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Abstract 

The paper presents a synthesis approach for pipeline­
like controller structures. These structures allow 10 im­
plement a built-in sdf-tesl in h\:O sessions without allY 
a tra test registers. Hence the additional dewy imposed by 
the test circuitry is reduced, thefault coverage is increased, 
and in many cases the overall area is minimal. too. The 
sd/-Iutilbfe structure for a given finite state machine spec­
ification is derived/rom all appropriate reaiiwtion of the 
machine. A theorem is prowm rhot such realiz.ations can 
be constructed by lManJ of partition pairs. An algorithm 
to dettmnine optimal realitJltions is developed and bench­
mark aperimenrs are presented /0 demonstrate the appli­
cability althe prtsel1ted approach. 

1 Introduction 

The application of microelectronic systems in safety­
critical areas, e.g. in avionics or medicine, demands ex­
tremely high quality standards, and thus refined testing 
techniques. The problem of implementing efficient tests 
providing a complete or very high fault coverage is panic­
ularly difficult for controllers because of their irregular 
structure and the reduced observabi lity and controllability 
of internal states. Conventiona lly the circuit structure for a 
controller is synthesized from a finite state machine spec­
ification performing state coding and logic minimization 
(5 ,6, 12.23,221. But even if advanced synthesis tech­
niques are used to generate sequentially irredundant con­
trollers, the necessary tes t sequences might be prohibi­
tively long lll, 2. 21 ). To overcome this problem ei ther 
additional test functions have to be considered during syn­
thesis or testabi lity feat ures such as built-in self-test 
(BIST) have to be added to the synthesized structure (7. 9, 
I J. With respect to safety-critical appl ications BIST is of 
special importance. since the capabilities for test pallern 
generation and test response evaluation on chip can also be 
used for periodic maintenance tests. 
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Usually the BlST is implemented by so-called multi­
functional test registers like the well-known BILBO which 
are able to work as a system register, to generate test pat­
terns and to compress the test responses by signature anal­
ysis. Such test registers have been developed for mndom, 
detenninislic, pseudo-exhaustive and weighted random pat­
terns (19, 10, 4,25, 171. However, the circuit structure 
obtained from conventional synthesis procedures as shown 
in figure I is not a priori compatible with BIST, as during 
self- testing the register should genernte patterns and evalu­
ate test responses concurrently. 
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Figure I : Result of convenlional synlhesis procedure. 

This kind of parallel self-test, where the signatures are 
used as test patterns, is only feasible in a few cases, but in 
general the required properties of the test patterns cannot 
be guaranteed 11 8, 13]. In most cases the signatures arc 
not exhaustive, (weighted) random or even detenninistic, 
and an additional test register is usually required (figure 2). 
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Figure 2: Typical controller structure with BIST. 

The test register T is only incorporated for test pur­
poses, and it must be transparent during system mode. 
This is a common self-test architecture, for variations see 
also II J. But all these configurations have some serious 
drawbacks: 



1) The number of flipflops must be doubled. 
2) In system mode the test register T must be transparent 

or bypassed. This prolongs the critical path and may 
s low down the system speed of the controller. 

3) There are faults on the feedback lines from R to the 
inputs of C which are not detected, as these lines arc 
not completely exercised during self-test . This holds, 
even if the connections between R and T are tested in 
an additional step. 

The last two disadvantages can be circumvented by dou­
bling not only the Oipflops but also the combinational 
circuitry (see fi gure 3). If both copies of R are initialized 
to the same values, the structure of fig ure 3 implements 
the same machine as the structure of figure I. None of the 
registers needs to be transparent during system mode and 
thcrc is no additional delay imposed this way. The self-test 
can be perfonned in two sessions by alternatively using 
one of the registers for pattern generation and the other for 
s ignature analysis. Moreover, as there is no transparency 
mode or bypassing a complete faul t coverage is possible. 
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Figure 3: Self-testable controller structure with doubled 
system register and combinational circuitry. 

The main drawback of the solution shown in figure 3 is 
the high hardware ovemead. In this paper a synthesis tech­
nique is presented which reduces this overhead by imple­
menting two different combinational networks C l and C2 
and two different regis ters R I and R2 (see figure 4). 
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Figure 4: Optimized self·testable controller structure. 

