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Abstract—Information systems leave a traceable digital foot-
print whenever an action is executed. Business process modelers
capture these digital traces to understand the behavior of a
system, and to extract actual run-time models of those business
processes. Despite the omnipresence of such traces, most
organizations face substantial differences between the process
specifications and the actual run-time behavior. Analyzing
and implementing the results of systems that model business
processes tend, however, to be difficult due to the inherent
complexity of the models. Moreover, the observed reality in the
form of lower-level real-time events, as recorded in event logs,
is seldom solely explainable by higher-level process models.
In this paper, we propose an architecture to model system-
wide behavior by combining process mining with a multi-agent
system. Digital traces, in the form of event logs, are used to
iteratively mine process models from which agents can learn.
The approach is initially applied to a case study of a simplified
job-shop factory in which automated guided vehicles (AGVs)
carry out transportation tasks. Numerical experiments show
that the workflow of a process mining model can be used
to enhance the agent-based system, particularly, in analyzing
bottlenecks and improving decision-making.

Keywords-Multi-agent System; Process Mining; Emergent
Behavior; Enterprise Architecture; Supply Chain Logistics;
Job-shop; Internet of Things

I. INTRODUCTION

Recently, emerging paradigms, such as Industry 4.0, Inter-

net of Things (IoT), and other data-driven approaches have

heightened the global need for gathering and exploiting data.

The number of devices ubiquitously tracking and monitor-

ing supply chain conditions, ranging from low-level events

such as vehicle accelerations, to higher-level events such as

environmental disasters, is increasing rapidly [1]. Driven by

competitive forces, these colossal amounts of data (known

as ‘big data’) hold the promise of supporting a wide range of

supply chain functions, including procurement [2], logistics

management [3], [4], and sustainability efforts [5]–[7]. As

a consequence of the continuous increase in the volume

and granularity of data captured by information systems

[8], companies are nowadays able to monitor and capture

all kinds of events affecting supply chain performance [9].

Therefore, the development of useful IT architectures and

data-driven algorithms are becoming increasingly important

to continuously support the companies’ need to organize

their business processes in an efficient manner.

Despite the eminent need for analyzing the huge amount

of data coming from today’s information systems, the vast

majority of companies still face significant discrepancies

between the (envisioned) process specifications and the ob-

served reality [10]. One of the major problems in this regard

is the lack of the successful integration of all subsystems

into larger complex hierarchical systems with sufficient

preliminary analysis, due to, for example, budget and time

constraints. As a result, the system-wide impact is often

not properly assessed. Another problem is that involved

stakeholders typically have divergent (or even conflicting)

objectives, making it challenging to find solutions to which

all stakeholders are willing to commit [11]. Hence, con-

sensus is not always reached among the players, even if

supply chain coordinators and orchestration services attempt

to generate commitment by providing (financial) incentives.

Finally, supply chain systems may consist of many inde-

pendent decision-making entities that are working in an

autonomous, self-interested and not necessarily cooperative

way [12]. As a result, individual players may not trust the

system, may not be willing to share their information, or

may not comply with the systems outcome.

The mere use of process modeling is no longer satis-

factory, and transition towards integration with other fields

of study such as monitoring of process execution and data

analytics is, therefore, rapidly gaining attention [13]. One of

the rising disciplines that has been addressing this transition

is process mining. Process mining supports the analysis and

understanding of the actual operational processes that are

being executed by exploiting event data [14]. The diversity

of supply chain players each having their own goals, own

challenges with analyzing system-wide performance, and a

wealth of data available, made us approach these challenges

by two complementing, yet not commonly combined disci-

plines: process mining and multi-agent systems (MAS).

We argue there is much to be gained by using these two

reference disciplines. In particular, for analyzing properties

and behaviors emerging from interacting autonomous deci-

sion units, better known as emergence. First, the study of

real-life enterprise data can provide valuable insights into

the actual business execution and performance [15]. While

the development of model-driven methods (e.g., BPMN)

are often time-consuming, costly, and prone to validation
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concerns, the event log analysis will only require a well-

thought layout of all possible state transformations. There-

fore, process mining forms an efficient method to assess

the performance and discover emergent behavior of complex

logistic networks. Second, a MAS is flexible, adaptable, and

reconfigurable [12], which enables agents to act as a natural

recourse for modeling supply chains as well. Providing

insights into emergent behavior arising from decentralized

decision units, such as typically modeled by agents, is one

of the challenges in MAS design.

To this end, the purpose of this article is to propose an

agent-based process mining architecture that will aid supply

chains managers in decision-making for analyzing emergent

behavior. We thereby focus on supply chain environments

that can naturally be represented by a MAS. Typical ex-

amples of such environments are (i) distributed control of

manufacturing operations and (ii) coordination and coop-

eration of logistic processes between independent supply

chain actors. We validate our architecture by presenting and

demonstrating a logistics supply chain case study. The novel

contribution of this paper can be summarized as follows:

• A joint agent-based process mining architecture to

evaluate agent-based decision rules.

