N

N
N

HAL

open science

Semantics of Higraphs for Process Modeling and
Analysis

Elena Kushnareva, Irina Rychkova, Bénédicte Le Grand

» To cite this version:

Elena Kushnareva, Irina Rychkova, Bénédicte Le Grand. Semantics of Higraphs for Process Modeling
and Analysis. AdaptiveCM 2016 — 5th International Workshop on Adaptive Case Management and
other non-workflow approaches to BPM, Sept. 2016, Vienna, Austria. , Sep 2016, Vienna, Austria.

hal-01366350

HAL Id: hal-01366350
https://hal.science/hal-01366350

Submitted on 14 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01366350
https://hal.archives-ouvertes.fr

Semantics of Higraphs for Process Modeling and
Analysis

Elena Kushnareva
Centre de Recherche en Informatique,
University Paris 1 Panthéon-Sorbonne,
90, rue Tolbiac, 75013, Paris, France
elena.kushnareva@malix.univ-paris1.fr

Abstract—Knowledge and experience of a case manager re-
mains a key success factor for Case Management Processes
(CMPs). When a number of influential parameters is high,
a number of possible scenarios grows significantly. Automated
guidance in scenario evaluation and activity planning would be
of a great help. In our previous work, we defined the statecharts
semantics for visualisation and simulation of CMP scenarios. In
this work, we formalise the state-oriented models with higraphs:
higraphs provide mathematical foundation for statecharts and
eventually enable a wide panoply of algorithms for process
analysis and optimisation. We show how a statecharts diagram
can be transformed into higraph and analysed at run-time with
graph algorithms. In particular, we take an example of the
Shortest Path algorithm and show how this algorithm can be
used in order to guide the case manager suggesting her the best
process scenario. Compared to BPM approaches, a state-oriented
process scenario does not specify concrete activities but only the
objectives and constraints to be met. Thus, our approach does
not prescribe but describe an activity to be executed next. The
manager can define an activity that fit the description ’on the
fly”’, based on her experience and intuition.

I. INTRODUCTION

Case management process (CMP) [1] can be characterized
by the following: it is driven by emergent knowledge about
the case subject or the environment; largely based on human
expertise; highly unpredictable; difficult to replicate; hard to
analyze and improve as no HOWTOs available. CMPs have
multiple applications: crisis situations handling, patient care,
insurance application, computer games development, etc.

The features of a case management support system often
include case artifact organizer/repository, task scheduler, re-
port generator, document sharing, business calculator based
on business rules, etc. Definition, assessment of alternative
scenarios and decision-making remains a responsibility of a
human expert - a case manager.

When a scenario is not prescribed for a given situation
or when the prescribed one cannot be implemented for one
reason or another, the case manager has to (i) identify relevant
parameters that can affect the scenario (e.g., events, resources,
lessons learned from the previous situations, guidelines, man-
uals etc.); (ii) assess the situation based on the observed
parameters, evaluate/compare scenarios; (iii) make a decision
about the course of action.

When a number of influential parameters is high, a number
and complexity of possible scenarios grows exponentially. The

Irina Rychkova
Centre de Recherche en Informatique,
University Paris 1 Panthéon-Sorbonne,
90, rue Tolbiac, 75013, Paris, France
irina.rychkova@univ-paris1.fr

Bénédicte Le Grand
Centre de Recherche en Informatique,
University Paris 1 Panthéon-Sorbonne,
90, rue Tolbiac, 75013, Paris, France
benedicte.le-grand @univ-paris1.fr

capacity to process the received information and to compare
multiple scenarios can be extended by using the IS supporting
systems (e.g., data analytics). Whereas the capacity to identify
the relevant parameters and to make a decision (i) and (iii)
relies strongly on the experience of a person. Automated
assistance in scenario evaluation and activity planning (ii) can
be provided by an IS.

Information systems for business process management
(BPM) are widely developed today. These systems mainly
exploit an activity-centric paradigm, where a process is de-
scribed as a flow of activities. Process flexibility is one of the
preoccupations for a modern BPM system: existing solutions
support coordination between human actors and adaptation
of a scenario at run-time. For example, ordering of activities
(scheduling / skipping / repeating) can be configured at run-
time. An activity can be also parametrized so that a particular
variant can be selected at run-time based on the situation.
To ensure this flexibility, various mechanisms are proposed,
including ad-hoc subprocesses defined in BPMN 2.0 [2] or
process variability and variation points [3].