In general the registers Rand T of figure I to 3 are 
wider than the registers Rl and R2, hence the structure of 
figure 4 needs less nipflops than the self- testable struc­
tures of fi gure 2 and 3. Funhennore, also the combina­
tional circuits C I and C2 are smaller than the original cir­
cuil. It will be shown that in many cases not only fauh­
coverage and speed are increased, but also the hardware 
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overhead for integrating a self-test is reduced. In addition to 
that this architecture is a lso compatible with synthesis 
techniques which use autonomous transitions of the test 
register as system transitions (14]. 

It is important to note that this structure is different 
from structures provided by decomposition techniques 
where the resulting submachines contain internal feedback 
loops [16, 3, 15). In contrast to known approaches trying 
to reduce dependencies between state variables by appropri­
ate state coding the presented work addresses the problem 
already at the fi nite state machine level (24. 8), Based on 
algebraic structure theory for a given fi nite state machine 
specification a realization is constructed which suppons a 
self-testable s tructure as shown in figure 4. S tate coding 
and logic minimization are then applied to this realizat ion. 

The res t of the paper is organized as follows: In section 
2 the notion of fi nite stale machines supporting self­
testable structures is introduced and the problem of synthe­
s izing optimal se1f·testable controllers is staled as an 
optimiUltion problem at the fi nite state machi ne level. 
Subsequently in section 3 the existence of suitable finite 
state mochine realizations is related to the existence of par­
tition pairs wi th addi tional propenies, and an algorithm is 
developed which solves the problem staled in section 2. 
Section 4 provides experimental results. Conclusions and 
comments on future work arc given in section 5 . 

2 Basic definitions and problem 
statement 

In this section the problem of synthesizing self-testable 
controllers is reduced to an optimitation problem at the 
fini te state machine level. To allow a precise problem 
statement first some basic definitions are summarized and 
the notion of fi nite stale machines supporting self· testable 
s tructures is introduced. Throughout this work it is 
assumed that controllers are ru lly speci fi ed as mealy-type 
fini te state machi nes. 

De finition I : A mealy-type fi nite sta te machine 
(fsm) is a 5-tupel M = (S, I, 0, 0, ).), where S is a fini te 
non-empty set of states, I a fi nite non-empty sel of inputs 
and 0 a finite non-empty set of outputs. 0: S X I -i S is 
called the transition (or next state) fu nction and ).: S X I 
-i 0 the output funct ion of M. 

The functions 0 and). are repcesenled by a state transi­
tion table. An entry in row s and col umn i represents the 
values 5(s, i) I).(s, i). This table is sometimes split into a 
next state table and an output table with entries 5(s, i) and 
).(s, i), respect ively. Figure 5 shows an example, which 
is used throughout this paper. 

To guarantee that a finite sta te machine can be imple­
mented by a self-testable structure as shown in figure 4 it 
is necessary to require some addi tional properties. 
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Figure S: Example fin ite state machine specification. 

Definllion 2: Let M = (5, I, O. 6, ).) be a fini te 
st;l te machine. M is called a fini te state machine suppon­
iog a self- testable structure, if and only if there are sets 5, 
and 52 and fu nctions 81: S I X I ~ 52. ~2: 52 X 1-+ 
5 1. such that S =5 , X 52 and O{(s1,S2), i)=(~(S2.i), 
81(S\. i» holds for all s '" (51. 52) e Sand i E I . 

Obviously the straightforward implementation of such a 
finite state machi ne provides a self- testable structure with 
Registers RI and R2 for the sets 51 and 52. combina­
tional circuits C , and C2 implementing the func tions 8 ) 
and ~ and an output function A., 

Self·testable controllers can therefore be synthesized 
frnm finite Slale machine speci licalions in two steps. First 
a linite Slate machine which realizes the specification and 
which supports a self-testable structure is constructed and 
then state coding and logic minimization algori thms are 
applied to Ihis realization. The term reaJization is used in 
Ihe serlSC of definit ion 3. 