• Validation of the architecture by means of a simula-

tion study. This study comprises a classic case study,

emerging from the field of supply chain logistics: the

job-shop scheduling problem.

• An analysis of the impact of different agent-design

choices by evaluating the results of the selected, fre-

quently used process mining algorithms.

• A preliminary study of the impact of agents’ intelli-

gence on the overall system performance reflected in

the agents’ decision-making behavior.

The research methodology we adhere to in this study

is Peffers design science methodology [16], as reflected

by the structure of this paper. The problem statement and

the research goal have been explained above. Section II

covers a brief introduction to process mining and agent-

based modeling, and addresses related work. Section III

gives an account of the requirements of our agent-based

process mining architecture. In Section IV, we present our

reference architecture (the main design artefact). Section V

presents the case study. Section VI validates the architecture

(and demonstrates the proposed solution) by addressing an

experimental setting, agent configurations, and numerical

results from the logistics case study. Section VII gives a

discussion. Finally, Section VIII concludes this paper with

some pointer to future work.

II. BACKGROUND AND RELATED WORK

A. Process mining

Information systems typically record information about

(business) processes in the form of event data [9]. Process

mining attempts to discover, conform, and improve real

processes by retrieving valuable knowledge (e.g., process

models) from the event logs [17]. Event logs, also referred

to as transactional logs or audit trails [18], record events

that occur and are usually stored in databases. Event logs

can originate from Transaction Processing Systems (TPSs)

[19], but an increasing number of ubiquitous sources, such

as wireless sensor networks, social media, and IoT, provide

real-time event data nowadays. They contain a large amount

of raw data about how business processes are actually being

executed.

Basically, an event log can be viewed as a set of traces,

each containing activities executed for a particular process

instance (see Fig. 1). Event records usually refer to an

activity (i.e., a well-defined step in the process) and are

affiliated with a particular case (i.e., process instance) [20].

Besides that, an event contains a timestamp and may de-

scribe additional data such as the resource or costs.

Process mining comprehends distilling a structured pro-

cess description from a set of actual process executions [20].

Fig. 2 graphically depicts a conceptual model for process

mining. Event logs are transformed into process models

using algorithms and techniques originating from the data

mining discipline. Process mining uncovers valuable infor-

mation about the interaction with the information systems

by discovering underlying processes from event logs. There

are three main types of process mining techniques:

• Process discovery, which constructs a comprehensive

process model reproducing the behavior observed in

the log file [17].

• Conformance checking, which relates process models

and recorded behavior to each other [22]. Methods and

techniques can be used to analyze behaviors observed

in event logs in the presence of a process model.

• Enhancement, which enriches the process model with

data in the event log [17]. Different methods can be

merged to change or extend the a-priori model.

It has been demonstrated that process mining is a promis-

ing approach for analyzing complex supply chains. First,

because process mining discovers insights into system-wide

behavior and, therefore, provides a shared overview of the

higher-level processes. Second, process mining stimulates

business process re-engineering efforts by generating im-

event trace

*
1

activity
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Figure 1. Connection between the process model and the event traces [21]
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Figure 2. Conceptual process mining framework [21]

provement ideas or taking corrective actions [23]. Thus,

it affects chances to improve both the individual agent’s

efficiency and system-wide efficiency. Third, it relies on the

simple yet elegant concept of event logs, which are widely

available in modern information systems [24]. By directly

using log data from these systems, one can explore execution

variations and intervene based on a factual understanding of

the present data.

The studies presented thus far provide evidence that

process mining is useful for many sectors, such as healthcare

[14], [25] and education [26]. However, although process

mining received enormous research interest in recent years,

literature on the evaluation of cross-organizational supply

chains by means of this technique is scarce.

B. Agent-based modeling

Agent-based modeling (ABM) represents a system as a

collection of autonomous decision-making entities, the so-

called agents. An agent is a computer system that individu-

ally assesses its situation and makes decisions autonomously

based on a (simple) set of rules [27]. Agents are able to

execute various tasks and provide valuable information about

the dynamics of real-world systems that they emulate to

fulfill their delegated objectives [28]. In addition, agents can

evolve and adapt to continuously changing environments. A

group of interacting agents that collectively solves complex

problems is defined as a multi-agent system (MAS) [29].

An agent is characterized by its self-contained (uniquely

identifiable), autonomous (acts on its own), and social be-

havior (interacts), which makes them suitable for modeling

complex systems [30], such as supply chains. In ABM, the

agent’s behaviors are conditioned on its state. Hence, the

set of an agent’s behaviors can become richer as the set

of possible states becomes richer [30]. Providing insights

into emerging phenomena encapsulated by the behaviors and

states is a major area of interest within the field of ABM.

We refer the reader to [28] for more details about ABM.