However, the main challenge of an activity-centric
paradigm is that all the process variants (variation points and
activities that follow) have to be defined in advance (at design
time). For CMP, it is not always the case: not only a case
manager needs to decide on the order of activities to execute
at run-time, she may also have to propose new activities that
fit the situation and are not currently in the model. Semantics
based on activities cannot specify the latter.

In our previous work [4], we discussed a state-oriented
paradigm and the operational semantics of CMP based on
statecharts [5][6][7][8]. A statechart diagram depicts a set of
states and transitions between states that can be triggered by
an event (or a combination of events). In a statechart model,
a process is defined in terms of results or “milestones” one
needs to achieve (modeled as states) and conditions or events
required to achieve them. Whereas the events are resulted from
and conditions are met thanks to execution of activities - the
latter are not a part of the model. There are several important
differences with the activity-centric models:

- in a state-oriented model, transitions can happen and the
goals can be achieved as a result of certain external events
happening in the environment. For example, in a case of flood
considered in our previous work [4], the crisis can be termi-
nated once the water level subsides to normal, independently

of the activities executed by the case manager.

- state-oriented model requires the results (process goals) to
be known in advance (states of the model). The activities that
have to be executed in order to achieve them can be defined
at run-time.

- in a state-oriented model, several paths from a current
state to a target state (the goal of the process) usually exist.
This would be equivalent to an activity-centric model with
variation points defined after each task.

In [4][9], we demonstrated that the state-oriented approach
and statecharts models can be successfully used to describe and
visualise case management processes. We created a model of
Flood management process in Yakindu statecharts tool [10]
and illustrated how multiple scenarios can be created during
the execution of this process.

In this work, we formalise the state-oriented process mod-
els with higraphs [11]. A higraph is a mathematical graph
extended to include notions of depth (defined hierarchy) and
orthogonality (a Cartesian product or partitioning), which
makes them a combination and extension of Euler graphs,
hypergraphs and Euler Cirles (or Venn diagrams).

Higraphs semantics provides mathematical foundation for
statecharts and eventually enables a wide panoply of (graph)
algorithms for process analysis. In particular, we explore how
the algorithms of path search and optimization on graphs can
be used in order to support run-time decision making and
adaptive scenario planning for unstructured, non-workflow
processes.

Higraph semantics and statechart/higraph transformation
are a central part of the research illustrated in Fig. 1: whereas
the statecharts are used for visualisation and simulation of a
non-workflow process, underlying formalism of higraph allows
for (run-time) process analysis and optimisation.

In this paper, we (i) report on the transformation of
statecharts diagrams in higraphs, then we (ii) discuss how the
graph algorithms (e.g., the shortest path) can be used in order
to identify the best scenario and (iii) how the run-time analysis
of higraph can help the case manager to choose/propose an
activity that would lead to realisation of this scenario.

Our research paves the road to creation of an automated
recommendation support for the case manager: the latter can
use a state-oriented model to fix the milestones and the main
goals of a process (states) and to define the conditions under
which these milestones and goals can be reached (transitions).

At run time, the current state of the model reflects the cur-
rent situation of a process. At each current state, the proposed
algorithm can identify the next milestone that contributes best
to the main process goal. It can also suggest the list of activities
to execute. The case manager may choose one of the suggested
activities or may define her own activity. If the selected activity
fails or another external event occurs, the target milestone may
not be achieved. In this case, the new alternative milestone will
be defined.

The reminder of this paper is organised as follows: In
Section II, we explain our motivation and introduce higraphs,
statecharts and related theories. In Section III, we describe

our state-oriented approach for modeling and analysis of non-
workflow processes. In particular, we discuss the importance
of the formal semantics of higraphs within this approach.
In Section IV, we present the transformation of statecharts
to higraphs. Section V covers higraph analysis methods and
automated recommendations enabled by statecharts/higraph
semantics. Section VI presents our conclusions.

II. BACKGROUND
A. Motivation

Up to now, BPM approaches based on the activity-centered
paradigm remain the mainstream paradigm for process-support
systems design. Within this paradigm, a process is specified
with an (ordered) set of activities that the system carries
out during the execution. To provide better support for pro-
cess flexibility, activity-oriented formalisms are extended with
declarative parts such as constraints or configurable elements
[12][3]. Ad-hock subprocesses in BPMN 2.0 allow for spec-
ification of activities without giving a particular order of
execution.

