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Abstract

Programmable processors o�er a high degree of 
ex-
ibility and are therefore increasingly being used in em-
bedded systems. We introduce the formalism nML

which is especially suited to describe such processors in
terms of their instruction set, an nML description is
directly related to the standard description as found in
the usual programmer's manuals. The nML formalism
is based on a mixed structural and behavioural model
facilitating exact yet concise descriptions. The philos-
ophy of nML is already applied in two approaches to
retargetable code generation and instruction set simu-
lation.

1 Introduction

In consumer electronics and telecommunications
high product volumes are increasingly combined with
short life-times and high system complexity. The pres-
sure on development times together with the demand
to react on late speci�cation changes make mask or
�eld programmability a desired feature. The thereby
obtained 
exibility not only helps to shorten the de-
sign cycle, but also allows for the reuse of carefully
optimised hardware designs. The di�erent kinds of
programmable DSP core processors frequently used
include application speci�c instruction set processors
(ASIPs) [23] and commodity digital signal processors
[19, 20]. ASIPs are a blend of full-custom circuits
and \o�-the-shelf" DSPs. They o�er instruction sets
which are (together with chip area and power dissipa-
tion) especially optimised for a small number of ap-
plications. Commodity DSPs are mostly �xed designs
that allow for \customer" designed add-ons. In hard-
ware/software co-designed ICs, critical parts of a sys-
tem featuring such a programmable processor are of-
ten implemented in hardware. This is done by adding
dedicated hardware in the form of custom accelera-
tor data paths, making the design a heterogeneous IC
architecture [14].

Code generators, instruction set simulators and as-
semblers are the key tools that aid the designer when
developing the software. However, when the hard-

ware is customised conventional compilers and simu-
lators are de�cient, while coding complex applications
in assembly language by hand is error-prone and very
costly. The only acceptable solution for mapping a
small number of algorithms onto such a processor is
to have a set of retargetable tools. Then, such tools
can even aid the evaluation of di�erent hardware vari-
ations by providing quality measures in terms of code
size, execution time and resource utilisation.

To minimise the retargeting e�ort, the target ma-
chine description used by the tools should be concise
yet powerful enough to contain all information neces-
sary for e�cient code generation and reliable instruc-
tion set simulation. We believe that the machine is
best described by giving the details of the instruction
set together with a high-level structural model of the
processor's architecture. This contains all information
at the level typically available in programmer's man-
uals. These observations have led us to develop the
machine description formalism nML.

We will �rst describe some related work, then
present the basic philosophy of nML and end with an
overview of applications of nML.

2 Related work

A lot of work has been done on processor descrip-
tion languages. In the sequel we will discuss a number
of approaches that are relevant in the context of our
work.

ISP [5] is based on the assumption that a pro-
grammable instruction set processor can be described
by specifying the operations that can be performed
together with the rules of decoding. A procedural de-
scription of the interpretation and execution of the
instructions is thus given. ISPS [3] is a descendant of
ISP with additional features to support \local units".
These units can either be sequentially executed fac-
torisations of a certain behaviour (called procedures)
or units that operate concurrently to the \main cir-
cuit" (called processes). MIMOLA [22, 4] describes
the target processor in terms of a netlist consisting of a
set of modules and a detailed interconnection scheme.



The decoding logic is also explicitly described. VHDL
is a standardised language with considerable semantic
richness. Because VHDL can be used at di�erent lev-
els, several description styles have evolved. However, if
di�erent tools support di�erent styles or language sub-
sets, the bene�ts of the standardisation vanish. All of
the abovementioned hardware description languages
require a detailed knowledge of the processor netlist
and the instruction decoder. However, this informa-
tion is usually not available nor is it necessary for the
tasks of code generation and instruction set simula-
tion.

In traditional software compilers (for CISC archi-
tectures), string and tree grammars have found to
be an adequate notation for formalising the map-
ping of machine instructions to application programs
[13, 12, 1]. Hence their use is limited to this single
phase of a code generator called code selection. Reg-
ister allocation and instruction ordering usually need
knowledge about other concepts of the target machine
and require di�erent descriptions.

3 The nML Formalism

The information typically available in a program-
mer's manual consists of a list of instructions and the
corresponding register transfers, binary coding and as-
sembly language mnemonics. Often, also a program-
mer's model of the machine is provided, usually in
terms of a coarse schematic showing the registers,
the functional units and their basic interconnection
scheme. Concerning pipelining, only the possible haz-
ards [15] are highlighted (e.g. branch penalties and
speci�c timing of read/write cycles for address reg-
isters). Other unique features such as zero-overhead
loops and conditional computations are also described
from a programmer's view point. However, a de-
tailed description of the datapath is usually not avail-
able, nor is a description of the controller or micro-
sequencing logic. Nevertheless, the information at
hand is su�cient for code generation and instruction
set simulation.

Using nML, hardware structure is described to-
gether with execution behaviour and the coding
of all instructions: nML is based on a mixed be-
havioural/structural paradigm.