C. Combining agent-based modeling and process mining

ABM is in particular useful when complementing it with

process mining [31]. ABM mainly focuses on modeling the

interaction between agents to capture the emerging behavior

of complex systems, while process mining aims to discover

and improve business processes (which eventually is also a

way of capturing behavior of organizational systems). So,

ABM can be seen as a modeling architecture while process

mining could be used for analysis [31].

There are a number of reasons why these disciplines are

mutually amplifying each other. First, agents can adapt and

change their behaviors accordingly. Agents may update their

strategies based on extracted knowledge from interaction

with their environment. However, this data may be difficult

to obtain, misleading or misinterpreted. Event logs, on the

other hand, provide a shared knowledge source of the actual

events and are not be based on conjectures or intuitions.

Discovered models can then act as a trusted source for the

agents. Second, generated process models can be used to

evaluate the emerging behavior and performance of agent-

based models holistically and, therefore, can mimic the

behavior of (parts of) a supply chain. Individual agents

often have limited capabilities (e.g., computational power,

memory, etc.) and are not able to provide this overview,

but by combining the capabilities of a group of agents,

process models can gradually be discovered. Third, ABM

can enhance process mining by providing an additional

control flow, organizational, and performance perspective.

Therefore, ABM can increase the quality of constructed pro-

cess models, but also vice versa. For example, an agent may

detect emergent behavior that is not represented satisfactory

by the discovered model. Consequently, the agent decides

to generate an event for this. The discovered model is then

adjusted and, in turn, other agents are informed about this

update. So, ABM and process mining mutually stimulate

business process improvements and are able to verify each

others architectures and models.

D. Beyond the state-of-the-art

Process mining has a lot of potential, but there is still

lack of articles related to a comprehensive architecture for

process mining in supply chains to provide intelligence

support [32]. An often faced challenge is to design algo-

rithms that are yielding high reliability and quality of the

constructed process models [33]. Furthermore, the number

of publications addressing validation criteria and metrics for

the quality of process models is limited [34]. By applying

an agent-based architecture amplified with process mining

methods, we present a novel way of assessing the quality

and performance outcomes of process mining techniques.

There are relatively few studies that postulated a con-

vergence between process mining and agent-based models.

A recent publication [31] formally shows how an abstract

architecture of a MAS can be analyzed by means of process
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mining techniques. Authors of [35] presented a MAS that

is analyzed with the use of process mining. In their work,

process mining was used to validate the workflow and

to analyze bottlenecks in business processes. The article

[36] used process mining and agent-based simulation to

perform analysis on a hospital database. Their model extracts

knowledge from an existing database through simulation.

Authors of [37] analyzed agent-based simulation outputs

through process mining methods. In [38] an approach was

presented to improve business process models based on

process mining and agent-based simulation.
Collectively, these studies outline an important role of

process mining in conjunction with agent-based models.

However, most studies have focused on the improvement

of the models discovered by means of process mining while

it would be also interesting to focus on research on agent

behavior, and incorporate the wealth of capabilities agents

have as well. Furthermore, performance evaluation outcomes

from the discovered models are often not transferred to

actual knowledge as input for the agents. Moreover, an

overall architecture comprehending this combination has not

been proposed yet.
In this paper, we advance the state-of-the art by providing

an architecture for evaluating agent-based systems by using

constructed process models. This architecture enables us to

not only use process mining for the discovery of processes

but also to utilize the knowledge obtained from the discov-

ered models by the agents. We validate our model by using

a case study on a typical logistics problem, the so-called

job-shop scheduling problem. To this end, we perform a

simulation study to assess the impact of a designed agent-

based model on the process models mined.

III. REQUIREMENTS

Before delving into the details of our architecture for joint

process mining and agent-based modeling, we present an

additional set of generic requirements with respect to the

integration of both fields. Basically, the agent-based system

forms a specialization of the software system represented in

the process mining framework proposed by [21] in Fig. 2.

While this conceptual framework is useful to demonstrate

how the event logs are transformed into process models, we

still need additional guidelines for the actual implementation

of the required hard- and software components. Therefore,

the objective of our architecture should clearly describe how

the event logs are generated for the management of emergent

behavior. In line with the design science methodology, we

decompose the problem conceptually and infer the objectives

of a solution by positioning these requirements. Based on

discussions with consortium partners, as well as inspiration

obtained from Industry 4.0 design principles (e.g., see [39]

and [40]), we formulate a series of requirements.

Requirement 1 (Real-time data acquisition). Changes
within the agent’s environment should be registered (nearly)

real-time as traceable event data to support the agent’s
autonomous decision-making tasks. The context-aware in-
formation of all agents will gain insight into the overall
system’s performances as well.

Requirement 2 (Interoperability). An interconnected net-
work of sensing devices is required to enable the agents to
collaborate with each other. The development of a (central)
repository for traceable event data would also stimulate the
agents to search actively for emergent behavior patterns.

