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Abstract: A new realization algorithm is proposed t o  
synthesize asynchronous hazard-free circuits directly from 
STGs with underlying free-choice Petri nets. Based on 
signal lock relation and MG-decomposition approach, the 
synthesis method does not use state diagram and there- 
by maintains problem size polynomially proportional to 
the number of signal only. Moreover, the synthesized cir- 
cuits are guaranteed t o  be hazard-free under unbounded 
gate-delay mode without any post-realization analysis and 
modification. A sufficient condition for hazard-free real- 
ization is also derived based on the signal lock relation in 
STGs. The high-levelness of this condition allows easier 
manipulation of specification for realizability. The pro- 
posed direct-synthesis algorithm has been shown successful 
on over thirty academic and industrial examples. 

1 Introduction 
The asynchronous circuits feature the advantages of clock- 
skew-freeness as well as low peak power over the syn- 
chronous ones. These advantages are expected to become 
more significant as the progress of semiconductor technol- 
ogy induces even denser and more complex circuits. How- 
ever, asynchronous design has more inherent difficulties 
than synchronous design, mainly on specification size and 
hazard problems. Many techniques have been proposed 
to automate the design process. Early techniques are well 
surveyed in [I, 21. A good introduction to some modern 
techniques is given in [3]. 

The asynchronous design studied in this paper starts 
from a raphical specification, Signal Transition Graph- 
s (STGST [4, 61. The general STG synthesis procedure is 
comprised of the following two phases: (1) ensure that the 
STG is feasible for realization; and ( 2 )  synthesize for each 
non-input signal explicitly [7] or implicitly [8] from the 
corresponding state diagram of the STG using Boolean 
minimization. To ensure hazard-free realization, method- 
s have also developed under different delay models. In 
[a], bounded wire-delay model is assumed. The circuit 
delays and pre-assumed environment delays are used t o  
verify and modify for hazard-freeness by a post-realization 
procedure. The resultant circuit naturally is subjected t o  
reverification and remodification for different environment 
and new technology t o  implement circuits. On the oth- 
er hand, for unbounded gate-delay model as in [5, 9 ,  l o ] ,  
the hazard-freeness of circuit remains independent of the 
implementation technology. However, their sufficient con- 
ditions t o  ensure hazard-free realization are all based on 
state diagram. These conditions are difficult to apply to 
the original higher-level description on STG. 

In addition to the above hazard-freeness problems, the 
state diagram synthesis of existent methods also presents 

a potential difficulty. Since the size of state diagram is 
exponential with respect to signal number, the time com- 
plexity of the synthesis process is also potentially ex o- 
nential with respect to the number of signals. In [llf a 
realization algorithm was proposed to synthesize hazard- 
free asynchronous circuits directly from STGs with under- 
lying marked-graphs and each signal having exactly one 
rising and falling transitions. The entire synthesis pro- 
cess is wholly on STG domain, i.e. without usin state- 
diagram, and the realized circuits are ensured of tazard-  
freeness without post-realization modification. The work 
in this paper is a generalization of [ll] t o  STGs with under- 
lying free-choice Petri nets and multiple rising and fallin 
signal transitions. The  synthesis approach based on S T 8  
domain also can be found in [12]. However, their works 
did not concern physically hazard-free implementation and 
were restricted to STGs without free-choice behaviors. 

In next section, background for STG approach and tran- 
sitive lock relation will be briefly reviewed. Then the 
overview of our synthesis approach will be given. The  ker- 
nel procedure in our method, permissible cube eztraction, 
will be described in Section 4. The sufficient condition, 
strong transitive lock relation, is also proposed to ensure 
the hazard-free implementation. Then an algorithm based 
on MG-decomposition approach will be proposed t o  sovle 
STG with conditional (free-choice) behavior. Finally, we 
will give our evaluation results on over thirty examples and 
then the conclusion. 

