
A Trace–Based Method for Delay Fault Diagnosis
in Synchronous Sequential Circuits

P. Girard, C. Landrault, S. Pravossoudovitch and B. Rodriguez

Laboratoire d’Informatique de Robotique et de Microélectronique de Montpellier,
UMR 9928 UNIVERSITE MONTPELLIER II / CNRS
161 rue Ada, 34392 Montpellier Cedex 05, FRANCE.

Abstract – In this paper, we present a method for
diagnosing gate delay faults in synchronous sequential
circuits. This method is an outgrowth of our previous work
on delay fault diagnosis in combinational circuits, and is
therefore based on a path tracing algorithm appropriate
for sequential circuits. Input data for diagnosis are (1) the
gate level description of the circuit, (2) the set of test
sequences, and (3) the set of failing patterns and failing
outputs provided by the tester. Output data are a set of
potential fault locations. In order to correctly interpret the
tester results, and avoid multiple fault effects and
self–masking problems during diagnostic processing, each
test sequence is considered under different combinations of
slow and fast clock cycles (slow clock test methodology).
Experimental results are given to show the feasibility,
reliability and efficiency of the diagnosis method.

1. Introduction
Since the introduction of the LSSD Design For

Testability technique, most of the work reported on delay
testing is applicable only to scan–based circuits. This
restricted problem is, of course, more tractable than the
delay testing of general sequential circuits. Unfortunately,
many practical circuits do not conform to this kind of
architecture because the hardware overhead in such a
design may be high and affects performances. Delay
testing must therefore be studied for circuits designed
without scan. At the present time, several specific methods
exist in the areas of fault modeling, fault simulation and
test pattern generation [2,6,8,9,16]. Conversely, no
oriented method exists for delay fault diagnosis in
non–scan circuits.

From a general point of view, the aim in diagnosis is not
to find out whether there is a fault (detection), but rather
where the fault is located (diagnosis). This kind of
information is used to perfect the manufacturing or the
designing process of a circuit. Typically, a preliminary
diagnosis provides a set of lines containing a number of
potential fault locations (software approach), whereas a

visual inspection or an electron–beam probing of the faulty
circuit is carried out later to identify the cause of failure
(hardware approach).

A software method to diagnose delay faults in
combinational circuits was proposed recently and can be
found in the literature [12]. This method is based on a
Critical Path Tracing (CPT) algorithm, thus representing
an alternative to delay fault simulation. Results of
experiments obtained with benchmark circuits have shown
the effectiveness of the method.

Delay fault diagnosis in synchronous sequential circuits
that do not use scan–design is a more difficult problem.
Basically, it results from the fact that direct access to the
flip–flops in the circuit is not provided. This implies that a
delay fault activated after the application of a test vector
(during the test mode) may not always be observed when
the next clock pulse is applied, but may sometimes need to
be propagated during a number of clock cycles to appear on
primary outputs. The study of fault effect propagation,
which is necessary during diagnosis, must therefore be
extended to the entire sequential circuit (combinational
and memory parts) rather than be limited to the
combinational part of the circuit. However, to find fault
effect propagation paths without any restriction on the
delay test methodology can be a serious problem on
account of multiple fault effects which may, for example,
generate self–masking.

If one considers a particular testing scheme, the method
to diagnose delay faults in combinational circuits [12] can
be extended to sequential circuits. In this paper, we aim to
present the trace–based method we have developed, that
combines the critical path tracing algorithms proposed to
handle stuck–at [1] and delay faults [13]. The restrictive
delay test methodology we use allows fault effect
propagation paths to be found without uncertainty.
Preliminary results are given to show the effectiveness of
the method.

This paper is organized as follows: a description of the
circuit model commonly used for synchronous sequential

circuits is given in section 2. Section 3 presents a
discussion about the delay test methodologies which exist
for this kind of circuit. Input data for delay fault diagnosis
are described in section 4, and the method is presented in
detail in section 5. Results of experiments on ISCAS–89
sequential benchmark circuits are then discussed in section
6, and concluding remarks are given in section 7.