Ddinition 3 : Let M = (S. I. O. a . ),.) and M· = 
(S·. I·, 0·, a·, ),..) be two finite state machines. M· 
re"l izes M, if and only if there is a tripel (a. t. ~) of map­
pings a : S -+ S·, I: 1 -+ , . and~: O· -+ O. sueh thai 
a'«(I(s), l (i» ::: (I(a(s, i» and ~(),.·(a(s). lei))) = ),. (s, i) 
holds for all se S and ie I. 

For a given fi nite stale machine several realizations 
supporting self-testa ble s tructures might exist. To obtain 
self-testable controllers with small registers of about equal 
s i7.e the following problem has to be solved : 

OSTR (O ptimal Self-T estable Realization): Let M = 
(S. I. 0, a, ),.) be a fin ite state machine. Find a realization 
M· :II: (5 1' X 52·. " ,0'. a · , ),..) support ing a self­
testable struClUre, such that 

(i) rlog2lS I ' ll + rlog2IS2·11 is minimal. and 

.. I'S\ " I · .. 
(11) IS2.1 - I IS mlDlmal 

for all solutions satisfying (i). 
In the next section a constructive approach to solve this 

problem is presented. 

3 An algorithm for OSTR based on 
partition pairs 

The algorithm proposed in this sect ion constructs 3 

sol ution for problem OSTR by means of partition pairs. 
Before a deta iled description is given the concept of part i-
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tion pairs is repeated shonly and a theorem providing the 
theoretical basis for the JK"C$Cnted algori thm is proven. 

In the following equivalence rela tions on the set of 
staleS S of a fi ni te state machine will always be considered 
as subsets '\. c S X S. This way the set theoretic opera­
tors ,n" (intersection) and "u" (union) are defi ned for 
equivalence relations and there is a partiaJ ordering on the 
set of equivalence relations given by "c" (subset). For an 
equivalence relation'\. c S X S and an element s e S the 
corresponding equivalence class is denoted by (sJ.a,. The sel 
S/'I,. of equivalence classes completely specifies '\.. and for 
convenience we define '\. mostly by 51'\. and nOl by enu­
merating a ll the pairs. 

Definition 4: Let M :: (S. I, O. a, ),.) be a fin ite 
sta te machine. and let '\. , ~ C S X S be equivalence rela­
lions on S. ('\.., ~) is called a panition pair for M, if and 
only if 

(5. t) E 'I,. ~ 'V i e I: (0(5. i), O(t, i» E ~ (') 
holds. If (~, '\. ) is a panition pair, too. then ('\. , ~ ) is called 
a symmetric partition pair. 

Condition (') ensures that the state transition function 
a maps equivalence classes under the relation '\. to uniquely 
detennined equivalence classes undcr~, and thus induces a 
well defined mapping [al: Sf'\. -+ S/~ between the quotient 
spaces. For the solution of problem OSTR symmetric par­
lition pairs are of special interest. The fo llowing theorem 
can be shown: 

Theore m I : Let M :: (S, I. O. a . ),.) be a fin ite state 
machine. Let & denote the equivalence of states and let ('\.., 
~) be a symmetric panition pair for M satisfying'\. f'\ ~ C 

&. Let M· :: (S', ' ., 0', 5·, ),.. ) be defi ned by 
(i) 5·:= 51'\. X S/o., I ' := I . 0' := O. 
(ii) a·«s I . S2), i» :z (52(s2. i). a I (s I , i» with 5 I « [sl'\. , 

i» := [o(s, 010. and li:l((sb" i» ::: laCs. il l'\. and 
(i ii ) )"·«51. S2), i):= 

l).(S,i) i f s l (""\S2 ~ 0andse SIf'\ S2 

o· else 
where o· E 0 is an arbi lrary output value. 

Then M· is a fin ite state machi ne suppon ing a self­
testable structure which realizes M. 

