence statements between individual model ele-
ments, and then OCL constraints to describe the rules on
the correspondences (i.e., the required correspondences).

1In this paper we assume that all correspondences conform to the same
metamodelC, instead of having independent metamodelsC(i,j) for each
correspondence. We believe this is a realistic restriction from a practical
point of view.

5. Expressing well-formed correspondences

As mentioned before, we need to declare well-formed
rules that establish valid constraints between all the element
instances involved in the multi-view specification. These
rules permit declaring required correspondences by cus-
tomizing the correspondence metamodel to each specific
system, imposing constraints on its instances. In general,
most ODP specifications will need to apply just a set of
some predefined rules, like those defined by RM-ODP [12],
as previously explained in Section 2, and a set of designer-
defined statements for the ODP system being modeled.

For example, let us consider the required correspondence
RC1 described in Section 2, which states that there should
be a correspondence between each computational object
that is not a binding object, and a non-empty set of basic
engineering objects; and that all the basic engineering ob-
jects in that set should be related only to that computational
object.

This rule should be defined using some constraint lan-
guage. OCL seems to be a very suitable alternative in this
case, since this language is also aligned to MOF 2.0, i.e.,
the language used to define the correspondence metamodel,
and it also has some initial tool support. Thus, in OCL this
constraint could be expressed as follows.

-- Required Correspondence RC1
context CorrespondenceSpecification inv:

let CVOBJECTS =
self.viewpointSpecification
->select(o : CV_Metamodel::CV_Object |

not oclIsTypeOf(CV_Metamodel::BindingObject))
in
let NVOBJECTS =

self.viewpointSpecification
->select(n : NV_Metamodel::BEO)

in
let CORRESPONDENCES =

CorrespondenceLink->allInstances()->select(
(correspondenceEndpoint[0]->size()=1 and

correspondenceEndpoint[0].
oclIsTypeOf(CV_Metamodel::CV_Object) and

correspondenceEndpoint[1].notEmpty() and
correspondenceEndpoint[1]->forAll(

oclIsTypeOf(NV_Metamodel::BEO)))
or

(correspondenceEndpoint[1]->size()=1 and
correspondenceEndpoint[1].

oclIsTypeOf(CV_Metamodel::CV_Object) and
correspondenceEndpoint[0].notEmpty() and
correspondenceEndpoint[0]->forAll(

oclIsTypeOf(NV_Metamodel::BEO))))
in
CVOBJECTS->size()=CORRESPONDENCES->size() and
NVOBJECTS->forAll(n |

CVOBJECTS->exists(o | isRelated(o,n)) and
CVOBJECTS->forAll(o1,o2 |

isRelated(o1,n) and isRelated(o2,n)
implies o1 = o2))

)



In that OCL expression we make use of an auxiliary
function that determines if two model elements are related
by any of the existing correspondences in the specification:

context CorrespondenceSpecification::isRelated
(o1 : ModelElement, o2 : ModelElement) : Boolean

body
CorrespondenceLink->allInstances()->exists(c |

(c.correspondenceEndpoint[0].term->includes(o1)
and
c.correspondenceEndpoint[1].term->includes(o2))

or
(c.correspondenceEndpoint[1].term->includes(o1)

and
c.correspondenceEndpoint[0].term->includes(o2)))

Please notice how the OCL constraint that specifies re-
quired correspondenceRC1 is declared at the highest level
of the system specification, because it involves elements
from two viewpoints as well as correspondence statements.

Other correspondences (e.g.,RC2 to RC5) can be spec-
ified in a similar way.

Finally, it is important to note that we have not consid-
ered here the problem of intra-viewpoint consistency, since
we assume that all views are well-formed and conform to
their respective metamodels, including the correspondence
specification.

6. Conclusion and Future Work

This paper addresses the problem of providing precise
specifications of correspondences between viewpoints, as a
first step to tackling the problem of inter-viewpoint consis-
tency. We have discussed how current approaches to multi-
viewpoint specifications of software systems either do not
consider the explicit specification of correspondences or, in
the cases that take them into account, do not consider the
need to explicitly specify well-formed rules on the set of
correspondence specifications.

From our perspective, we need to distinguish between
two different kinds of constraints on the system elements:
a) a set of possibly constrainedcorrespondencesto specify
the relationship between specific elements declared in dif-
ferent views; andb) a set ofwell-formed rulesto describe
the constraints that the set of correspondences should fulfil.

We have shown one example of our proposed approach
in the context of the RM-ODP, although it can also be
used in the rest of the multi-viewpoint approaches cur-
rently available, and in particular in existing EAFs: TO-
GAF, DoDAF, FEAF, etc. Furthermore, we expect that it
can be considered in the revision process of IEEE Std. 1471,
currently undertaken by ISO and IEEE and that will produce
the new International Standard ISO/IEC 42010. As we have
discussed in the paper, both correspondences between view-
points and also their well-formed rules should be explicitly
specified in any multi-viewpoint specification.

One of this benefits of our approach is that it can be sup-
ported by tools: the only requirement is to count on an
OCL engine (or an engine for any other supported con-
straint language), capable of checking that both the con-
straints defined for each correspondence specification and
the constraints that define the well-formed rules on the set
of correspondences. As part of our future plans, we ex-
pect to implement this approach in the plugin we are de-
veloping with MagicDraw for ODP system specifications.
This plugin will not only allow the use of the UML profile
for ODP, as stated in [13], for the specification of the five
ODP views and their respective correspondences, but also
it will allow to validate both such views in order the user
to ensure that they conform to their respective metamodels
(intra-viewpoint consistency) and to check that any corre-
spondence is properly fulfilled by the specification.