Requirement 3 (Modularity). The architecture should stim-
ulate a modular design, which is an inherent property of
typical agent-based systems. Modular systems can easily be
adjusted to changing conditions (e.g., emergent behavior)
by replacing or expanding individual components. Agents
should also be able to interact with other systems that are
not explicitly modeled, since the inclusion of exogenous
(system) events may be an additional valuable source of
information for emergent behavior as well. Therefore a
standard format (e.g., XES files) is recommended.

Requirement 4 (Decentralized decision-making). Agents
should be capable of acting autonomously if emergent
behavior is detected. Therefore, the agents should be able to
explore the event logs generated by itself and other agents.

Requirement 5 (System performance evaluation). Since
the way how agents make decisions may depend on the
behavior and decisions of other agents, the overall system
performance can be improved if the agents are aware of
their decision’s impacts. The application of process mining
techniques will enable the agents to discover these overall
system performances by exploiting the event logs generated.

Requirement 6 (Strategic decision support). The empow-
erment of intelligent agents with process mining techniques
should support strategic modeling by taking into account
emergent behavior. Instead of designing a MAS that is
robust to any type of disruption, the main focus is how to
adapt the system under changing circumstances. Therefore,
the architecture should provide real-time understanding of
decision impacts on both the agent’s individual goals and
the overall system’s performances.

IV. AGENT-BASED PROCESS MINING ARCHITECTURE

According to the specified requirements in the previous

section, the acquisition and analysis of event logs should

enable intelligent agents to act autonomously on emergent

behavior. The development of such an agent-based process

mining architecture requires an integrated overview of new

hard- and software components. Therefore, we have de-

signed the enterprise architecture as presented in Fig. 3,

which is in compliance with the ArchiMate 3.0.1 guidelines

provided by [41]. Our presented architecture enables real-

time modeling of dynamically changing environments.
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Figure 3. Agent-based process mining architecture

In our architecture, real-world systems are emulated by

means of intelligent agents (e.g., computer systems or human

operators). These agents represent (virtual) entities of a sup-

ply chain, such as machines and IoT devices. We empower

each agent with sensing, processing, and communication

capabilities to acquire (in real-time) event logs of their

operations (requirement 1). The connection of these devices

to a communication network facilitates agent collaboration,

but also creates a repository of event logs that data-driven

algorithms can exploit in their search for emergent patterns

(requirement 2). Event logs are registered in XES file format,

which enables agents to exchange information with each

other. Therefore, it is relatively easy to expand the MAS

with new types of sensing devices, as long as they can

register their transactions as XES files or similar file formats

(requirement 3). The architecture not only allows to capture

emerging behavior from the decentralized agent-based de-

cision units, in the form of event logs and process models,

but the architecture also stimulates autonomous decision-

making of the agents (requirement 4). This behavior arising

from the mutual agent interaction can also be shared via

service interfaces (requirement 3 and 4). In turn, process

mining can assess the validity and impact of the strategies

employed by the agents on the overall system (requirement

5). Thus, the architecture can be used to analyze the impact

of agent intelligence and thereby evaluate the system-wide

performance (requirement 6).

The resulting agent-based process mining architecture in

Fig. 3 includes a hardware layer (green components) with

three main components: (1) IoT devices for the acquisition

of (real-time) event logs, (2) a server center that facilitates

a repository of all the agents’ event logs, and (3) a commu-

nication network that enables agents to connect with each

other and the database. These hardware components support

the operations within the corresponding software layer (blue

components), which includes two main components: (1) the

intelligent agents, who will autonomously make decisions

to fulfill their predefined interests and goals, and (2) the

application of the process mining tool to gain insights in both

the individual agent performance and system performance.

This synergistic interaction between the intelligent agents

and process mining tools is one of the key components of

our presented architecture. The essence is that we have on

the one hand, the ‘virtual world of agents’ represented by

the intelligent agents and, on the other hand, the ‘real world

of process models’ represented by process mining tools.

An agent can update its perception based on the emergent

behavior detected within the process models created and, as

a response, adjust its behavior accordingly.

V. LOGISTICS CASE STUDY

This section presents an application of the presented

architecture in a practical supply chain logistics case study.

This case study demonstrates the efficacy of the architecture

to solve a commonly known problem in the logistics field.

First, we introduce the case, then describe some preliminary

design choices, representing a blueprint for the experiments

to be conducted.
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A. Case description - simplified job-shop scheduling prob-
lem

A classical problem in the operations research literature, is

the so-called job-shop scheduling problem [42]. In this prob-

lem, a set of n jobs J1, J2, ..., Jn needs to be processed on

m machines M1,M2, ...,Mm in the smallest total makespan

(i.e., the time it takes to process all jobs). Each job j ∈ J
must be processed in a given sequence of i ∈ I operations

O1j , O2j , ..., Oij , known as precedence constraints. Each

operation Oij is assigned to a unique machine mij and must

be processed during pij non-negative units of time without

any interruption. A machine can process at most one job at

a time.

The consideration of this use case is motivated as follows.