On one hand, a skeleton of the target machine struc-
ture is constructed by declaring all storage entities.
On the other hand, register transfers between these
storage entities describe the exact execution behaviour
of the machine including side-e�ects (such as the set-
ting of condition codes), the complete set of address-
ing modes, the possibilities of controlling the program

ow and the encoding of the instructions.1

1Note that nML allows for bit-true modelling of the target
processor, which is of high importance especially in the �eld of
DSP.
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Figure 1: The example processor.

3.1 Breaking Down the Instruction Set

When describing an instruction set, a top-down ap-
proach is advocated. In nML, a hierarchical structure
can be imposed onto the instruction set description.
Consequently, the description is partitioned into rules.
There are two kinds of rules,

� OR-rules which list all alternatives for an instruc-
tion part, and

� AND-rules which describe the composition of in-
struction parts.

These rules form a grammar from which each possi-
ble derivation represents one legal instruction. It will
be shown that the structure of the grammar resembles
the structure of the instruction set.

Figure 1 shows an example processor which basi-
cally consists of a controller, two (pipelined) data-
paths, two address generation units and a centralised
RAM. However, the instruction set poses severe limi-
tations on the set of combinations of operations that
can be executed in parallel. These limitations are
called encoding restrictions. Figure 2 comprises the
possible instruction formats (separated by horizontal
lines). The instruction word consists of 18 bits (where
vertical lines separate independent �elds).

An nML description is typically constructed by
analysing the instruction set of the target machine
proceeding top-down. For our example, the aforemen-
tioned encoding restrictions are easily re
ected in the
nML description by capturing the top-level classi�ca-
tion in an or-rule:
opn instruction = computemove | moveabs | ctrl

Either a computation with a data move in parallel, a
sole data move with absolute addressing or a control-
related instruction can be executed. Further zooming
into the �rst category of instructions, two orthogonal
parts are found, i.e. two parts of the instruction that
can be controlled independently. This is described in
an and-rule:
opn computemove(c:compute,m:move)
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Figure 2: The instruction set table.

The parts of the instruction that are composed with
this rule are listed in its parameter list. The declara-
tion of a parameter consists of an instantiation name
and a reference to some other rule or to a data type
(in case of an immediate operand). The description of
each orthogonal part is encapsulated in a rule of its
own. It often occurs that such a part is even referred
to by more than one rule. In our example, the operand
class fAX, AR, MR0, MR1g is subsumed in an addressing
mode rule:2

mode lopd = AX | AR | MR0 | MR1

There are three references to this rule. One reference
for opd1 of alu, one for opd of shift and one for opd1
of alu-shift.

As a consequence of the hierarchy and the factori-
sations, the descriptions are concise and easily main-
tainable.

The names and parameters of rules themselves have
no meaning besides structuring the description; all se-
mantics are held in attributes attached to the rules.
Three attributes are pre-de�ned: action to specify
the execution behaviour, image to de�ne the binary
coding and syntax to describe the assembly language
mnemonics.

3.2 Speci�cation of Execution Behaviour

For nML, a basic model of execution is presupposed:
a machine executes a program consisting of a single
thread of instructions. These instructions are stored
in a memory from which they are fetched using a pro-
gram counter (PC). Hence the program 
ow can be
changed by writing to the PC. Once an instruction is

2This rule is represented by the highlighted node in �gure 3.
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Figure 3: Structure of the instruction set description.

fetched frommemory, it is decoded and the the appro-
priate register transfers are executed. The execution
of these register transfers completely determines the
behaviour of the machine. The e�ects of the execution
are entirely captured in the contents of the storages at
the end of a machine cycle. Thus the storages repre-
sent the state of the machine and an instruction can be
seen as a state transition function. This information
is stored in the action attribute. Its value consists
of a sequence of statements.3 A statement must be
either an assignment or a conditional as shown in the
following two rules.4

opn shift(o:lopd,sh:int(3))

action={

AS = o; AR = AS << sh;

}

opn alu(o1:lopd,o2:ropd,op:card(2))

action={

switch op // depending on op...

case 0: AS = o1 + o2; // ...a different...

case 1: AS = o1 - o2; // ...operation...

case 2: AS = o1 & o2; // ...is executed...

case 3: AS = o1 | o2; // ...in the alu.

end;

AR = AS;

}

The prede�ned operators to form expressions include
the common \C" operators plus some DSP-related ex-
tensions (e.g. exponentiation, bit rotation, bit string
selection and concatenation).5

The de�nition of an attribute can include references
to attributes de�ned by the parameters of the rule.
opn computemove(c:compute,m:move)

action={ c.action; m.action; }

The above de�nes the action of computemove as the
sequence of the actions of the instances of compute
and move.

The binary coding and the assembly language
mnemonic are captured in the image resp. the syntax
attribute. The value of the image attribute is a bit
string (or a cardinal number) and the value of the

3In nML, maximum possible parallelism is implicit.
4There is also an if-then-else clause.
5Other operations (e.g. for the descriptions of accelerator

paths) can be added as canonicals, i.e. operations without pre-
de�ned semantics.



syntax attribute is a string.
opn computemove(c:compute,m:move)

image="0"::c.image::m.image

syntax=format("%s || %s",c.syntax,m.syntax)

The image attribute attached to this rule expresses
that the binary code for this instruction part consists
of a �xed single bit pre�x \0" concatenated with the
image attributes of the two components. The de�ni-
tion of the syntax attribute is similar. (The function
format resembles the \C" library function printf).