2. Circuit modeling for sequential circuits
A synchronous sequential circuit can be modeled as

composed of a combinational part and a memory part. The
boundaries of the combinational logic consist of primary
inputs (Data Input), primary outputs (Data Output) and
flip–flops (FF’s). Only primary inputs are controllable and
only primary outputs are observable. All flip–flops in the
memory part are synchronized by a common clock signal
of a given frequency. In this paper, we refer to the single
gate delay fault model and to the gate level description of
the circuits. We assume that all flip–flops in a circuit are
D–type flip–flops. We refer to inputs and outputs of
flip–flops as pseudo–outputs and pseudo–inputs of the
circuit (respectively). We associate faults with inputs and
outputs of gates and with primary inputs and primary
outputs.

time
frame n+1

PS

time
frame n

PS NS

Figure 1: Iterated array model for a sequential circuit

C

time
frame n–1

PI

PO
Clk

C

PI

PO

PSNS

Clk

C

PI

PO

NS

Clk

A mapping of the time domain behavior into space
domain is depicted in Figure 1. Each copy of the circuit
represents the behavior of the circuit during one time
frame. A time frame is one clock period. Thus, a
sequential circuit is handled as the concatenation of time
frames in an iterative logic array composed of several
identical copies of the combinational logic. In figure 1, PI
denotes the primary inputs, PO the primary outputs, PS the
present state lines (pseudo–inputs) and NS the next state
lines (pseudo–outputs). The clock Clk transfers the next
state signals to the present state input of the next block.

3. The delay test methodology
In synchronous sequential circuits, a test for delay faults

consists of three phases that perform (1) initialization, (2)
fault activation and (3) fault effect propagation.
Initialization brings the circuit to the appropriate initial
state. It may require several input patterns, all applied at a

clock speed (called a slow clock) that allows all signals in
the circuit to stabilize before the next state variables are
latched into the flip–flops. After initialization, a single
input pattern is applied to activate the fault and exhibit the
fault effect at a primary output or next state line. The effect
of this input pattern is sampled at the end of the normal
clock period, called the fast clock. Depending on whether
or not a delay fault exists, the fault effect can be observed
on a primary output or latched into a flip–flop. In the latter
case, it has to be propagated. Fault effect propagation is
achieved by applying additional input patterns using a slow
clock again. Fault effects latched into flip–flops are thus
propagated through a number of time frames until they
reach a primary output. Except for fault activation, the
circuit is assumed to operate in a fault–free manner (from a
timing point of view) as the slow clock period is chosen to
ensure that all signal values stabilize in the circuit, even if it
suffers from delay faults. This testing methodology, called
a slow clock methodology, is the simplified testing scheme
we use in this paper. The combination of slow and fast
clock cycles under which a test sequence is applied is
called a clocking scheme.

Of course, this testing methodology has a main
drawback compared with a method that uses consecutive
fast clocks during a test sequence, called an at–speed
testing methodology. Typically, as activation of faults is
allowed only in the fast clock cycle, a large number of test
sequences may result. On the other hand, correct activation
and correct propagation cannot be predicted when
at–speed testing is used. For example, as signals are not
guaranteed to stabilize before the end of the fast clock
cycle (it depends on whether or not a delay fault is
activated during the clock period), unpredicted values may
be latched into the memory elements during activation or
propagation. Therefore, the use of consecutive fast clocks
would require restrictive assumptions on signal values to
provide reliable results [3,15].

Six S1

Figure 2: Clocking scheme for delay fault testing

C

V0

O0 Clk

C

Vi

Oi

Si+1

Clk

C

Vn

On

� � �� � �

Initialization
Vectors

Propagation
Vectors

Slow clock Slow clockRated
clock

Activation
Vector

Clk

The major elements of the slow clock methodology are
illustrated in figure 2. Consider a test sequence (V0, V1, ...,
Vn) for a gate delay fault in a sequential circuit, applied
under a clocking scheme with a single fast clock at time i.

The vectors V0 through Vi–1 are called the initialization
vectors. The state inputs (pseudo–inputs) prior to the
application of V0 are assumed to be in don’t care state
(x). At the end of the initialization sequence, all flip–flops
are set into states required by the fault activation vector.
Next, the fault is activated by applying Vi and using a fast
clock. Concepts of testing for delay faults in combinational
or scan–based circuits are applicable in this phase. If the
fault is present, faulty values will be latched into the
memory elements or observed on the primary outputs.
Finally, propagation vectors (Vi+1, ..., Vn) are applied,
again using a slow clock, to propagate the fault effect to the
primary outputs.

During initialization and propagation phases, the tests
work irrespective of any delay or timing situations that
may occur in the circuit. The propagation of a delay fault
through the time frames that use a slow clock can hence
be viewed as the propagation of a stuck–at fault.