First, this problem is widely known in literature. The prob-

lem is known to be strongly NP-hard [42]. This is a typical

situation in which detection of emergent behavior could be

particularly useful for (business) process improvement goals.

Second, literature about practical use cases with appropriate

datasets is limited available in the field of supply chain lo-

gistics. In particular, cases where agent configurations, their

performance, and their ability to learn is explicitly addressed

are not available. Third, the problem context is (relatively)

simple to comprehend in comparison to many large scale

industrial settings. Although the classical variant has become

less popular in industry, with some minor modifications to

the case study, the problem will quickly become suitable to a

larger set of more sophisticated variants. Fourth, the goal of

this paper is not to find the best solution for a particular

logistics problem instance, but rather to demonstrate the

usability of our architecture.

We focus on a simplified job-shop environment in which

Automated Guided Vehicles (AGVs) will operate and carry

out transportation tasks from and to the machines. The

job-shop factory produces three different product types and

consists of four machines. Each machine is dedicated to one

activity only. A different sequence of activities is required

for each product type (see Fig. 4 and Table I).

A single-lane track is installed that connects the four

machines with each other. The flow is bidirectional and

follows a single loop configuration. In a single loop, the

vehicles travel in only one loop without any shortcut or

alternative routes [43]. Multiple AGVs are used for moving

products between machines. The track is closed such that the

in

M1 M2

M3 M4

out

J1

J2

J1

J1

J3

J3

J2
J3

J1

J3

J2

J2

J3

Figure 4. A simplified representation of the considered job-shop layout

Table I
JOB AND MACHINE DATA JOB-SHOP SCHEDULING PROBLEM

J u1j u2j u3j u4j pij , ∀i (minutes)

J1 M1 M2 M4 - μ = 1, σ = 0.15
J2 M1 M3 M2 - μ = 1, σ = 0.15
J3 M3 M4 M1 M2 μ = 1, σ = 0.15

outer ends are connected with each other (carousel layout,

see the depiction of the track in Fig. 6). Furthermore, there

is a product entrance location (M0) and departure location

(M5). The stations are positioned sequentially next to each

other near the track in this sequence: M0, M1, M2, M5, M3,

M4. The distance in-between each machine in that ordering

is fixed to 10 meter and M0 is counterclockwise connected

with M4. Thus, the total track distance is 60 meter. In

this configuration, it is likely that vehicles interfere because

of collision avoiding manoeuvres, resulting in interesting

patterns that could emerge. Besides that, the prioritization

of jobs at the machines and assignment of tasks to vehicles

should be considered.

B. Architecture validation approach

Before we can test our designed agent-based process min-

ing architecture, we specify some design choices regarding

the specification of agents and agent-control rules.

In this job-shop representation, we identify three intelli-

gent agent types: (1) machine agent, (2) AGV agent, and (3)

product agent. The machine agent handles the processing

and queuing of jobs at the machine (and entrance/exit).

The AGV agent determines the actions carried out by the

AGV. The product agent represents the product itself. More

agent types could be defined, but considering cohesion and

coupling criteria and the illustrative purpose of this case

study, we will only use the aforementioned agent types.

Event logs for these agents are generated as input for the

process mining tool. An example is given in Table II.

Regarding the decision rules and agent relationships, we

decide to focus in this study on demonstrating the interaction

among one process mining tool that collects all event data

from the individual software agents (machine, AGV, and

product). Even though the software agents can be equipped

with sophisticated self-learning capabilities, we use simple

rules for each of these agents to demonstrate the feasibility

of our artifact (see Section VI). The reason for not studying

other configurations, is that there is a myriad number of

mixed/hierarchical agent control approaches possible that

can be evaluated and optimized to some degree. As said

before, the purpose of this case study is not to thoroughly

examine all possible agent scenarios, but to illustrate the

working of our architecture. Besides that, process mining

approaches and tools capable of supporting this way of

experimenting is limited. Future work could consider the

study of the optimal design of agent design and control rules.
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VI. ARCHITECTURE VALIDATION

A. Type of simulation

To investigate the implications of alternative agent con-

figurations and the outcome of various process mining

algorithms, we use simulation. Simulation can be used to

systematically evaluate a wide spectrum of model settings

and to study the long-term behavior [44]. Another reason for

using a simulation model is that we can strictly control the

environment and we can, to some extent, verify the process

models and results. That is, the mined process models can

be used to verify the simulation model, but also vice versa.

More specifically, discrete-event simulation is used. This

type of simulation can only change its state at a countable

number of points in time [44], which is useful for event

log generation. To mimic the distributed decision-making

in practice, we consider agent-based simulation, which is a

special form of discrete-event simulation [44]. This model

is able to generate event logs. In turn, these event logs are

used to establish process models.

B. Simulation setup

We will use a simulation model to evaluate multiple sys-

tem configurations by adjusting the considered AGV agent’s

decision rules. We filter the event logs to discover a process

model (Petri-nets), including some performance/quality met-

rics. This experimental approach is visualized in Fig. 5. We

conclude this section by giving an account of the numerical

results.