2 STG and Lock Relation 
A signal transition graph, STG, can be viewed as an inter- 
preted Petri net in which each event(transition) is a signal 
transition of asynchronous behavior[4]. In an STG, the 
places of single fanin and single fanout of the underlying 
net are removed and only two types of nodes are retained: 
the signal transitions and the multiple fanin or multiple 
fanout places. The transitions of a signal a,  denoted by 
a+ and a-, are the rising and falling transitions respec- 
tively. And t,, can be rising or falling transition of a. A 
signal in an STG may contain two or more transitions. If a 
signal contains only two transitions, then it is sin le cycle; 
otherwise it is multi-cycle. For such a multi-cycfe signal, 
/number(e.g. a+/ l ,  a+/2) is used t o  distinguish its indi- 
vidual transitions of the same direction. In an STG, if a 
transition 11 directly enables another transition t a ,  we de- 
note it by 21 -+ t 2 .  And tl + t z  ... + t k  implies t l ,  t z ,  ... t k  
are in a simple directed cycle with these transitions occur- 
ring in the order of their indexes. 

The complexity of an STG is classified according t o  it- 
s underlying Petri net. The STG under our considera- 
tion has an underlying free-choice Petri net, denoted as 
STG/FC, which allows conditional behavior to be mod- 
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eled. The  conditional signals are restricted t o  be input 
signals. A live and safe free-choice Petri-net can be cov- 
ered by a set of live and safe MG-components and SM- 
components[4]. A Marked Graph(MG) is a net in which 
each place has at most one fanin and a t  most one fanout. 
In other words, such STG, denoted by STG/MG, has all 
its places removed. By duality, a State Machine(SM) is a 
net in which each transition has a t  most one fanin and a t  
most one fanout. The  MG can model concurrent behav- 
ior and SM model conditional behavior. The STG/MG 
plays a major role in our MG-decomposition approach for 
realization theory. In an STG, two transition t ,  and tb 
covered by the same MG-component are said to be or- 
dered if 1, j 1,; otherwise, they are concurrent. And if 
they cannot be covered by any MG-component, they are 
in conflict. 

In order to be successfully synthesized, an STG should 
possess certain properties which are summarized in the fol- 
lowing definition [4]. Although this liveness property has 
been shown to be not necessary by [13] in general real- 
ization, the relaxed conditions are given on state diagram 
and ensure the hazard-free realizations only when delay is 
concentrated on the outputs of complex gates. 
Definition (Liveness): An STG is live iff 

(1) the underlying Petri net is live and safe, 
(2) every SM-component contains exactly one token, 
(3) for each signal a, transitions t,s in the same MG- 

component are ordered, and a+ and a -  occur alternately. 
The interpretation of these properties can be found in 

[4]. The second requirement is particularly useful in the 
analysis of STGs. Reports from [14, 151 showed that tran- 
sition relations such as t; j t j  j t k  in such live STG can 
be evaluated by a table lookup mechanism in 0(1) time 
after a preprocessing phase which needs 0 p)  complexi- 

discussions, the complexity of other procedures are estab- 
lished based on this 0(1 operation. In addition t o  live- 

be described along with the realization algorithm. 
In an STG/MG, special relations between signals will 

be shown t o  have significant impact on the realizability. 
Definition (Lock): In a live STG/MG, there is a lock 
relation between single-cycle signals a and b ,  denoted as 
a L b ,  iff 

Definition (Transitive Lock): In a live STG/MG, there 
is a transitive lock relation between single-cycle signals a 
and b ,  denoted as a Lt b ,  iff 

a L b V a L' c A c Lt b ) ,  where c is another single-cycle 

In 6, 16, 171, it  was shown that the transitive lock is 

present work, the transitive lock relation will be further 
used to derive circuit implementation. 

ty, where T is the number of transitions. T 6 roughout our 

ness, there are other con d itions to be satisfied, which will 

(a+ + b+ =+ a- =+ b - )  V (a+ + b -  j a- =+ b + )  

signal in S 4? G. 

a su ti4 cient condition for complete state coding. In the 

3 Overview of Our Synthesis 
Approach 

Our hazard-free realization of asynchronous circuits is 
based on collecting appropriate sets of signals for a re- 
alization circuit model. We will firstly describe the circuit 
model and then the main steps of our synthesis procedure. 