Proor : The fu nctions a l and 52 are we ll-defined. 
since ('\., ~) is a symmetric parti tion pair for M. The func­
tion ),.' is well defined because of '\.. (""\ ~ C &. Obviously 
M· supports a self-testable structure. With mappings ex : 
S -+ S·, a(s) := (Is]'\. , Ish ), 1 : ,-+ I·, I(i) := i and ~ : 
O· -+ 0, ~(o) ::= 0 the equations a·(a(s). l(i» = o:(O(s, i» 
and ~(),.·(o:(s), t(i») = ),. (s. i) hold by defini tion of a· and 
),.', i.e. M' realizes M. 0 

Theorem I is illustra ted by the following example. 
Exa mple I: Figure 6 shows a symmetric parti tion 

pair for the fi nite slate machine of figure 5. It can be eas­
ily verified that for S/'\. '" {( I,21. (3,4}) andS/~ = [ [I, 
41. {2,3 11 cquivaleoce classes under'\. are mapped by 5 to 



uniquely determined equivalence classes under (). and thus 
('h ().) is a partition pair. The same is lrue for «()., "' ) and '" 
n '30 = {(I, I), (2,2), (3,3), (4,4») c c-. 
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3 under ~ 

Figure 6: Effect of ('\., ~) on the next state table of the finite 
state machine of figure 5. 

The resulting mappings 51: SI"- X 1 --+ SI'30 and 52: 
S/(). X 1 --+ Sh, which provide the state transition func­
tion 5"', are shown in figure. 

I ~ I 0 ~ I 0 

[II'\. [21~ [l)~ [II~ 131". r 11'\. 
131'\. [I]~ 121~ [21~ Ill'\. PI'\. 

Figure 7: Tables for 81: SI'\. X I -+ S/~ and 82: S/~ X 1-+ 
S/'\.. 

If[l}" and [Ib. are both encoded by I and [3]", and [2b. 
are encoded by 0, then the conslrucled finite state machine 
M'" = (Sh X S/()., I, 0, 5"', ).."') can be implemented by 
the structure shown in figure 8. 0 

o 

Figure 8: Structure of M·. 

Theorem I has two consequences for the solution of 
problem OSTR. Firstly, there is always a trivial Solulion 
for problem OSTR, since the identity relation «! c S X 
S provides a symmetric panilion pair (.;.<1,.;.d) with .;.1i 
n -i-<! c e. The resulting finite slate machine M'" = (Sli.<t 
X SI.;.d, I, 0, 5"', )...) corresponds to "doubling" the orig­
inal machine as shown in figure 3. Secondly, the problem 
of finding an optimal self-testable realization for a given 
fini te state machine M = (S, I, 0, 5, A) reduces to the 
problem of finding a symmelric partilion pair ("' , ().) with 
'" n (). c e, such that 

(i) rlog2IS!'l.,1 + rlog2IS/().[1 is minimal, and 

ISI"'I 
(ii) I IS!~I - I I is minimal for all pairs satisfyi ng (i). 

To solve this problem a search procedure has bcen de­
veloped which makes use of the lattice structure of the set 
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of partition pairs. In fact. it will be shown that the search 
space can be mainly reduced to so-called Mm-pairs. 

Definition 5: Let M = (S, I , 0, 0, A) be a finite 
state machine and let "', (). C S X S be equivalence rela­
tions on the set of states. Then m("') denotes Ihe c-mini­
mal equivalence relation, such thai ("', m("'» is a parlition 
pair, and M«().) denotes the c-maximal equivalence rela­
tion, such that (M(~),().) is a partition pair. ("',"3.) is called 
an Mm-pair, ifbOlh M«().) ='" and m(",)=(). hold. 

The Mm-pairs for a finite state machine M form a lat~ 
tice, which has been studied intensively by [16J. The Mm­
lattice can be regarded as the skeleton for the set of all par­
tition pairs. The correspondence between Mm-pairs and 
symmetric partition pairs is described by the following 
theorem. 

Tbeorem 2: Let M = (S, I, 0, 5, X) be a finite state 
machine, and let "' , (). C S x S be equivalence relations. 
The pair("', ~) is a symmetric partition pair, if and only if 
there is an Mm-pair ('" "', "3. "') with m«()."') c '" c '" '" and 
().'" c (). C M('\.. "'), which is also a symmetric partition 
pair. 