C. Agent-based planning and control scenarios

Two different agent-control rules are considered. Besides

that, we vary the number of AGVs in the system, which

we also consider as part of considered scenarios. The other

two set of rules are related to the AGV planning and control

and are similar for each AGV. We consider three scenarios

per set of rules, so in total there are 27 combinations of

scenarios possible:

1) Number of vehicles: 4; 5; and 6;

2) Vehicle driving direction: (1) forward; (2) backward;

and (3) forward and backward;

3) AGV dispatching: (1) random; (2) longest waiting

vehicle; and (3) nearest vehicle.

Agent-based 
simulation model Event logs

Mined process 
models

Generate and
filter event logs

Discover process
models

Performance/
quality analysis

Figure 5. Experimental setting

D. Simulation model

A simulation model is developed to assess the agent

performance and the system-wide performance. The model

is built in ‘Tecnomatix Plant Simulation’ [45]. A snapshot

of the simulation’s graphical user interface (GUI) is shown

in Fig. 6. All experiments are simulated for one complete

day (24 hours), the corresponding event logs are saved in

CSV format for further processing.

E. Simulation assumptions and simplifications

Note that the simulation model forms an abstract rep-

resentation of the case study presented earlier in Fig. 4.

Consequently, several assumptions and simplifications are

required to run the simulation model properly. We recorded

details of the assumptions and simplifications based on dis-

cussions during the modeling. The AGV related assumptions

and simplifications are discussed first, since all experimental

factors include AGV agent-control rules only:

• The AGVs always move with a speed equal to 1.0 m/s;

acceleration and deceleration is excluded;

• All AGV dimensions are equal to 1 meter only;

• An AGV can only accept a new transport request:

– if one or more products require transportation;

– if the AGV is idle.

• An AGV will only drive:

– if a transport request is assigned to the AGV;

– if the vehicle dodges for another activated vehicle;

– if the road in front of the AGV is not blocked.

• An AGV will pause:

– if no transport request is assigned to the AGV;

– if the AGV successfully unloads its content at the

product’s destination;

– if its front road is blocked by another paused AGV.

• An AGV will always finish its transport request before

it is allocated to a new job;

• AGVs will apply the same collision control:

– a moving AGV may always push an idle AGV

temporarily forward;

– priority is randomly allocated if the collided vehi-

cles are both moving.

Figure 6. Graphical user interface of the simulation model
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The AGV related assumptions and simplifications ensure

that the AGVs can move around without any potential

deadlocks. Some new levels of abstraction are also required

for validation purposes:

• The factory’s track length is equal to 60 meter in total,

while the departments’ input/output (I/O) points are

equally distributed over the track:

– the product entrance is located at 0m;

– the product departure is located at 30m;

– the I/O points of all four machines are located at

10m, 20m, 40m and 50m respectively.

• The distances between AGVs and I/O points are deter-

mined based on the front position of the vehicles;

• There is no downtime included for all resources (e.g.,

failures, unavailable assistance, setup, etc.);

• The processing activities of all products are ‘first-in first

out’ sequenced (FIFO);

• All resources can process one product only at the same

time (capacity=1);

• One physical inventory is installed for all arriving

products, the capacity is unlimited;

• Two physical inventories are installed at each machine:

– one input buffer with unlimited capacity;

– one output buffer with unlimited capacity;

• All machines have a normally distributed processing

time (in minutes) with μ=1.00, σ=0.15, minimum=0.00
and maximum=2.00;

• The time between product arrivals is normally dis-

tributed (in minutes) with μ = 1.00, σ = 0.15,

minimum=0.00 and maximum=2.00;

• The type of product arrival (J) is uniformly distributed,

resulting in a probability equal to 1/3 that any product

type is selected;

• All idle products will wait for transportation/processing

in one of the physical inventories installed;

• All products leave the factory at the same sink, no

physical inventory is required before departure.

F. From recorded events to quality/performance metrics

The different set of rules can provide different system

performances. These performances are not directly deter-

mined by the simulation model itself, neither are they

known beforehand. However, the state modifications of both

products and resources are registered into the corresponding

event logs. Therefore, multiple experiments are conducted

to obtain event logs for the alternative scenarios. Table II

gives an example of such an event log. These event logs are

finally exported into the process mining software ‘ProM’

to determine the system’s emergent behavior and overall

performance, which were previously unknown. Our ap-

proach from events recorded in the simulation model to

performance/quality metrics is as follows:

1) Convert the event logs from CSV to XES format:

a) timestamp gives the start time of all activities;

b) product groups all events into traces;

c) activity describes the alternative event classifica-

tions;

d) life cycle decodes the status of the event (start,

complete, waiting, in progress, blocked);

e) resource represents the organizational equipment

required.