, I -  & 
# U  

Figure 1: A realization circuit model for a signal with n 
rising transitions and m falling transitions. 

two AND-OR subcircuits to set and reset the memory el- 
ement. For simplicity, the memory element is assumed to 
be an SR-latch, although an C-element is preferred if de- 
lay hazard is t o  be completely avoided. Note also that 
when special situation arises, the realized circuit can be 
reduced into simpler circuit, such as combinational one or 
AND-only subcircuits. 

In the circuit model, we let each AND gate responsible 
for the activation of one and only one transition of the syn- 
thesized signal, f. To ensure hazard-free implementation, 
each AND gate for its associated t f ,  ANDt , ,  will satisfy 
three requirements: 

( 1 )  ANDt ,  covers all states enabling the associated t 1;  
(2 )  A N D t ,  must be set off before the nezt transition of 

f is enabled;' 
(3) Once A N D t ,  is set off, A N D t ,  remains off until 

the associated t f is enabled again. 
An OR gate then collects all the outputs of ANDs for ris- 
ing transitions to set the latch and the other for falling 
transitions to reset the latch. 

The function of a signal f implemented with this model 
can be expressed as f = S f  + f R f ,  where S f  = C u b e f + l l  + 
... + C u b e f + l n  and Rf  = C u b e f - , ,  + ... + Cube, - l ,  and 
each Cubet, is the associated cube (AND) for transition t f .  
From this expression, the functional correctness of the cir- 
cuit model can be easily justified. To avoid delay hazards, 
SR-latch is replaced with a C-element attached with a in- 
verter to the reset terminal. The formal proof for function- 
al correctness and hazard-freeness for the circuits of signals 
imdemented with our realization model can be found in 
[ltij. 

3.2 Synthesis method 
The main task of our synthesis is t o  extract appropriate 
cubes to satisfy the three requirements for our realization 
model. Permissible cube, defined later, can be used to sat- 
isfy those requirements. By signal transitive lock relation 
well defined on STG/MG, we can extract permissible cubes 
directly from STG domain. For STGs with free-choice be- 
haviors, based on that a live STG/FC can be covered by a 
set of live STG/MG, an MG-decomposition approach will 
be used to decompose the original problem of STG/FC 
into some subproblems on STG/MGs. Then subcircuits 
derived from STG/MGs are integrated to fit our realiza, 
tion model. The main steps for synthesizing a signal f can 
be summaried below. 

3.1 Realization Circuit Model 
Our realization circuit model for each non-input signal is 
shown in Fig. 1, which consists of a memory element and 
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1. For each transition t f ,  
1.1. Decompose cube extraction into some subproblems 

on STG/MGs;  
1.2. Derive permissible cubes from STG/MGs  by tran- 

sitive lock relation; 
1.3. Integrate subcircuits from STG/MGs  to meet cube 

requirements. 
2. Fit each cube into the realization circuit model. 

4 Permissible Cube Extraction 
on STG/MG 

The main task of our synthesis is t o  extract appropriate 
cubes t o  satisfy the three requirements for the realization 
circuit model. The  extraction will be performed on STG 
domain rather than state diagram. We will firstly derive 
the characteristics of permissible cube, which promise us 
to have requirements transformed from stat-diagram to 
STG domain for constructing our realization circuit model. 
Then the theoretical results for the identifying of permis- 
sible cubes based on transitive lock are described. 

4.1 Permissible Cubes 
We will first ive the definition of permissible cubes and 
then discuss t i e  means of identifying these cubes directly 
from STG/MGs. 
DeAnition (Permissible Cube): A cube is permissible if 
its covered states in the corresponding state diagram of 
STG/MG all are connected. 

The main property of the permissible cube is shown be- 
low whose proof can be found in [la]. 