The main challenge of an activity-centric paradigm is that
all the activities available for execution have to be predefined
and included in a process model. But it does not always work
for an unstructured process, such as CMP.

Davenport [1] defines a case management process (CMP)
as a process that is not predefined or repeatable, but instead,
depends on its evolving circumstances and on decisions re-
garding a particular situation, i.e., a case.

As reported in [13], numerous efforts to create an efficient
IS for CMP support in the industry are compromised by the
attempt to deal with CMP the same way as with regular
business process - i.e., representing case management by a
workflow and focusing on the (predefined) sequence of tasks.

Several research groups report on approaches to design
and specify case management processes: in [14] and [15] an
approach that combines state- and activity-oriented paradigms
is presented. The case handling paradigm is presented in [16].

In [17], the authors outline the present solutions for case
management. They position an intelligent assistance and guid-
ance to knowledge workers as one of the main challenges: "the
next generation tools should be intelligent enough to bring the
right and needed information to the knowledge worker in the
right time in a proactive manner (e.g., recommend course of
action, identify new relevant sources of information that may
impact the decisions made in the course of a case, etc.)”.

Providing an intelligent support and guidance for scenario
planning is the main purpose of our work.

In this work, we represent state-oriented models with
higraphs and, in order to guide the case manager suggesting
her the best process scenario, we exploit some algorithms for
graph analysis.

B. Higraphs

Higraphs are a combination and extension of Euler graphs,
hypergraphs and Euler/Venn diagrams. A graph in the simplest
case can be defined with a set of nodes and a set of edges,

where an edge is connecting a pair of nodes (a binary relation).
A hypergraph is a graph in which an edge (a hyperedge)
connects not a pair, but a subset of nodes.

A higraph is a quadruple:
H = (B,o,n, E)

where B is a finite set of elements, called blobs, and E, the
set of edges, is a binary relation on B:

F C B x B.
The subblob function u is defined as
o:B—28

It assigns to each blob x € B its set o(x) of subblobs and is
restricted to being cycle free.

The partitioning function 7 is defined as:
m: B — 28%B

associating with each blob z € B some equivalence relation
m(x) on the set of subblobs, o(x). This is really just a
rigorous way of specifying the breakup of x into its orthogonal
components, which are now defined to be the equivalence
classes induced by the relation m(x).

An Euler/Venn diagram consists of simple closed curves
drawn in a plane. The inside region of a curve depicts a set. The
outside region of this curve depicts the elements that do not
belong to this set respectively. Curves whose interior zones do
not intersect represent disjoint sets; two curves whose interior
zones intersect represent sets that have common elements and
so on. Therefore, a diagram can illustrate logical relations
between sets, such as being a subset of, being disjoint from,
and having a nonempty intersection with.

A node of a higraph, called a ’blob’, represents a curve
from Euler/Venn diagrams and allow for reasoning about its
‘inside’ and ’outside’ regions using visual, topological repre-
sentation. The blobs of higraphs can be connected by edges or
hyperedges. Therefore, compared to regular graphs, higraphs
visually distinguish between structural (set-theoretical) and
other (domain-specific) relations that can be defined between
the nodes: the former relations are depicted by the blobs and
their topological configuration, the latter are depicted by the
(hyper-)edges between blobs. Furthermore, higraphs extend the
Euler/Venn diagrams with a possibility to represent a Cartesian
product - another structural relation between nodes of a graph.

Compared to a regular graph, higraph provides a super-
polynomial saving in size of the description.

Formal syntax and semantics of higraphs defined by Harel
in [11] makes accessible a wide spectrum of techniques
and algorithms for qualitative, quantitative analysis as well
as optimisation, validation and verification. Algorithms for
analysis of higraphs are proposed in [18] (shortest path and
minimum cover problems, calculating distance, Hamiltonian
cycle, bipartition test). Other algorithms from graph theory
can be applied to higraphs as well.

C. Statecharts

A number of applications of higraphs is discussed in
[18][19]. In particular, higraphs are suitable for knowledge-
representation, where both structural and domain-specific re-
lations must be defined. The language of statecharts [5] is
an application of higraphs for modeling behavior of complex
event-driven systems. Here the Cartesian products specify the
orthogonal or concurrent states of a system.

Statecharts are a higraph-based extension of standard state-
transition diagrams, where the blobs represent states and
arrows represent transitions.

Statecharts = state diagrams + depth + orthogonality +
broadcast communication.

Depth is represented by the insideness of blobs.