2) Filter the event log using Simple Heuristics (i.e.,

remove all traces that are not fully processed yet);

3) Construct the system’s Petri-net by allocating process

discovery algorithms, based on the filtered event logs;

4) Replay the log on the Petri-net for perfor-

mance/conformance analysis;

5) For selected process discovery algorithms, discover

quality/performance metrics of the Petri-net.

G. Process mining algorithms

The following three frequently used process mining algo-

rithms are considered: Alpha (α), Integer Linear Program-

ming (ILP), and Inductive miner. Also, three commonly

used quality metrics are implemented: fitness, precision, and

generalization. The fitness of a model quantifies the fraction

of the log supported by the model, precision quantifies

the fraction not observed in the log, and generalization
quantifies the probability that previously unseen behavior

is supported by the model [46].

H. Results

Various model analyses are conducted. Table III gives an

overview of the results of applying process discovery algo-

rithms using the event logs. The conformance/performance

analysis can be used to simultaneously assess the configu-

rations simulated for potential emergent behavior. The raw

output data of all simulations are also published in [47].

An example of the discovered process model of the

scenario that yields the lowest average throughput time is

shown in Fig. 7. We have addressed only one KPI, while the

obtained process models can be evaluated on a wide variety

of alternative performance/quality indicators. For example,

the Petri-net in Fig. 7 depicts the average throughput time

per activity for all different product types separately. Since

Table II
AN EXCERPT OF THE PRODUCT EVENTS GENERATED BY THE

SIMULATION MODEL

Timestamp Product Activity Life cycle Resource

18-04-19 00:41 ItemA:1 Move Start Saw.Output
18-04-19 00:41 ItemA:1 Move Waiting Saw.Output
18-04-19 00:41 ItemC:3 Painting Complete Paint.Machine
18-04-19 00:41 ItemC:3 Move Start Paint.Output
18-04-19 00:41 ItemC:3 Move Waiting Paint.Output
18-04-19 00:42 ItemB:4 Move In progress AGV:3
18-04-19 00:43 ItemB:4 Move Complete AGV:3
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Table III
RESULTS OF PROCESS MINING ALGORITHMS

ALPHA ILP INDUCTIVE Average

Scenario Fit. Prec. Gen. Fit. Prec. Gen. Fit. Prec. Gen. THb time

411 1a 0.22 0.78 1a 0.91 0.98 1a 0.8 0.98 73
412 1a 0.49 0.7 1a 0.91 0.9 1a 0.8 0.9 212
413 1a 0.26 0.67 1a 0.91 0.97 1a 0.8 0.97 74
421 1a 0.22 0.8 0.99 0.91 1a 0.99 0.8 1a 20
422 1a 0.22 0.68 1a 0.91 0.96 1a 0.8 0.96 107
423 0.68 0.22 0.79 0.99 0.91 1a 0.99 0.8 1a 21
431 1 0.22 0.98 1a 0.93 1 0.98 0.83 1 49
432 1 0.22 0.99 1a 0.93 1 0.98 0.82 1a 132
433 1 0.22 0.98 1a 0.93 1 1a 0.84 1 39
511 0.99 0.22 0.78 0.99 0.91 1a 0.99 0.8 1a 18
512 1a 0.22 0.78 1a 0.91 1a 1a 0.8 1a 21
513 0.99 0.22 0.76 0.98 0.91 1a 0.98 0.8 1a 18
521 0.99 0.22 0.76 0.99 0.91 1a 0.99 0.8 1a 18
522 1a 0.22 0.79 0.99 0.91 1a 0.99 0.8 1a 19
523 0.99 0.22 0.75 0.97 0.91 1a 0.97 0.8 1a 18
531 1 0.23 0.98 0.99 0.93 1 1a 0.84 1 21
532 1 0.22 0.99 1a 0.93 1 1a 0.84 1 33
533 1 0.23 0.97 0.99 0.93 1 0.99 0.84 1 21
611 0.99 0.22 0.76 0.99 0.91 1a 0.99 0.8 1a 18
612 0.99 0.22 0.79 0.99 0.91 1a 0.99 0.8 1a 18
613 0.99 0.22 0.75 0.97 0.91 1a 0.97 0.8 1a 17
621 0.99 0.22 0.78 0.99 0.91 1a 0.99 0.8 1a 17
622 1a 0.22 0.77 0.99 0.91 1a 0.99 0.8 1a 17
623 0.98 0.22 0.75 0.97 0.91 1a 0.97 0.8 1a 18
631 1 0.23 0.98 0.99 0.94 1 1a 0.86 1 21
632 1 0.22 0.98 1a 0.92 1a 1a 0.86 1 21
633 1 0.22 0.97 0.96 0.9 1a 0.98 0.83 1 19

Average 0.98 0.23 0.83 0.99 0.92 0.99 0.99 0.81 0.99 40
aRounded by two decimals.
bThroughput time expressed in minutes.

the main aim of this article is to validate the agent-based

process mining architecture proposed, and not to determine

the optimal multi-agent configuration, we will continue our

discussion with the evaluation of the architecture’s results.