Lemma 1: A cube z1z2...zn is permissible for a live 
STG/MG iff in the corresponding state diagram, any path 
(firing sequence) starting from a state in the cube and then 
causing the cube value to change twice must fire each tran- 
sition of signals z1,22, ..., z,, equal times. 

Take the example in Fig. 2 to show the above, where 
Fig 2(b) is the corresponding state diagram of the STG in 
Fig. 2(a) encoded with total signals [4] and Fig 2(c) is the 
corresponding lock 6raph in which arc represents lock rela- 
tion. Ti Ed is a permissible cube because its covered states, 
0001 and 0101, are connected. Then it is seen that any 
paths from the state 0001 (0101) to 0001 or 0101 will con- 
ta ineachofa- /1 ,  a + / l ,  a - / 2 ,  a + / 2 ,  e+, c--, d + , d -  
equal times. Furthermore, the firing of these transitions 
will enable b-  again. Another cube, ad, is not permissible 
because its covered states are separated into two discon- 
nected sets, (1101) and (1001, 1011). 

Note that the permissible cube is not defined for specific 
transitions. But for a cube which has satisfied requirement 
(1) and (2) for a transition, if it is permissible, then it can 
meet our realization model. It is nontrivial to derive cubes 
for requirement (1) and (2). We are to derive theoretical 
results for extracting permissible cubes directly from STG 
domain. In our realization algorithm, permissible cubes 
are derived from simpler cubes based on transitive lock re- 
lation as stated in the following lemma. 
Lemma 2 [Ill: 
(1) For a live STG/MG, the nonempty intersection of two 
permissible cubes which have a t  least one common literal 
is also a permissible cube. 
(2) Let zl and z2 be two single-cycle signals in a live 
STG/MG. If 11 L 22, then the four cubes: (21, E)  x 
( 2 2 ,  2 2 )  all are permissible. 
(3) Let z1, 22 and y all be single-cycle signals in a live 
STG/MG. If z1 L y and y L 22 and let the two transi- 
tions of z1 and zz between y+ and y- be z1+ and zz+ 

- 

c- woo - 1 atn 
1 MO 

Figurt'2: (a) An S T G h G  example and (b) its state dia- 
gram and (c) its lock graph. 

("2, z-), then the cubes z1z2 and K (Kz2 and 
2122) are permissible. 

Let us take the STG example in Fig. 2 to show these 
applications. Because of b L d,  by Lemma 2(2), bd, a, 
bd and b 2 are all permissible. And because of b L d L c, 
by Lemma 2(3), b? and bc are both permissible. Then by 
Lemma 2(1), bcd, bc 2, bcd and b d  all are permissible. 

For multi-cycle signals, single-cycle transformation[l7] 
can be used to derive permissible cubes with multi-cycle 
signals from cubes of i ts  transformed single-cycle signals. 
For the example in Fig. 2, si nal a can be transformed 
in odd-order to be (a1+, a1-8 = (a + /1, a - /1) and 
(az+, a*-) = (a + / 2 ,  a - /2), and in even-order to 
be (ai-, ai+) = (a - / I ,  a + /2) and (a;-, a;+) = 
(a - /2 ,  a + /l). Note that the above orders are reversed 
when the opposite polarity of signal is taken, e.g., even- 
order for signal a is odd-order for ii. A transformed single- 
cycle signal of even odd) order will remain high(1ow) when 

Consequently, the ANDing( Oring) of all even-order(odd- 
order) transformed signals is behaviorally equivalent t o  the 
original multi-cycle signal. For instance in Fig. 2, a = aiai 
and a = a1 + az. Then permissible cubes with multi-cycle 
signals can be derived from cubes of its even-order trans- 
formed signals. For example in Fig. 2,  since a i 2  and ai& 
are permissible, a{ a;& is permissible, and therefore a& is 
permissible. Note also that a i 2  and a;& both can cover 

transitions occur I or other transformed sibling signals. 