Acknowledgements The authors would like to thank the
anonymous referees for their insightful comments and sug-
gestions. This work has been partially supported by Span-
ish Research Projects TIN2005-09405-C02-01, P07-TIC-
03184 and PET2006-0682-00.

References

[1] D. Akehurst, S. Kent, and O. Patrascoiu. A relational
approach to defining and implementing transformations
between metamodels. Software and Systems Modeling
(SoSyM), 2(4):215–239, 2003.

[2] D. H. Akehurst. Proposal for a model driven approach to
creating a tool to support the RM-ODP. InProc. of WOD-
PEC 2004, pages 65–68, Monterey, California, Sept. 2004.

[3] J. Bézivin. On the unification power of models.Software
and Systems Modeling (SoSyM), 4(2):171–188, 2005.

[4] E. A. Boiten, H. Bowman, J. Derrick, P. Linington, and
M. W. Steen. Viewpoint consistency in ODP.Computer
Networks, 34(3):503–537, August 2000.

[5] R. M. Dijkman, D. A. Quartel, and M. J. van Sinderen. Con-
sistency in multi-viewpoint design of enterprise informa-
tion systems.Information and Software Technology, 50(7-
8):737–752, June 2008.

[6] S. Easterbrook and B. Nuseibeh. Using viewpoints for in-
consistency management.Software Engineering Journal,
pages 31–43, Jan. 1996.

[7] A. Egyed. Instant consistency checking for the UML. In
Proc. of the 28th International Conference on Software En-
gineering (ICSE ’06), pages 381–390, New York, NY, USA,
2006. ACM.

[8] A. Egyed. Fixing inconsistencies in UML design models.
In Proc. of the 29th International Conference on Software
Engineering (ICSE’07), pages 292–301, Washington, DC,
USA, 2007. IEEE Computer Society.

[9] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and
M. Goedicke. Viewpoints: a framework for integrating mul-
tiple prespectives in systems development.International



Journal on Software Engineering and Knowledge Engineer-
ing, 2(1):31–58, 1992.

[10] M. Große-Rhode.Semantic Integration of Heterogeneous
Software Specifications. Springer-Verlag, Berlin, 2004.

[11] IEEE. Recommended Practice for Architectural Description
of Software-Intensive Systems. New York, USA, 2000. IEEE
Std. 1471.

[12] ISO/IEC. RM-ODP. Reference Model for Open Distributed
Processing. ISO and ITU-T, Geneva, Switzerland, 1997.
ISO/IEC 10746, ITU-T Rec. X.901-X.904.

[13] ISO/IEC. Information technology – Open distributed pro-
cessing – Use of UML for ODP system specifications. ISO
and ITU-T, Geneva, Switzerland, 2008. ISO/IEC FDIS
19793, ITU-T X.906.

[14] ISO/IEC. RM-ODP. Reference Model for Open Distributed
Processing – Amendment to Parts 2 and 3. ISO and ITU-T,
Geneva, Switzerland, 2008.

[15] ISO/IEC 15414, ITU-T Rec. X.911.Information technology
– Open distributed processing – Reference model – Enter-
prise language. ISO/IEC and ITU-T, 2006.

[16] P. Kruchten. Architectural blueprints — The “4+1” view
model of software architecture.IEEE Software, 12(6):42–
50, Nov. 1995.

[17] M. Lankhorst et al. Enterprise Architecture at Work.
Springer, 2005.

[18] P. Linington. Black Cats and Coloured Birds What do View-
point Correspondences Do? InProc. of the 4th International
Workshop on ODP and Enterprise Computing (WODPEC
2007), Maryland, USA, Oct. 2007. IEEE Digital Library.

[19] OMG. MOF QVT Final Adopted Specification. Object Man-
agement Group, Nov. 2005. OMG doc. ptc/05-11-01.

[20] OMG. Object Constraint Language (OCL) 2.0. OMG,
Needham (MA), USA, May 2006. OMG doc. ptc/06-05-01.

[21] OMG. Unified Modeling Language 2.1.1 Superstructure
Specification. OMG, Needham (MA), USA, Feb. 2007.
OMG doc. formal/07-02-05.

[22] J. R. Romero, N. Moreno, and A. Vallecillo. Modeling ODP
Correspondences using QVT. InProc. of MDEIS’06, pages
15–26, 2006.

[23] B. Selic. The Pragmatics of Model-driven Development.
IEEE Software, 20(5):19–25, 2003.

[24] V. D. Straeten, Simmonds, and Mens. Detecting inconsis-
tencies between UML models using description logic, 2003.

[25] N. Yahiaoui, B. Traverson, and N. Levy. Adaptation man-
agement in multi-view systems. InProc. of WCAT’05, pages
99–105, Glasgow, Scotland, UK, July 2005.

[26] J. A. Zachman. The Zachman Framework: A Primer for
Enterprise Engineering and Manufacturing. Zachman In-
ternational, La Cãnada (CA), USA, 1997.http://www.
zifa.com .