Orthogonality is the dual of the XOR decomposition of
states, in essence an AND decomposition, and is captured by
the partitioning feature of higraphs, that is, by the unordered
Cartesian product.

III. HIGRAPHS AS A TOOL FOR CASE MANAGEMENT
PROCESSES (CMP)

Fig. 1 illustrates our state-oriented approach for modeling
and analysis of non-workflow processes. It consists of four
interconnected parts:

e Application domains
o Theories
e Models

e Tools

Application domains depict different cases where the state-
oriented approach can be used. For example, statecharts and
higraphs were originally used for modeling the industrial
control systems. Other domains can be also considered.

Models depict the formalisms we have chosen to represent
the problems from the application domains. Statechart opera-
tional semantics is used to visualise and simulate a process
(e.g., with Yakindu SCT). Higraph denotational semantics
provides an underlying formalism for further process analysis
with the Tools.

Theories (e.g., graph theory, etc.) are used to create the
algorithms and build these tools.

The selection of tools and algorithms depends on a given
problem and on the concrete application domain. Once the
analysis is performed, it needs to be interpreted in the Ap-
plication domain. The overall objective of this approach is to
create a toolbox for various types of analysis originated from
graph theory and other related theories.

In our approach, we propose to model a CMP with a
statechart paradigm (this is illustrated by the arrow from the
Application domains to the Models in Fig. 1). The state-
oriented paradigm does not specify concrete activities that
should be executed during the process. The process scenarios
can be discussed in more business-oriented terms such as

io

Case management

NOILYIITddY

Structured
processes

System behavior

[|
Modeling
|~ e

Methods for
Complex Network Graph algorithms
Analysis

Unstructured
processes

(a3049u02) SNIYWOQ

g

‘ Interpretation
(roensqe)
s73aow

Analysis

S3IHOFHL @

Euler circles

x s7001

Fig. 1. State-oriented approach for modeling and analysis of non-workflow
processes

goals and milestones (modeled as states) and constraints and
requirements (modeled as events and conditions).

Statecharts provide a simple notation for visualizing the
process, focusing uniquely on WHAT will be done instead
of HOW it will be implemented. One can also simulate a
statecharts model, playing different process scenarios, testing
“improbable” cases and improving the understanding of the
process [20].

The problem of planning the course for action by the case
manager can be reformulated in terms of statecharts as follows:
given a current state S, in the process and a target state 7" (a
desired objective)

1) what would be the best' sequence of states
S1,89,...T - the best process scenario - that would
lead us from S, to 17?

2) what are the activities that should be executed at S,
in order to lead to realisation of this best scenario?

To solve this problem, one should be able to reason
about the process with mathematical rigour. The formalism
of higraphs discussed below provides required mathematical
foundation and enables the set of tools for process analysis
(this is illustrated by the arrow from the Models to Tools in
Fig. 1). In particular, we are interested in graph algorithms that
can be executed iteratively, (re)defining the new current state
S. and the best scenario at this state.

The defined state-oriented model does not contain the
activities; it only describes the effects (postconditions) that
are required in order to trigger a transition from one state to
another - the definition of activities should be supported by
the Application Domain (this is illustrated by the arrow from
the Tools to Application Domains in Fig. 1).

Potentially, the tools can be also used in order to reason
about model (higraph or statecharts) quality (this is illustrated
by the arrow from the Tools to Models in Fig. 1).

'We do not specify the criteria for the “best” scenario as they can vary
depending on the situation (e.g., the cheapest, the fastest, the scenario where
the states S, Sy will be avoided etc.).

In the next sections we explain how a higraph can be
created from a statechart diagram and how this higraph can
be further explored using graph algorithms. On the example
of the classical algorithm for the shortest path, we illustrate
how the best process scenario can be identified. This will
answer the first question formulated above. Then we show
how from the best sequence of states” we can identify the
“best activity” that can be recommended to the case manager.
This will answer the second question formulated above.

IV. FROM STATECHARTS TO HIGRAPHS

We use Yakindu SCT for modeling statecharts where the
models are stored in XMI files. The tree structure of a state-
chart model includes regions, vertices, outgoing and incoming
transitions with specific attributes (e.g., id, name, type, label,
etc.). The resulting models define a complex structure that may
include hierarchy (i.e., regions and vertices can be placed one
inside the other as many times as required) and orthogonality
(i.e., regions and vertices can be placed in parallel as many
times as required).

In order to find and recommend a case manager the next
best step while running the process, we have transformed a
statechart model into a higraph. We used Python language [21]
for programming.