a&, 

4.2 Procedure for Permissible Cube 
Extract ion 

We now present the procedure to extract permissible cubes 
for certain transitions. To ensure the success of the per- 
missible cube extraction, the given live STG/MG should 
satisfy certain conditions. To define this, we first introduce 
semi-lock, L' .  A single-cycle signal z transformed from a 
multi-cycle signal m z ,  is said to has La relation with a 
transition f+, if I+ =+ f+ =+ z-, and in addition, all 
transitions of m z  are ordered with f+ and neither transi- 
tion of mz occurs between I- and z+. For example in Fi . 
2,  has L' relation to b - ,  but not t o  c+ because a + f2 
is concurrent with c+. Another example, a2 does not have 
L' relation to d - because a + /l and a - /1 occur between 
a2- and az+. In the following definition, single-cycle may 
be original or transformed from some multi-cycle signal. 
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Definition ( S t r o n g  Lt):  In a live STG/MG, a single- 
cycle signal 21 has strong L* relation t o  another single- 
cycle signal f if (1 21 La f +  and (2) 21 Lt f with 11 L l a ,  
2 2  L 2 3  ,..., z,, L ]such that Vi, i = 2, ..., n-  1, z i  L' f +  
or a 2,. is concurrent with f +  while zi-1 Ls f +  and 

With strong L', we can now describe our procedure 
shown in Fig. 3. In step 2 ,  the permissible path is the 
path which satisfies the second condition of strong L' def- 
inition. In step 4, the literals of transformed signals are 
directly replaced with multi-cycle signal literals. This re- 
placement may cause multiple pulse during the positive 
period defined by the cube before replacement. This 1s 
checked and removed in step 5. If required, the intersec- 

z;+1 L" f+.  

t o  reduce the covering t o  just cover 
of t j  such that multiple pulse is im- 

possible. The  selection of signal phase, ( a  or E), can be 
easily determined according t o  which phase holds during 
the enabling of t j .  For example, if a+ + t f  + a- ,  a 
should be used in the realization. 

The correctness of this procedure is established in the 
following theorem, whose proof 
the theorem, the t r a n s f o r m e d  
enabling transition is composed of this enabling transition 
and its preceding inverse transition and the t r a n s  f ormed 
single-cycle signal of the enabled transition is composed 
of the enabled transition and its succeeding inverse transi- 
tion. 

T h e o r e m  1: Given a transition t f  in a live STG/MG, 
if all the t r a n s  f o r m e d  single-cycle signals of its enabling 
transitions have strong Lt relation t o  the t r a n s f o r m e d  
single-cycle signal for t i ,  then Cubet ,  derived from Pro- 
cedure E;ctract_Cube(tf, S T G / M G )  satisfies the require- 
ments for our realization model. 

E x t r a c t - C u b e ( t 1  , S T G / M G ) :  
(Given a live S T G / M G  and a transition t f whose enabling 
transitions satisfy the condition of Theorem 1. L G  is the 
corresponding lock-graph of S T G .  Let f j be the single-cycle 
signal composed of t and its succeeding inverse transition 
and all enabling transitions o f t  f be si+, ..., sn+. ) 

1 .  Let CubetJ  be a universal cube. 
2. Foreach si, ,  k=l,  2 ,.., n. { 

Select a shortest permissible path from s k to  f j  o n  LG 
Let  this path be q o ,  q i ,  ..., q i + i ( q o  = sk, qi+i  = f j ) .  

For lwp  i = 0 to I ,  { 
Remove literals q ;  from F,, unless qi L' t f ;  
i = ii-1. 

}endforloop 
Cubet, = Cubet f  n F,,. 

Fa, = q o q l . . . q r .  

} endforeach 

J :  
3. Cube:, = Cubet 
4.  Update Cubet  wrth multi-cycle signals. 
5. For each mud-cyc le  signal m in Cube  t,, 

i f t f  = f+, Cubet ,  = Cubet, n f; 
otherwise Cubet ,  = Cubet, n f 

if m+ occurs during the positive period of Cube i f ,  - 

6. Return(Cubet ,). 

Fi ure 3: Procedure 
S'fG/MG. 

for extracting permissible cubes on 

The time complexity of above procedure is mainly on the 
selection of the shortest Dath in steD 2. Since there is at 

is constant, where T is the number of transitions in STG. 
This time complexity does not include the the derivation 
of Lock-graphs preprocessed for all signals, which is O('10) 
in the worst case [15, 141. 