4. Input data for delay fault diagnosis

If we consider delay fault diagnosis in a combinational
circuit, input data are typically (1) the gate level
description of the circuit, (2) the set of test patterns, and (3)
the set of failing patterns and failing outputs provided by
the tester [11,12]. Output data are a set of potential fault
locations.

With respect to the testing scheme described above,
using a slow clock methodology, input data to perform
delay fault diagnosis in a synchronous sequential circuit
are (1) the gate level description of the circuit, (2) the set of
test sequences with the clock cycle in which the fast clock
is applied, and (3) the set of failing patterns and failing
outputs provided by the tester. Of course, we assume that a
test sequence has been generated by a test pattern
generator, and that the clock cycle in which the fast clock is
applied is specified [16]. As explained in the previous
section, all delay test sequences begin from unknown
values on pseudo–inputs. As for combinational circuits,
output data are a set of potential fault locations.

When diagnosing a faulty circuit, the aim is to locate the
failure that has produced a delayed signal on a primary
output during the test. As a delay fault can only be activated
during the fast clock cycle (in the assumed testing
methodology), the time frames to be considered for fault
effect analysis are those comprised between the
application of the activation vector and the observation of
the delay fault on a primary output. In other words,
assuming that Vi is the activation vector (time frame i) and
that a delayed signal is observed on a primary output after
application of the vector Vi+k (time frame i+k), the number
of time frames to be considered during diagnosis is:

Time Frames� (i � k) � (i) � 1 � k � 1

The time frames from 0 to i–1 are processed only to define
the state input values required by the fault activation
vector.

5. The trace–based method
Given the above concepts and a number of test

sequences in which a failing vector was found (failing test
sequences), our method consists of the following steps
(these steps are detailed in sub–sections 5.1 and 5.2):
(1) Good–machine three–valued simulation of each

initialization vector (V0 through Vi–1). The aim is to set
pseudo–inputs in states required by the fault activation
vector. The values 0, 1 and X are used to simulate the
fault–free machine so as to taken into account the
unknown values on pseudo–inputs at the beginning of
this step. At the end of this phase, we assume that all lines
in the circuit have a known value (0 or 1).

(2) Good–machine four–valued simulation of the
activation vector Vi.

(3) Good–machine two–valued simulation of each
propagation vector (Vi+1 through Vi+k). Only the values
0 and 1 are required for simulation in this step because
the propagation of a delay fault through the slow time
frames is the same as that of a logical fault. For a current
time frame, the values on primary inputs are given by the
propagation vector. The values on pseudo–inputs are
given by the final values on pseudo–outputs in the
previous time frame.

The signal values on each line in the activation and
propagation phases are recorded in order to be used later by
the critical path tracing process.
(4) Pseudo–critical Path Tracing for logic (or stuck–at)

faults. This is a backtracing procedure starting from the
failing primary outputs and ending on pseudo–inputs of
the circuit in the time frame i+1. The lines which can
propagate the fault effect through the slow clock cycles,
referred to as pseudo–critical lines, are thus identified.

(5) Critical Path Tracing for delay faults. This is a
backtracing procedure starting from the pseudo–outputs
of the circuit in the fast clock cycle (time frame i) and
ending on the pseudo–inputs. The potential failing lines
for the test simulated in step (2), referred to as critical
lines, are provided after this phase.

(6) Set intersection. Having completed the trace–based
part of the algorithm, we carry out a set intersection
between the potential failing–line set and the set
constructed with critical lines from the current test (of
course, we make use of the single fault assumption).

All these steps are repeated for every failing test sequence
of the test set. In the next sections, we discuss the value
systems required for initialization, fault activation and
fault propagation, and we present the trace–based
algorithm for sequential circuits.

5.1 The multi–valued simulations
Given a failing test sequence composed of several

vectors and a gate–level circuit description, we use a
three–valued algebra (0,1,X) to simulate the fault–free
machine in the initialization phase. Except for the first
considered time frame, in which the state lines have the
value X, the values on pseudo–inputs in a current time
frame are computed from the values on pseudo–outputs in
the previous time frame, according to the well–known
equation of a D flip–flop (Qn+1=D). Note that each line in
the circuit has a defined value 0 or 1 at the end of this phase.