In addition to the aforementioned opn rules, there
are rules to support the description of addressing
modes. These mode rules behave similar to opn rules
but have an additional default attribute which con-
tains an e�ective address expression. The parallel data
moves of our example processor use indirect address-
ing to compute the e�ective address.
mode indinc(j:card(2),k:card(2)) = m[r[j]]

action={ r[j]=r[j]+i[k]; }

image=format("0%b%b",j,k)

syntax=format("(R%d++I%d)",j,k)

This rule speci�es the e�ective address as well as some
code that is used to update the address register. It is
used in contexts such as:
mode adrmode = indinc | inddec

opn load(r:regm,a:adrmode)

action={ r=a; a.action; }

image=format("00%b%b",r.image,a.image)

3.3 Speci�cation of Structure and Timing

Storages are structural entities and are used to es-
tablish a skeleton of the over-all structure of the ma-
chine. The behaviour as introduced in the previous
section is basically described by register transfers be-
tween these storages.6

A storage is declared by giving a name, the size and
the element type.
mem m[1024,int(16)]

reg r[4,fix(1,31)]

This de�nes a memory m of 1K with elements of 16 bit
integer numbers and a four element register �le r of
32 bit �xed-point numbers.

In nML, the duration of an operation's execution
is assumed to be zero. The timing is modelled by
specifying a delay for each storage.

The storages described so far are static, i.e. they
hold their value until explicitely overwritten. To
model pipelines and similar concepts in nML, transi-
tory storages [16] are introduced. These storages hold
values only for a �xed time, i.e. once a value is writ-
ten into a transitory and a speci�c number of cycles
have passed, the value is available only during a sin-

6By allocating an appropriate set of functional units for each
set of register transfers between the same storages a netlist can
be constructed [7]. Hence nML can also be used for processor
implementation.
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gle cycle. Then, their contents become unde�ned. By
specifying a delay of zero for a transitory, a wire or a
bus is described. In order to model simultaneous exe-
cution of operations, the designer can specify that the
outputs of several transitories are synchronized. Such
groups of transitories divide a pipelined datapath into
pipe stages (see �gure 4).

For our example, we would describe the following
two transitories
trn as[1,int(16)] delay=1

trn ms[1,int(32)] delay=1 sync=as

The two transitory storages as and ms are declared
with a delay of one. Both are synchronized dividing
the datapath into two pipe stages.

Such descriptions �t naturally in the style of nML
since they combine the basic execution model (i.e.,
storages represent the state of the machine) with the
basic structural model (i.e., storages establish a struc-
tural skeleton). All necessary information about tim-
ing and resource usage can be easily extracted from
such a mixed structural/behavioural description.

4 Applications of nML

The formalism nML is currently used at IMEC and
at TU Berlin. This section explains how it is used
in the contexts of retargetable code generation and
instruction set simulation.

The group at TUB has developed the retargetable
code generator Cbc [6, 8] and the retargetable instruc-
tion set simulator Sigh/Sim [21]. IMEC has devel-
oped the retargetable code generator Chess [24, 18]
and plans to implement an instruction set simulator
in the near future.

The speci�cation of an instruction's action is used
both for the mapping required in the code generator
and the simulation of the instruction in an appropri-
ate environment. For both applications appropriate
models are extracted automatically from a single ma-
chine description [7, 24]. Note that the use of nML
does not presuppose a certain compiler model and that
speci�c aspects needed by di�erent tools can be easily



extracted from a single description thereby guarantee-
ing consistency between models.

A main intention of work related to nML is to have
clear semantics de�ned. It is believed that this is es-
sential to formally correct code generation and reliable
instruction set simulation [11]. The basic di�erence in
the use of nML in the two applications lies in the inter-
pretation of the action attribute. The Chess compiler
uses a centralised library [17] on which all tools rely.
The semantics of all operations of the target proces-
sor are described in terms of operations listed in this
library. In contrast, the semantics for use in Cbc are
given in a \language report" [10].

A description of the ADSP-2100 { a DSP fromAna-
log Devices [2] { is approximately 900 lines of which
300 lines are comments. To describe the complete in-
struction set 59 rules are necessary out of which 44 are
operation de�nitions (opn) and 15 addressing mode
de�nition (mode). The time to develop the description
was less than one month.

5 Summary

The machine description formalism nML has been
described along with its design philosophy. Situated
at the level of information found in programmer's
manuals, nML allows for concise speci�cations of pro-
grammable instruction set processors. The analy-
sis of the instruction formats leads straightforwardly
to the organisation of the description. The mixed
structural/behavioural approach taken supports 
exi-
ble modelling of even irregular processor architectures.
Current research is concerning the addition of inher-
ited attributes to nML to facilitate the speci�cation of
repetitive structure [9].
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