5 Realization Algorithm for 
STG/FC Based on MG- 
decomposition 

With the kernel procedure stated in last section, we now 
propose the MG-decomposition approach t o  synthesize cir- 
cuits for STGs with free-choice behaviors. The  cube ex- 
traction is decomposed into some subproblems on a set 
of MG-components of STG/FC. Each subproblem will be 
treated by the techniques in last section. Then those sub- 
circuits will be easily integrated to meet realization model. 
In our subsequent discussions, we mainly consider the class 
of STG/FCs in which only one MG-component is running 
at one time and thus the running MG-component deter- 
mines the states of STG. Moreover, there are no concur- 
rent free-choice places in STGs. All examples from Berke- 
ly belong t o  such class. Under the considered STG class, 
all states of an STG can be determined by a set of MG- 
components which covers the original STG/FC, Covering 
MG-component Set CMGS). An CMGS thus will suffice 

MG-componen ts. 

R e a l i z a t i o n  A l g o r i t h m  f o r  S T G / F C :  
(Given a live S T G / F C  in which each non-input transition 
and all of i ts  enabling transitions satisfy the conditioru of 
Theorem 1 in considered S T G / M G s ,  l e t f  be the synthesized 
signal, and f +/l ,  ..., f + / n  and f -11, ..., f - / m  be all the 
rising transitions and falling transitions off, respectively.) 

1 .  Let both Sf and R f  be empty  covers. 
2. Forloop j = 1 to n, 
2.1. Let C u b e f t l ,  be a universal cube. 
2.2. Foreach M G i ,  MG;  E C M G S  and f +/j E MG; 

in our realization an 6 we need not to consider all possible 

C u b e f t / ,  = C u b e f + l j , n  Extract-Cube(f + / j ,  M G i ) .  
If Cube +I, is no t  permissible, 

C u b e f + / j  = C u b e f + / j  n f .  
- 

2.3. Foreach M G j ,  M G j  E C M G S  and f +/j 

If C u b e f + l j -  occurs outside the branch, 

M G ,  
Foreach M G ' ,  MG' be the DMGs  of M G j .  

C u b e f + / ,  = C u b e f + l . n  Extract-Cube(f i- / j ,  M G  
- 

C u b e f + / j  = C u b e f + / j  n f. 
2.4. Sf = S j  U Cube!+/ , .  
}endforloop 
3. Repeat step 2 with m, f ,  f - / j  and R f  replacing 

4. Return f = Sf + f ( R f ) .  

Figure 4: Realization Algorithm for STG/FC. 

The realization algorithm is shown in Fi 4. The main 
steps are 2.2 and 2.3. In step 2.2, a set of hfG-components 
each of which contains the considered transition f + / j  
and belong to the given CMGS will be first considered 
to derive subcircuits. Permissible cubes are derived s e p  
arately from these considered MGs (by Extract-Cube(tj, 
S T G / M G )  and then those cubes are intersected together. 
Since all subcubes can satisfy the requirements (1) and (2) 
for our realization model, their intersection cube also can 
meet both. The question is whether the intersection cube 

n, f ,  f + / j  and Sf respectively. 

most T nodes in the lock graph, this step takes O(?e) com- 
plexity assuming that the number of enabling transitions state spaces, the states originally not covered by subcubes 

can satisfy requiriment (3) .  Since the intersection reduces 
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now are still not covered by the intersection cube. Howev- 
er, the states originally covered by some subcube now may 
be split into several disconnected state groups and each is 
covered by the intersection cube. Hence, multiple pulses 
from Cube,+/j may occur in a cycle o f f  + / j  such that 
violates requirement (3). We can use 7 to intersect the 
cube to reduce the covering to just cover all the enabling 
states of f + / j  such that multiple pulses cannot occur. 
Of course, Cubet+/,  now is permissible in all considered 
MGs. 