The simulation of the fault–free machine in the
activation phase, performed in a logic–level order, has a
four–valued signal representation in two consecutive
vectors: S0, S1, U0, U1 [7]. The value S0 (S1) is assigned to
signals remaining stable at 0 (1) whatever the delays and
timing defects of the circuit may be. The value U0 (U1) is
assigned to signals with the final value 0 (1) that may or
may not be affected by a transition, depending on gate
delays or delay faults. The primitive–gate evaluation
tables that give the output values corresponding to input
symbols can be found in the literature [12], and therefore
are not reproduced here. These tables are used for
simulation in the combinational parts of the sequential
circuits.

One advantage of such a simulation is that it exhibits
transition possibilities even if no transition occurs in the
fault–free circuit. Another advantage is that because the
simulation is independent of gate propagation delays and
delay fault size, it does not need to consider timing
specifications.

For the purpose of propagating signal values through the
flip–flops during the application of the activation vector,
we use a new evaluation table providing the symbolic
values on pseudo–inputs in the activation time frame from
both the state values and the pseudo–output values in the
previous time frame (figure 3).

0 1

0

1

S0 U0

U1 S1

Figure 3: Evaluation table of D–type flip–flops
in the activation period

Qi

Qi–1
D

DFF
Init.

period
Fault activ.

period

D Qi

time
frame i–1 time frame i

Remark: As a slow clock is used for simulation with the
initialization vectors, pseudo–inputs in the activation time
frame are considered to be glitchless.

Although it can be done with the four–valued algebra,
only the two boolean values are required to simulate the
fault–free machine during the fault propagation phase.
Pseudo–input values when the first propagation vector

Vi+1 is applied to the circuit are therefore converted into 0
or 1 according to the latch input values (see figure 3). For
example, a latch input (pseudo–output) encoded by S0 or
U0 during the fault activation period leads to the value 0 on
the flip–flop output (pseudo–input) when Vi+1 is applied. A
state assignment table for fault propagation from time
frame i (activation) to time frame i+1 (propagation) is
given in figure 4. Next, the boolean simulation for the
propagation vectors is continued until the failing test
vector Vi+k is reached.

Figure 4: State assignment for fault propagation

DFF
Fault activ.

period
Fault propa.

period

D Q

time
frame i

time
frame i+1

Qi+1D

S0 U0

S1 U1

0

1

Figure 5.a: Simulation of the initialization vectors

ÍÍ
ÍÍ

ÍÍ
ÍÍ

ÍÍ
ÍÍ

Dff2

O1

O2

I1

I2

I3

Dff1

Dff2

Dff1
X

X

0

0

1

11 0
0

0

1

0 0

01

ÍÍ
ÍÍ

ÍÍ
ÍÍ

ÍÍ
ÍÍ

Dff2

O1

O2

I1

I2

I3

Dff1

Dff2

Dff1
0

0

1

0

0

11 0
0

0

1

0 1

10

Example: Let us consider the circuit shown in figure 5
with a failing test sequence (V0=101, V1=001, V2=010,
V3=110) applied to its inputs. As regards input data
provided by the tester, we assume that a delayed signal was
found on the two primary outputs O1 and O2 after the
application of vector V3. In the two first time frame, a slow
clock is used, and the three–valued simulation leads to the
results shown in figure 5.a. Next, the state values are
propagated through the flip–flops according to the
evaluation table given in figure 4. The circuit is therefore
set in states DFF1=U1 and DFF2=S0 required by the fault
activation vector V2 (figure 5.b). During the fast clock
cycle, the multi–valued simulation is performed
conventionally. After propagation of the state values
through the flip–flops, vector V3 is applied to primary

inputs. As depicted in figure 5.c, only the final values of
pseudo–inputs are used to simulate the circuit with the fault
propagation vector. Results provided by the boolean
simulation are shown in the circuit diagram.

Figure 5.b: Simulation of the fault activation vector

ÍÍ

ÍÍ
ÍÍ

Í
Í

Dff2

O1

O2

I1

I2

I3

Dff1

Dff2

Dff1
U1

S0

S1

U0

S0

U1 U0
U1

U0

U0
S1S0

U0

U1

U1

Figure 5.c: Simulation of the propagation vectors

Í
Í

Í
Í

ÍÍ
ÍÍ

Dff2

O1

O2

I1

I2

I3

Dff1

Dff2

Dff1
1

0

1

0

0

00 1
0

1

0

0 1

01

5.2 The Critical Path Tracing
Authors of [1] presented an alternative to stuck–at fault

simulation for combinational circuits, referred to as
critical path tracing (CPT). The main concept in critical
path tracing, namely a critical value, was first defined by
Wang [17]:

� a line l has a critical value x in a test T, if T detects the
fault l stuck–at x,

� a gate input i is sensitive if complementing the value of i
complements the gate output value.