In order to get the data from the Yakindu SCT output
files (.sct) and to transform it into higraph, we created a
parser. While parcing a Yakindu statechart model, we extract
process states (ids, names, types, parent-children relations),
transitions (ids, names, outgoing states, incoming states, labels)
and relations between regions.

We developed a higraph constructor for Statechart-Higraph
transformation.

To create a higraph representation in Python, a NetworkX
software package [22] was used. In particular, we constructed a
directed graph with self loops and multiple edges between two
nodes, which, in terms of NetworkX, is called a MultiDiGraph.

We started with constructing a list of vertices (VerticeList)
by going deeper into states nesting levels in each region of the
Statecharts model, specifying the current region, depth level
(Depth) and direct parent state (ParentVertice) for inner states.

After that, we constructed a list of transitions (Transition-
List) via specifying outgoing/incoming states.

Statecharts formalism allows adding entry pseudo states in
each region, so that the start of the process (or a subprocess)
scenario would be indicated. A MultiDiGraph, however, does
not use anything similar, as entry pseudo states are not explic-
itly connected to a super-state there are situated in. As a result,
the VerticeList consists only of actual states of the Statecharts
model.

Transitions, connecting entry pseudo states with some
other states in the Statecharts model, are now replaced with
transitions, connecting their direct ParentVertice with the same
state.

Transformation algorithm is shown below:

1. create MultiDiGraph()

2. for each Vertice in VerticeList:
3. if VerticeDepth == 0:

4 add Vertice to BlobList

5. else:

6 if VerticeName !=" ’:

7 find ParentVertice

8 VerticeName = ParentVerticeName + VerticeName
9

add Vertice to BlobList and InternalBlobList

10. add Nodes from BlobList to MultiDiGraph()
11. add attributes Depth and ParentBlob to Nodes in
MultiDiGraph()

12. for each Transition in TransitionList:

13. if SourceVertice in BlobList and TargetVertice in
BlobList:

14. add Transition(Source Vertice, TargetVertice) to EdgeList
15. else:

16. if SourceVerticeDepth != 0:

17. find ParentVertice

18. if ParentVertice in BlobList:

19. add Transition(ParentVertice, TargetVertice) to EdgeList

20. add Edges from EdgeList to MultiDiGraph()

The graph internal data structures in NetworkX are based
on an adjacency list representation and implemented using
Python dictionary datastructures. The graph adjaceny structure
is implemented as a Python dictionary of dictionaries; the outer
dictionary is keyed by nodes to values that are themselves
dictionaries keyed by neighboring node to the edge attributes
associated with that edge. This dict-of-dicts structure allows
fast addition, deletion, and lookup of nodes and neighbors in
large graphs. The underlying datastructure is accessed directly
by methods (the programming interface API) in the class
definitions. All functions, on the other hand, manipulate graph-
like objects solely via those API methods and not by acting
directly on the datastructure. This design allows for possible
replacement of the dicts-of-dicts-based datastructure with an
alternative datastructure that implements the same methods.

We illustrate our transformation results on several abstract
examples in order to verify that datastructure and relation
between the elements are modified in a correct manner.

The first example (Fig. 2) shows a simple combination of 8
states with hierarchy (Entry, C and D states lie in B superstate).

As proposed within the algorithm, we get rid of an Entry
pseudo-state and rename C and D states into B|C and B|D, as
B state is their direct parent. In the end, higraph nodes and
edges are:

Ex1: Hierarchy higraph model example

Nodes: [('A’, {’depth’: 0}), ('B’, {’depth’:
0y, ('E", {’"depth’: 0}), ("B_I_C'",
{"depth’: 1, ’"parent’: "B’"}), (’'Stop’,
{"depth’: 0}), ('B_|_D’", {’depth’: 1,

"parent’: 'B’}), (’Start’, {’depth’: 0})]
Edges: [('aA’, 'B’), ('B’, 'B_|_C"), ('B',
'e"), ('E’, 'B"), ('E’, ’'Stop’), ('B_[I_C',

main region

events.E1 *—

events.E2

e
events.E?

events.ES l
E
gmms.EE

events.E3

events E4

Fig. 2. Hierarchy statechart model example (Ex1)
"
o— U
[o
Fig. 3. Concurrency statechart model example (Ex2)

"E"), ("B_I_C", "B_|I_D"), ("B_I_D",
("start’, 'A’)]

IEI)’

The second example (Fig. 3) focuses on concurrency
property of a Statecharts model: super-state B contains regions
R1 and R2, that can be reached at the same time, starting their
sub-processes in parallel.