VII. DISCUSSION

Although the considered agent designs and rules are

not comprehensive and should be further scrutinized, there

are some contributions for illustrating the purpose of our

agent-based process mining architecture. The main aim of

the framework is to acquire and analyze event logs to

examine emergent behavior. We will now reflect on the

degree to which the resulting process models can support

the intelligent agents in their autonomous decision-making.

The average throughput time in Table III is a KPI that

we can use to reflect the overall system performance; some

interesting observations regarding emergent behavior can be

Figure 7. Inductive Visual Miner - Scenario 613 (ProM tool)

made by reflecting on this KPI already. For example, we

observe that the throughput times in scenarios with more

vehicles is considerable lower. Except for scenarios 421

and 423 that have a throughput time of roughly the same

order as the scenarios with more vehicles included. We

also observe that the AGV dispatching rule ‘longest waiting

vehicle first’ performs poorly in comparison to the other two

dispatching rules most of the times (e.g., scenario 412, 422,

432, 532). Finally, we observe deviations within the average

throughput times for each scenario, which indicates that the

type of emergent behavior differs for each set of decision

rules allocated. Therefore, process mining may be used for

identifying emergent behavior, since the variability between

the configurations’ KPIs might indicate that unexpected

bottlenecks have occurred. It would be interesting for further

research to see how this type of behavior evolves by taking

into account more or other KPIs.

In general, an acceptable replay fitness is a prerequisite

for performance evaluation [46]. However, properly dealing

with precision is also important. The ILP-miner, for exam-

ple, scores high on fitness and precision, while the Alpha

algorithm scores the lowest on the three metrics. There is

one experiment (423) in which the Alpha miner yields a

significantly lower fitness than for the other experiments. In-

telligent agents should have a wide variety of process mining

algorithms and event data at their disposal (interoperability

requirement), since the complex nature of a MAS results

into a system that is continuously changing. Therefore,

the decentralized decision-making units should be able to

apply an appropriate algorithm to properly act on emergent

behaviour. However, this would require a trade-off between

the process models’ quality/performance metrics and the

algorithm’s run time. It would be interesting to examine this

flexible algorithm selection procedure for further research.

Considering the intelligent agents and process mining

tools, it can be beneficial for an agent to selectively in-

teract with other agents (interoperability and modularity

requirement). For example, the agent may select another

AGV routing priority rule based on some particular perfor-

mance/quality score provided by a process mining algorithm

(e.g., the average throughput times in Table III already

indicated differences between the alternative scenarios).

Similarly, the process mining tool may trigger an agent

to modify its decision to improve the system performance.

The continuous interaction between these agents provides

opportunities for optimal self-learning capabilities. It would,

therefore, be interesting to include machine learning tech-

niques within the agents as well. In addition, our findings are

also relevant for simulation modelers as the generated event

logs by the simulation during the simulation study are a

natural recourse for constructing process models. Lastly, the

often visually appealing process mining models may also be

used for verification and validation of simulation studies, and

stimulate the usability and understandably of non-experts.
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VIII. CONCLUSION AND FUTURE WORK

This study presents an approach to analyze and evalu-

ate emergent behavior resulting from agent-based decision-

making by using process mining. We introduced a holistic

architecture and conducted a simulation study by solving a

job-shop scheduling problem.

The preliminary findings reported in this paper provide

support for the assumption that complex environments, mod-

eled by means of agent-based systems, can be improved by

exploiting the event logs. To the best of our knowledge, our

study is the first to use process mining for the evaluation of

emergent behavior in agent-based models. Another contribu-

tion is that we have developed an integrated overview of the

required hard- and software components for the integration

of both autonomous agents and process mining tools by

the means of an enterprise architecture. In addition, our

simulation approach for the case study in which event logs

are the explicit outcome, contributes to the limited number of

process mining applications available in literature. However,

further (empirical) research should be conducted to validate

the architecture.

The generalizability of the proposed architecture is subject

to certain limitations. For instance, further modeling work

will have to be conducted to employ it in large-scale

(real-world) environments. Event logs often have diverse

characteristics that require additional efforts to improve

performance and scalability. Further research should also

be undertaken to explore how the quality of mined process

models is affecting the performance of agent-based models

and vice versa. For instance, one could tune a particular

discovery algorithm such that perturbations with respect

to the representation bias are minimized. Another fruitful

area for further work is to improve the agent’s autonomous

behavior. The goal-oriented behavior of agents combined

with process mining techniques can lead to synergetic effects

that ultimately improve the algoritmic design of process

mining algorithms [48]. Agents can also benefit from this by

equipping them with self-learning optimization capabilities.

A natural progression of this work is, consequently, to

automate the feedback mechanism, which may be used to

analyze or affect emergent behavior in a more comprehen-

sive manner. Lastly, although this study focuses on a single

application in the field of supply chain logistics, the findings

may well have a bearing on other disciplines.
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