The basic algorithm simply traces paths from primary
outputs (which are always critical) by recursively marking
the sensitive inputs of a gate as critical if its output is
critical. This procedure generates critical paths, consisting
of lines with critical values. Because critical path tracing
did not recognize faults that are detected only by
multiple–path sensitization, it was first proposed as an
approximate method.

In an extended version of the critical path tracing, a
modification of the method was proposed to remove the
approximation and make the algorithm exact [14].
Therefore, we decided to use this method to identify fault
effect propagation paths in the propagation time frames
(applied at a slow clock). In our work, the trace–based
algorithm starts only from failing primary outputs in time
frame i+k, and not from all primary outputs as in [14]. It

terminates on pseudo–outputs of the activation time frame
i, thus providing a set of critical lines referred to as
pseudo–critical lines. They are labelled as pseudo–critical
because they will not belong to the final set of potential
failing lines although they belong to a fault effect
propagation path. A distinguishing feature of our approach
is that the sensitivity of lines [1] is evaluated during the
backward instead of forward pass of the process, thus
reducing the overall computation time. Critical path
tracing through the flip–flops does not need to be explained
in detail, since they are considered as transparent cells.

0

Figure 6: Pseudo–critical path tracing in the
propagation time frame

ÍÍ
ÍÍ

Í
Í

Í
Í

Dff2

O1

O2

I1

I2

I3

Dff1

Dff2

Dff1
1

0

1

0

0

0 1
0

1

0

0 1

01
fail

fail

�

�
�

�

�
�

�

�

�

Example: Let us consider again the example given in
section 5.1, with two failing outputs O1 and O2 as starting
elements for the path tracing (figure 6). The
pseudo–critical paths are represented by bold lines, and the
sensitive inputs of gates are marked by dots. In our
example, pseudo–critical path tracing is stopped on
primary inputs of the circuit, and is pursued further only
through flip–flop DFF2. As the next time frame to be
considered is the activation time frame, the path tracing
beyond DFF2 will serve to identify the critical lines for the
simulated test sequence.

In a previous study [12], we extended the initial CPT
algorithm to deal with delay faults in combinational
circuits. As only the activation time frame needs to be
considered with a fast clock, it is possible to use the new
algorithm to trace critical paths for delay faults in this
clock period. The path tracing starts from critical
pseudo–outputs reached in the previous step of the process,
and tries to extend the critical state of the pseudo–outputs
as far as possible towards the primary and pseudo inputs.
We consider sensitive lines [13] with the value U0 or U1 to
be on a fault effect propagation path (sensitive inputs of
gates are marked by dots). Lines with the values S0 or S1
stop the tracing process. The backward pass of the process
terminates on the pseudo and primary inputs of the
activation time frame. The set of critical lines thus contains
the potential failing lines for the simulated test sequence.

As for delay fault diagnosis in combinational circuits,
the final set of potential failing lines results from the

intersection of the sets obtained with each failing test
sequence.

Figure 7: Critical path tracing for delay faults in
the activation time frame

GÍÍ
ÍÍ

ÍÍ
ÍÍ

ÍÍ
ÍÍ

Dff2

O1

O2

I1

I2

I3

Dff1

Dff2

Dff1
U1

S0

S1

U0

S0

U1 U0
U1

U0

U0
S1S0

U0

U1

U1

�

Example: Let us consider again the example given in
section 5.1, in which only one pseudo–output of the
activation time frame was found to be critical during the
first part of the tracing process (see figure 7). According to
the above description of the path tracing for delay faults,
the set of critical lines for the simulated test sequence
contains two elements (input and output of gate G6), which
are the potential failing lines.