Proof: Let ("" ().) be a symmetric partition pair. Be­
causc("',"3.) is a partition pair, by (16) there is an Mm­
pair("'· ,().·) with '" c"'· and ().'" C"3.. Since «().."') is 
also a partition pair, ().'" c(). implies «s, t) e ().'" => (s, 
I) e (). ) and consequently ('v' i e I: (O(s. i), OCt, i» e '" 
c "'.) is true. which proves, that «()."', "'''') is also a parti­
lion pair. By [16] this provides m("3."') c '" c ",,,, and ().'" c 
"3.cM("''''). 

If, conversely, Ihere is an Mm-pair ("' •• '30 ") which is a 
symmetric partition pair, Ihcn by [16] ("', ().) with'" c ",,,, 
and ().'" c (). is a partition pair and also ("3., "') with (). c 
M("'''') and m(~"') c "'. 0 

Consequently, if there is no Mm-pair for a finite state 
machine M which is a symmetric partition pair, then there 
is no symmetric panition pair for M. Furthermore Mm­
pairs mostly provide more balanced realizations because of 
." c '" '" and ().. c ().. With respect to problem OSTR it is 
important to note, that for an Mm-pair ("'., ().") the pair 
(m«()."), ()."') has the minimal intersection of all pairs in 
/("', ().) I m{"3."') c '" c ",. and ().'" c (). c M(","')}, i.e. if 
m«()."') n ().. IX e, then'" n (). a. e for all pairs in [("'. ().) 
I m«()."') c '" c",'" and "3.'" C"3. c M("'''')}. 

The Mm-Iattice for a finite state machine M = (S, I, 0, 
0, )..) can be calculated from certain basis relalions PS.I, 
where ps,t :=i.<t U {(s, t), (I, s)} is the equivalence rela~ 
tion identify ing the states sand t in S and distinguishing 
all olher states [16]. Based on the procedure described in 
(16) and on the conclusions drawn from theorem 2 a search 
tree (V, E) for problem OSTR is constructed as follows: 

First the sct JlIl,:= (m(ps,t) I s, t E 51 is generated and 
ordered arbitrarily (J\1. = {m!, m2 .... , }). The nodes of 
the searchtree correspond to subsets J'(' c .m. A node 



JY' new is a successor of a node JY' old, if and only if 
JY' new = JY' old u {mkJ with k > max(i I 'fI'\.i e Jr old}, 
i. e.: 

V ,= :/'(J't) 
E ,= {(JY',. JY'2) E V x V I JY'2 = JY', u {mk} 

with k > max{i I mi e Jrl J } 
The root of the search tree is 0. 
For each node Jr in the search tree '" :: (U JY')I and 

M('I\) are calculated. where ",I denotes the transilille closure 
of a relation "'. By (16] (M(",,). "") is an Mm-pair. If (fI., 
M('I\» is also a partition pair and M(1'.) n 1'. c e, then 
(M('I\),1\.> prOllides a solution for DSTR and the costs 

ISIM(""~ 
r log2 IS1M(fI.)ll+rlog2IS/fl.lland I IS/""I -II 

are calculated. If M(1\.) n fI. a. e. then m(",,) is calculated. 
By theorem 2 (m(fI,). "") is a symmetric partition pair with 
m(",,) n '" c M(",,) n "'. IfmC"") n '" c e, then (m(",,), "") 
is a solution for OSTR and the costs are calculated for this 
pair. Finally the solution with minimal costs is selected 
to realize the specification. 

This basic search procedure is of lIery high complexity, 
s ince the number of nodes in the searchtree is I V I = 

0(2 IS12). But the follow ing lemma provides a criterion 10 
prune the search tree. 

LemmH I; LeI M = (S, I, 0, 6, A) be 1I finite ::;tllle 
machine, and let (V, E) be the search Iree defined above. 
For a node (JY'I, JY'Z) e E let"" I := (U Jr' 1)t and '1\02 
;= (U JY'2)t. Ifm('I\oI) n '1'101 a. e, then m('I'Io2) n ""2 a. e. 