Once again, we cut Entry pseudo-states (in R1 and R2) and
construct higraph nodes and edges, according to the algorithm:

Ex2: Concurrency higraph model example

Nodes: [("A’", {’depth’: 0}), ('B’, {’depth’:
0y, ("E", {’depth’: 0}), ('B_|_C",
{"depth’: 1, ’"parent’: 'B’"}), (’Stop’,
{’depth’: 0}), ('B_|_F’, {’depth’: 1,
"parent’: 'B’}), ('B_|_D’, {’depth’: 1,
"parent’: 'B’}), (’Start’, {’depth’: 0})]

Edges: [("A", ’'B"), ('B", '"B_I_C"), ("B",
!EI), (IBI, IB_I_FI), (IE!’ IB!)’ (!EI,
"Stop’), ('B_I_C'", '"E"), ('B_|_C',
"B_I_D"), ("B_I_F", '"E"), ('B_I_D", "E"),

("Start’, 'A’)]

Fig. 4. Deep hierarchy statechart model example (Ex3)

The third example (Fig. 4) is a more complicated version
of an hierarchy example, as there are 3 nesting levels.

Note that there are no triple named blobs among those who
are on the deepest level, as only direct parent blobs are taken
in account while renaming.

Ex3: Deep hierarchy higraph model example

Nodes: [("A’, {’depth’:
{"depth’: 2, ’'parent’:

0}, ("B_I_C",

"B’}), ("A_|_Stop’,

{’depth’: 1, ’"parent’: "A"}), (’Start’,
{"depth’: 0}), ("A_|_B’", {’depth’: 1,
"parent’: 'A"}), ('A_|_E’, {’'depth’: 1,
"parent’: 'A"}), ('B_|_D’, {’depth’: 2,
"parent’: 'B’})]

Edges: [('A’", 'A_|_B"), ('B_|I_C", '"A_|_E"),

B
("B_|_C’, "B_|_D
("A_|_B", "B_|_C
("B_|_D', 'B_|_C

")
")

, (’'Start’, 'A’),
4
)]

("A_|_E", "A_|_Stop’),

Thus, the transformation algorithm captures the main
properties of statecharts and reflects them in a form of the
higraph representation, therefore enabling the usage of graph
algorithms for model analysis.

V. EXPLORING HIGRAPHS FOR PROCESS ANALYSIS

Now that we have transformed statecharts into higraphs,
we will show how the higraph formalism can be applied to
the CMP analysis and decision-making support.

A. Defining the best process scenario

In order to identify the best process scenario and figure
out how the run-time analysis of higraphs can help the case
manager to choose/propose an activity that would lead to a
realisation of this scenario, first, we need to understand, how
to apply graph algorithms to higraphs.

Despite the applications discussed in [11][18], very little
work has been carried out on the algorithmic properties of
higraphs.

As, by definition, higraphs are an extension of ordinary
graphs by AND/OR decomposition of vertices, several blobs

can be reached at the same time. Such sets of blobs are called
configurations.

Having defined the configurations, we can talk about
semantics of higraphs in terms of an induced graph, where
vertices are higraph configurations and edges between these
vertices exist only if there is an ’appropriate’ higraph edge.
This approach to semantics allows us to work with higraphs
by means of ordinary graphs.

Thus, the shortest path between two blobs in a higraph is
defined as the shortest path in the induced graph between any
configuration containing the source blob and any configuration
containing the target blob [18].

For example, consider Ex1 (Fig. 2) higraph. Here is the
list of every possible path from Start to Stop blobs:

1. Start -> A -> B -> E -> Stop
2. Start -=> A -> B -> B_|_C -> E —-> Stop
A

3. Start —> ->B ->B |_C->B | D ->E —>
Stop

4. Start -> A ->B -> E -> B —> -> E ->
Stop

5. Start -> A -> B -> B_|_C > E —> B —>
-> E —-> Stop

6. Start -> A ->B ->B_|_C ->B_|_D -> E ->
B —> -> E —-> Stop

Since there is a cycle in this higraph, for the path list only
its first iteration is considered.

The shortest path in this case is the first one, because
it has the minimal number of transitions (if not specified,
the default weight of any transition equals 1, except for the
parent-child blob transition, which equals 0). But since the
higraph represents a non-workflow process, the shortest path
calculation might not be that simple.