I

Dff1
U1

U1

S0

U0

Figure 8: Necessity to do the union of paths
coming from critical pseudo–outputs

Í
Í
Í

Dff2
U1

S1

U0

U1

O I

Dff1
1 0

Dff2

1

0

0

O

Dff1

Dff2

1

0

0

fail
�

�

�

�

�

�

��

activation time frame propagation time frame

delay fault

Remark: In the case of combinational circuits, the set of
critical lines which are critical in a test T results from the
intersection of paths traced from every failing output
(with the single fault assumption). A new feature of the
presented method is that the union of paths traced from
every critical pseudo–output is carried out, instead of the
intersection of these paths. An example is given in figure 8,
in which a delay fault is sensitized during the activation
phase and appears on the primary output O during the
propagation phase. According to the path tracing algorithm
described above, only disjoint critical paths are found in
the activation time frame. We therefore ascertain that only
the union of critical paths contains the delay fault location.

6. Results of experiments
Results of delay fault diagnosis in sequential circuits are

discussed in this section. As for combinational circuits, the
resolution of delay fault diagnosis in sequential circuits
greatly depends on the test sequences applied to the
machine and on the delay defect size. For example,

different test sequences applied to a faulty machine will
lead to different numbers of failing test sequences, and
therefore to different diagnostic resolutions. So, results
presented in this section are variable, and may vary
according to the parameters cited above.

In the experiments performed, each gate is assumed to
have a unit delay, and each line is considered as a potential
fault location. As we do not possess any sequential ATPG
program for delay faults, the test sequences applied to the
circuits were obtained using SETA, a sequential ATPG tool
for stuck–at faults provided by the Politecnico di Torino
[5]. Thus, results presented for each circuit would probably
be better with test sequences specifically generated for
delay faults. In order to obtain the list of failing test
sequences with the failing primary outputs, which is
normally provided by the tester for real faulty circuits, we
simulated each circuit with random delay defects
expressed in terms of unit delay. Simulations were
performed using the software Genrad’s System–Hilo:
HISIM.

s208
30 test

sequences

failing
test
seq.

pot.
failing
lines

Diag.
resol.
(%)

CPU
time (s)

gate 58 / 1u 2 11 5.28 0.81

gate 104 / 3u 5 6 2.88 1.21

gate 15 / 7u 14 6 2.88 22.17

gate 75 / 1u 2 11 5.28 0.81

s510
77 test

sequences

failing
test
seq.

pot.
failing
lines

Diag.
resol.
(%)

CPU
time (s)

gate 24 / 2u 77 7 1.3 20.66

gate 197 / 2u 77 12 2.35 21.06

gate 113 / 2u 77 7 1.3 19.65

gate 188 / 5u 77 15 2.94 19.99

s1494
167 test

sequences

failing
test
seq.

pot.
failing
lines

Diag.
resol.
 (%)

CPU
time (s)

gate 68 / 5u 161 8 0.53 248.53

gate 405 / 6u 13 5 0.33 226.42

gate 470 / 5u 8 104 6.9 227.24

gate 27 / 5u 4 40 2.6 226.58

Tables 1, 2 and 3: Results of experiments on three
benchmark circuits

The diagnostic algorithm has been implemented in the
programming language C++, and all experiments were
carried out on a SUN–sparc10 workstation. Results
obtained for three ISCAS–89 sequential benchmarks [4]
are presented in Tables 1, 2 and 3. For each circuit, we have
assumed random delay faults, the location and size of
which are specified in the first column of the tables. The
second column lists the number of failing test sequences
obtained after simulation with HISIM. Results provided by
the diagnosis process are given in the next column, in terms
of the number of potential failing lines. The percentages
presented in the fourth column represent the number of
potential failing lines over the total number of lines in the
circuit, defined as “diagnostic resolution”. The last column
gives the CPU time required to obtain diagnostic results.

These results show the performance of the diagnosis
process, which always identifies less than 6% of the total
number of lines as potential failing elements. In addition,
the set of potential failing lines always contains the delay
fault to be diagnose, demonstrating the reliability of the
method. We emphasize that these results would be better
with test sequences generated specifically for delay faults.

7. Summary and conclusion
Until now, all the work reported on delay fault diagnosis

has focused on combinational circuits. If one assumes that
a slow clock delay test methodology is used, we propose a
method for diagnosing gate delay faults in synchronous
sequential circuits. This method is based on a path tracing
algorithm performed from results of a fault–free circuit
simulation. Propagation of delay faults through the
combinational and memory parts of a sequential circuit is
processed by taking advantage of the existing diagnostic
methods developed for stuck–at and delay faults.
Experimental results are given on three ISCAS–89
benchmark circuits to provide a measure of the diagnostic
resolution. Although we can obtain better results, the
method seems to be very efficient with a slow clock
methodology as the basis for the test. Our goal now is to
diagnose sequential circuits with any type of delay test
methodology (At–speed testing).