11roof: By definition of the searchtree "" Ie"" Z' and 
by [16] this implies m(n I) C m(""2), and thus 01("" I) n 
'1\0 1 cm(""Z)n'l'lo2. 0 

As a consequence of lemma I, once a node JY' in the 
searchtrec with M(",,) n "" a. e is reached, all of its succes­
sor~ have this property and the subtree rooted at Jr' can be 
diS{;arded. As demonstrated by the experimental results de­
scribed in the next section this leads to an enonnous reduc­
tion of the computational effort. 

4 Experimenta l results 

The algorithm for problem OSTR described in section 3 
has been implemented as a depth first procedure and has 
been applied to most of the fully specified finite state ma­
chine benchmarks distributed for the International Work­
shop on Logic Synthesis '93 [ZO]. The results are shown 
in table I. Column 2 contains the number of states in the 
original finite state machine, and columns 3 and 4 contai n 
the number of stales in the factors S I and S2 of the best 
realization found. Columns 5 and 6 list the required num­
ber of flipflops for a conventional BIST and for a BIST 
with the optimized structure by the presented synthesis 
approach. Except for tbk, for all examples the exact solu-

tion for OSTR could be calculated. For tbk the solution 
obtained within a given timelimit is shown. .... . ... 

Name lSI I Sli I S21 eonll. pipeline 
BIST structure 

bbara to 7 7 8 6 
bblas 6 6 6 6 6 
dkl4 7 7 7 6 6 
dkl5 4 4 4 4 4 
dkl6 27 24 24 10 10 
dkl7 8 8 8 6 6 
dk27 7 6 7 6 6 
dk512 15 14 " 8 8 

'"' 4 4 4 4 4 
,I 20 20 20 10 10 
shiftre 8 4 2 6 3 
to. 4 2 2 4 2 
tbk*) 32 " " 10 8 

Table I: Results of deplhfirst search procedure for OSTR. 
*) timeout 

The practical impact of lemma I on the computational 
effort is demonstrated in table 2. Column 3 lisls the Oller­
all number IV I of nodes in the searchtree for OSTR in 
cuntra.sl to Ihe: number uf nudes that had 10 be investigated 
when pruning the searchtree according to lemma I 
(column 4). 

# nodes 
Name 151 IVI inllestigated 

bbara 10 243 815 

bbtas 6 2" J75 

dkl4 7 2 '0 
" dkl5 4 24 7 

dk l6 27 2206 337041 
dk l7 8 220 63 

dk27 7 2" 203 

dk512 15 256 343853 

mo 4 27 13 

" 20 2162 323 

shiftreg 8 28 4' ,,. 4 27 47 

Table 2: Impact of lemma I on the computational effon. 

The results in table I show that for eight examples a 
nontrivial solution for OSTR, i.e. a solution with I S I I 
< IS lor IS21 < IS I, could be found. For shiftreg and 
tav even the lower bound IS I I IS21 = IS I is 
achieved. In these eight examples the combined networks 
C I and C2 need to implement less state transitions Ihan 



the original network C. Dependi ng on the implementation 
style significant hardware savings are obtained compared to 
si mply doubling C as shown in fi gure 3, whereby the 
advantages wi th respect to fault coverage and speed are 
retained. In four examples even the number of flipflops 
required for a self~lestable pipelined controller is smaller 
than the number required for a conventional BIST. 

5 Conclusions and fu ture work 

A method has been presented for implementi ng self~ 
testable contro llers wi thout doubling the system registers 
during test mode. The proposed pipeline- like structure does 
not contain any d irec t feedbac k loops and is partitioned by 
two system registe rs. During self- test these registers per­
form test pattern generat ion and signature analysis a lterna­
tively. This architecture reduces the delay imposed by by­
passing test rcgisters and increases the fault coverage. 

A synthesis procedure has been presented for generating 
min imal pipelined realizations from state transition dia­
grams. In most cases th is optimized solution is superior 
to simply doubli ng the registers and combinational net­
works, and in many cases the number o f flip fl ops is less 
than il is required for a conventional SIST. This indicates 
that not only higher speed and fau lt coverage is obtainable 
this way, but also area can be saved. 

Fultire work will concentrate on modifyi ng the state 
transition d iagram to obtain func tionally cquivalent ma­
chines whose self-testable reali7.ations lead to better solu­
lions of problem OSTR. 
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