Statecharts models consist of states and transitions between
them, representing a combination of events. While the process
is running, these events might or might not happen, therefore,
making its corresponding transitions (un)available. As a result,
if, by chance, the transition B -> E is not available at some
point, path No.1 from the list is not the shortest path to reach
the target Stop blob.

For the case manager, the best process scenario corresponds
to a sequence of milestones that contribute best to the main
process goal. The manager can select one of such scenarios (if
several are available) and decide upon the activities to execute
during this scenario. Alternatively, these activities can be also
recommended by the algorithm.

B. From “best scenario” to "best course of actions”

Considering that the best scenario is defined as a shortest
path on the higraph, now we need to go back to the application
domain and to answer the question: what are the activities that
should be executed in order to lead to realisation of this best
scenario?

The link between the activities that has to be scheduled
by the case manager and the state-oriented model (statecharts)
can be expressed as follows:

1) From the manager’s perspective, a process execution
scenario consists of activities;

2) An activity can be characterised by its results (or
events) produced upon the execution (often referred
to as postconditions).

3) Once an event occurs, it can trigger a state transition
in our state-oriented model.

In other terms, the state-oriented model describes what
should be produced (event or postcondition) in order to trigger
a transition required by the best scenario. An activity from
the application domain that matches this description can be
considered as the best activity and recommended for the case
manager’. Alternatively, the case manager can define her own
activity that also matches this description.

The listing below illustrates how a list of available activities
can be specified in the application domain. We define an
activity through their names, preconditions (i.e., a set of of
states where an activity can be executed) and postconditions
(a combination of triggered events):

activities_names = {activity_1l_pre
"Activity_1', activity_2_pre
"Activity_2'

activities_1list {activity_1_pre
activity_1_post, activity_2_pre
activity_2_post}

[

activity_1_pre = ('A’, "A_|_B’)
activity_1_post = (‘event_1')
activity_2_pre = ("A_|_B’, 'B_|_D")
activity_2_post = (‘event_2')
activities_pre = [activity_1_pre,

activity_2_pre]

Here Activity_I is enabled in A, A|B states and triggers
event_1 when executed, while Activity_2 is available in A|B,
B|D states and triggers event_2.

For a given state (or configuration of states) a list of enabled
activities can be automatically defined: in our example, when
the process scenario reaches the state A, Activity_1 becomes
enabled and can be executed. Upon its execution, event_1 will
be produced.

The fact that Activity_I is enabled for execution at some
state(s) does not mean that this activity will/should be ex-
ecuted. Only if its postcondition (event_I in our example)
matches the best scenario identified by the analysis of the
higraph, this activity will be suggested for execution to the
case manager as (one of) the best activity.

If the case manager decides to use her own activity instead
of the recommended one - she can add this activity to the list
at run-time and reuse it later.

VI. CONCLUSION AND PERSPECTIVES

In our previous work, we demonstrated how a case manage-
ment process can be modeled and simulated with statecharts -
a state-oriented formalism invented by David Harel and used
for modeling real-time event-driven systems. Compared to

2Here we consider that some list of activities associated with the process
is defined in the application domain.

BPM approaches, a statechart process model does not specify
concrete activities but only the objectives and constraints to
be met. Thus, our approach does not prescribe but describe
an activity to be executed next. The manager can define an
activity that fit the description “on the fly”, based on her
experience and intuition, or can select such activity from a list
(e.g., recommended activities or activities previously executed
in a similar situations) in order to ensure a desirable process
scenario.

When the process complexity grows, definition of desirable
scenarios, comparison of alternatives and selection of the best
scenario at run time becomes complex. Automated guidance
for the case manager is a big advantage.

In this paper, we propose an approach for analysis of non-
workflow processes (including case management processes)
based on higraph semantics. On the example of classical
shortest path algorithm, we show how the graph algorithms
can be used to provide automated guidance about best scenario
definition.

Higraph analysis algorithms are not limited by the short-
est path computations and include much more: connectivity
checking, clustering, cycle finding, communicability and other
algorithms. These algorithms will be explored in our future
work.

Among the main challenges of the presented approach we
consider the relation between Application, Model and Tool
domains (Fig. 1): Translation of a real life process to a state-
chart model, identification of relevant tools and algorithms for
model analysis, interpretation of the obtained results in order
to provide meaningful recommendations, expressed in terms of
application domain are some of the important questions that
we are going to consider next.