Now, we can state that  the derived cube after step 2.2 
can satisfy the requirement for realization model if STG 
runs only MG-components containing f + / j .  However 
in a cycle of f + / j ,  in addition to running some MG- 
component containing f + / j  one time, i t  may run some 
MG-components which do not contain f + /j. Therefore, 
we render the derived cube always off in MG-components 
not containing f+/j .  This is the main concern in step 2.3. 
We will recombine these MG-components, not containing 
f + / j ,  with some parts of MG-components considered in 
step 2.2 to make some new derived MGs. Then we can 
again use the technique in last section to force the cube on 
only inside the MG parts considered in step 2.2. In oth- 
er words, the cube remains off in MG parts which do  not 
contain f + / j .  The recombination takes the techniques, 
branch reversing and self-loop unfolding, which were origi- 
nally introduced to decompose an STG/FC into STG/MGs 
for state-coding problem[l7]. The details for these two op- 
erations will be not discussed here, but the following illus- 
trative example will show their applications. Furthermore, 
i t  is shown that each MG-component considered in step 
2.3 needs at  most two new Derived MGs (DMGs) to  cover 
itself [la]. We extract permissible cubes from these DMGs 
as step 2.2 and render cube always off outside the period 
from f + / j  to next t f .  This can make the derived cube 
off in most parts of the MGs not containing f + / j .  How- 
ever, i t  is still possible for states in these MGs and inside 
the period from f + / j  to next t f  t o  set on the cube. To 
prevent this, we can again use 7 t o  intersect the cube to 
reduce the coverin to just cover all the enabling states of 
f f / j  such that t f e  cube always goes off before entering 
the states in MG-components not containing f + / j .  

Take the example in Fig. 5 to  illustrate this procedure. 
We are to  synthesize signal d. The CMGS of this STG is 
(MG1 = (a+, b+,  a-, b - ) ,  MGz = (c+, d + ,  e-, d -  
/I, c-,e+), MG3 = (c+, d+, c.-, d - /2 ,  e-,e+)}. We 
first consider the cube for d + .  Since MG2 and MG3 cover 
i t ,  we derive two permissible cubes, ce and c, fiom them. 
The intersection of these two cubes, ce, does not cause 
multiple pulses problem, so the derived cube after step 2.2 
is ce. In step 2.3, M G I  is considered since i t  does not 
cover d+. Only one new derived MG shown in Fig. 5 
(b), which is made from MG2 plus the unfolded MG1, 
is used to consider the ce behavior on MG1. A cube is 
derived from Fig. 5(b) and intersected with original ce 
cube. We can see that  t he  final cube is still ce and it is 
set off before entering the MGI.  Consequently, Cubed+ = 
ce. Next t o  see d - /I, there is only MG2 covering it. 
We can find = Z after step 2.2. In step 2.3, 
there are tow MGs, MGI  and M G J ,  to be considered. 
For MG1, the STG/MG in Fig. 5 ( b )  is used to consider 
the 'Z behavior on M G I .  No additional literal is added 
to Cubed-/l and CUbed-p is off in MG1. For MG3, we 
consider the new derived MG shown in Fig 5(c), which is 
made from branch (e- --t d - /1 --t c-) plus the branch 
( c t  +- d+ +- e+) reversed fiom (c- -+ d - /2 -+ e-). 
The cube Z is again derived for d - /I. The cube now 
is off outside the period (U! - /I + c- -+ e+ -+ d+), 
but the cube is not set off before leaving branch (e- -+ 
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Figure 5: (a) An STG/FC example and (b)(c)":ts derived 
STG/MGs. 

It can be set on in states abcde = 00000 
such - that  + c u  "-b. ed-11 can be set on again without enabling 
d - /lagain from off-set states, unexpected in hazard-free 
implementation. To prevent this, we need to intersect -i 
with d .  Then the derived cube -id always remains off in 
(c- -+ d - /2 -+ e-). Since the remaining part of MG3 
is covered by MG2, no further consideration is needed. 
After the cube for d - / 2  is derived, Zd, we can fit Cubed+, 
Cubed-/, and CUbed-p into the realization model. The 
d in reset subcircuits here will not cause hazards since the 
feedback line inside memory-element is assumned to be 
faster than any outside feedback line. 