Acknowledgements
This work is supported by the European Community

under the ESPRIT III Basic Research 6575 ATSEC
contract. We would like to thank P. Prinetto and his team
from the Politecnico di Torino who provided us with their
sequential ATPG tool SETA.

References

[1] M. Abramovici, P.R. Menon and D.T. Miller, “Critical Path
Tracing – An Alternative to Fault Simulation”, Proc. 20th Design
Autom. Conf., pp. 214–220, June 1983.

[2] P. Agrawal, V.D. Agrawal and S.C. Seth, “A New Method for
Generating Tests for Delay Faults in Non–Scan Circuits”, Proc.
of Int. Conf. on VLSI Design, pp. 4–11, January 1992.

[3] S. Bose, P. Agrawal and V.D. Agrawal, “A Path Delay Fault
Simulator for Sequential Circuits”, Proc. of Int. Conf. on VLSI
Design, pp. 269–274, January 1993.

[4] F. Brglez, D. Bryan and K. Komminiski, “Combinational
Profiles of Sequential Benchmark Circuits”, Proc. of Int. Symp.
on Circuits and Systems, pp. 1929–1934, May 1989.

[5] P. Camurati, F. Corno, P. Prinetto and M. Sonza Reorda, “A
Simulation Based Approach to Test Pattern Generation for
Synchronous Sequential Circuits”, Proc. of VLSI Test
Symposium, pp. 263–267, November 1992.

[6] T.J. Chakraborty, V.D. Agrawal and M.L. Bushnell, “Delay
Fault Models and Test Generation for Random Logic Sequential
Circuits”, Proc. of 29th Design Auto. Conf., pp. 165–172, June
1992.

[7] S.T. Chakradar, M.A. Iyer and V.D. Agrawal, “Energy
Minimization Based Delay Testing”, Proc. of Euro. Design Auto.
Conf., pp. 280–284, March 1992.

[8] K.T. Cheng, “Transition Fault Simulation for Sequential
Circuits”, Proc. of Int. Test Conf., pp. 723–731, October 1992.

[9] S. Devadas, “Delay Test Generation for Synchronous
Sequential Circuits”, Proc. of Int. Test Conf., pp. 144–152,
September 1989.

[10] D. Dumas, P. Girard, C. Landrault and S. Pravossoudovitch,
“An Implicit Delay Fault Simulation Method with Approximate
Detection Threshold Calculation”, Proc. of Int. Test Conf., pp.
705–713, October 1993.

[11] D. Dumas, P. Girard, C. Landrault and S. Pravossoudovitch,
“Effectiveness of a Variable Sampling Time Strategy for Delay
Fault Diagnosis”, To appear in the Proc. of Euro. Design & Test
Conf., February–March 1994.

[12] P. Girard, C. Landrault and S. Pravossoudovitch, “A Novel
Approach to Delay Fault Diagnosis”, Proc. 29th Design Autom.
Conf., pp. 357–360, June 1992.

[13] P. Girard, C. Landrault and S. Pravossoudovitch, “A
Reconvergent Fanout Analysis for the CPT Algorithm used in
Delay Fault Diagnosis”, Proc. of Euro. Test Conf., pp. 83–88,
April 1993.

[14] P.R. Menon, Y. Levendel and M. Abramovici, “Critical Path
Tracing in Sequential Circuits”, Proc. of Int. Conf. on CAD , pp.
162–165, November 1988.

[15] I. Pomeranz and S.M. Reddy, “At–Speed Delay Testing of
Synchronous Sequential Circuits”, Proc. 29th Design Autom.
Conf., pp. 177–181, June 1992.

[16] I. Pomeranz, L.N. Reddy and S.M. Reddy, “SPADES: A
Simulator for Path Delay Faults in Sequential Circuits”, Proc. of
EURO–DAC , pp. 428–434, September 1992.

[17] D.T. Wang, “Properties of Faults and Criticalities of Values
Under Tests for Combinational Networks”, IEEE Trans. on
Computers, Vol. C–24, no. 7, pp. 746–750, July 1975.

	ED&TC95
	Front Matter
	Table of Contents
	Session Index
	Author Index