Our proposed approach overcomes the shortcomings of the
activity-centric models: the activities can be defined at run-
time, the process can be (re)configured at each state depending
on the situation (compared to a predefined number of variation
points in conventional process models), the process can evolve
as a result of an external event (making certain scenarios
irrelevant). The proposed algorithms help the case manager
to make better decisions while not restraining her creativity.

REFERENCES

[11 T. Davenport, Thinking for a living: How to get better performances
and results from knowledge workers. Harvard Business Press, 2005.

[2] OMG, “Business process
http://www.omg.org/spec, 2011.

model and notation (bpmn),”
[3] M. Rosemann and W. van der Aalst, “A configurable reference mod-
elling language,” Information Systems, vol. 32, no. 1, pp. 1-23, 2007.

[4] E. Kushnareva, I. Rychkova, and B. Le Grand, “Modeling business
processes for automated crisis management support: lessons learned,”
in IEEE 9th International Conference on Research Challenges in
Information Science (RCIS), 2015.

[5] D. Harel, “Statecharts: A visual formalism for complex systems,” in
Science of computer programming, 1987, vol. 8, no. 3, pp. 231-274.

[6] D. Harel and E. Gery, “Executable object modeling with statecharts,”
in Proceedings of the 18th International Conference on Software
Engineering, ser. ICSE 96. Washington, DC, USA: IEEE Computer
Society, 1996, pp. 246-257.

[7]1 D. Harel and M. Politi, Modeling reactive systems with statecharts: the
STATEMATE approach. McGraw-Hill, Inc., 1998.

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]
[22]

E. Mikk, Y. Lakhnech, C. Petersohn, and M. Siegel, “On formal
semantics of statecharts as supported by statemate,” in Workshop, Ilkley,
vol. 14, 1997, p. 15.

I. Rychkova, E. Kushnareva, and B. Le Grand, “Modeling and animation
of crisis management process with statecharts,” in /4th International
Conference on Perspectives in Business Informatics Research (BIR),

2015.

I. AG, “Yakindu statechart tools version 2.4. for eclipse luna,”
http://statecharts.org/, 2014.

D. Harel, “On visual formalisms,” in Communications of the ACM,
1988, vol. 31, no. 5, pp. 514-530.

W. van der Aalst, M. Pesic, and H. Schonenberg, “Declarative work-
flows: Balancing between flexibility and support,” Computer Science-
Research and Development, vol. 23, no. 2, pp. 99-113, 2009.

K. Swenson, Mastering The Unpredictable: How Adaptive Case Man-
agement Will Revolutionize The Way That Knowledge Workers Get
Things Do. Meghan-Kiffer Press, 2010.

R. Hull, E. Damaggio, R. De Masellis, F. Fournier, M. Gupta, F. T.
Heath, III, S. Hobson, M. Linehan, S. Maradugu, A. Nigam, P. N.
Sukaviriya, and R. Vaculin, “Business artifacts with guard-stage-
milestone lifecycles: Managing artifact interactions with conditions and
events,” in Proceedings of the 5th ACM International Conference on
Distributed Event-based System, ser. DEBS "11. New York, NY, USA:
ACM, 2011, pp. 51-62.

H. A. Reijers, S. Limam, and W. Van Der Aalst, “Product-based
workflow design,” J. of Management Information Systems, vol. 20, no. 1,
pp. 229-262, 2003.

W. van der Aalst, M. Weske, and D. Griinbauer, “Case handling:
a new paradigm for business process support,” Data & Knowledge
Engineering, vol. 53, no. 2, pp. 129-162, 2005.

H. R. Motahari-Nezhad and K. D. Swenson, “Adaptive case man-
agement: Overview and research challenges,” in Business Informatics
(CBI), 2013 IEEE 15th Conference on. 1EEE, 2013, pp. 264-269.
O. Grossman and D. Harel, “On the algorithmics of higraphs,” in
Technical report, Israel, 1997.

K. Fogarty and M. Austin, “System modeling and traceability applica-
tions of the higraph formalism,” in Technical report, USA, 2007.

E. Kushnareva, I. Rychkova, R. Deneckere, and B. Le Grand, “Modeling
crisis management process from goals to scenarios,” in 4th International
Workshop on Adaptive Case Management and other non-workflow
approaches to BPM (AdaptiveCM), 2015.

“Python programming language,” http://www.python.org.

A. Hagberg, D. Schult, and P. Swart, “Python language software
package - networkx,” https://networkx.github.io/, 2005.