The complexity of this procedure depends on the num- 
ber of MG-components considered in step 2.2 and 2.3. 
It is polynomially proportional t o  the size of the given 
CMGS. As for the complexity of synthesizing one signal, 
it is O(T2 x M G )  where T is the number of transitions 
and M G  is the number of marked graphs in CMGS. S- 
ince the covering marked graphs are smaller in number 
than transitions, M G  is bounded by O(T).  Consequent- 
ly, the complexity of of synthesizing one signal with our 
procedure is bounded by O ( p ) .  Furthermore, since the 
transition number is linearly proportional to signal num- 
ber, the complexity is also bounded by O(S$),  where Sg 
is the signal number in STG. 

The circuit realization from the proposed algorithm may 
not always provide the simplest circuits. Some simple sim- 
plification techniques allow the original realization to  be 
optimized, e.g., memory elements, gates, or literals can be 
removed as reported in [ lo ,  la]. Moreover, the transitions 
of the same signal which are in the apparent equivalent 
structures between conflict branches are allowed to share 
the same enabling cube. 

6 Experimental Results 
The proposed realization procedure in this paper has been 
successfully evaluated with the set of STG benchmark- 
s from Berkely. Table 1 shows the evaluated results of 
over thirty examples, the circuit implementations of which 
are measured in terms of C-element number and literal 
count in the combinational parts. The Hazazd column 
is obtained by running general logic synthesis which opti- 
mizes the logic implementations from state diagrams with- 
out considering hazards. The result obtained from our 
procedures with simplification techniques is shown in the 
next column. The last column shows the result reported in 
[IO] which synthesizes hazard-free circuits with unbounded 
gate-delay model from state diagrams. 
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The comparison between our result and “Hazard” indi- 
cates an overhead of about +22% in combinational parts 
and + lo% for memories for guaranteeing hazard-freeness. 
By comparison with hazard-free implementation reported 
in [IO], our result needs the same number of memory ele- 
ments as [lo] and 4% more literals. The  difference main- 
ly results from two cases: n0wick.g and pe-send-ifc.g, in 
which the same cubes can be used to cover the enabling 
states of two distinct transitions of some signal without 
violating function. These common cubes are not shared in 
our present realization. Aside from these two cases, there 
is essential no difference in the results. This demonstrates 
the effectiveness of our realization algorithm. I t  is also 
worth noting that the considered MG in all cases is equal 
to the covering MG-component number of the CMGS, that 
is, only one DMG is required for each MG-component in 
the step 2.3 of our procedure for STG/FCs. 

7 Conclusion 
In this paper, we have proposed a new realization algorith- 
m to synthesize asynchronous hazard-free circuits under 
unbounded gate-delay model. Our approach does not use 
state diagram and thereby maintains problem size polyno- 
mially proportional to the number of signal only. A suffi- 
cient condition for hazard-free realization is derived based 
on the signal lock relation in STGs. The high-levelness of 
this condition allows easier manipulation of specification 
for realizability. The proposed direct-synthesis algorithm 
has been shown successful on over thirty academic and in- 
dustrial examples. Our result has shown to need no more 
overhead than those with state diagram approaches. This 
demonstrates the effectiveness of our realization algorithm. 
Furthermore, all but one of the evaluated cases satisfy the 
proposed sufficient condition for hazard-freeness without 
modification. This shows the applicability of the sufficient 
condition as well as the algorithm. 
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St: State number. Sg: Signal number. 
Li: Literals. Me: Memories. 
(a )  Some STG/FCs are rewritten by merging apparent equivalent 
structures between conflict branches. 
(b)  ”- ” in entries denotes this result is not reported in [lo]. 

Table 1: Experimental Reaulta. 
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