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Abstract

It is well known that learning (i.e., indirect implica-
tions) based techniques perform very well in many in-
stances of combinational circuit veri�cation when the
two circuits being veri�ed have many corresponding in-
ternal equivalent points. We present some results on
combinational circuit design veri�cation using a power-
ful, and highly general learning technique called func-
tional learning. Functional learning is based on OBDDs
and hence can e�ciently learn novel implications based
on functional manipulation.

1 Introduction
Analysis of a logic design, constituting of problems

such as, representation, veri�cation, ATPG, etc., poses
one of the most fundamental challenges in the �eld of
computer-aided design. For example, logic veri�cation
of two di�erent realizations of the same Boolean func-
tion during the process of circuit synthesis is of utmost
importance to guarantee correctness of the circuit be-
ing implemented.

As discussed in [16], digital circuit synthesis typi-
cally consists of a sequence of atomic operations through
which the circuit is altered locally to suit speci�c needs,
keeping the functionality same. Hence, it can be ar-
gued that after each such atomic change the two ver-
sions of the circuit before and after the change remain
very similar. This fact immediately lures one to try and
extract these internal equivalences and use them e�ec-
tively in order to simplify the problem of logic veri�ca-
tion. Berman et. al. [15] proposed the �rst method
of using these internal equivalent points to establish the
equivalence of two circuits. In [15] a decomposition is
found using the min/cut algorithm that facilitates de-
composing the problem of veri�cation of the whole cir-
cuit into much smaller and simpler problems. Cerny and
Mauras presented in [18] further observations to estab-
lish cross-relations between two appropriate cuts in the
two circuits.

Learning techniques [8, 12] can often be e�ciently
used to extract the internal equivalent points which are
used subsequently to speed up the process of design veri-
�cation. However, as shown in [15], a direct use of these
equivalent points to prove the outputs of two circuits
equivalent can cause the problem of false negatives. This
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happens when one attempts to compare the functional-
ity of the two circuits using these equivalent points as
pseudo primary inputs. It is easy to see that this kind of
comparison can erroneously prove the two circuits to be
functionally inequivalent even though they may actually
be equivalent. This is because the interdependence of
the pseudo primary inputs in terms of the true primary
inputs is neglected.

A technique for extracting and utilizing internal
equivalent points for logic veri�cation without having
to face the problem of false negatives was presented in
[14]. Another interesting technique to carry out design
veri�cation using internal equivalences and observability
don't cares has been presented in [17]. However, tech-
niques such as [17] may not discover even all necessary
assignments. Techniques of [14] can scale poorly with
increasing circuit sizes as was found in some industrial
circuits [3]. Most such techniques �nd it very di�cult
to detect relationships between points not in structural
proximity. Importantly, the types of relationships that
these techniques can discover are limited. For example,
these methods can learn Constant-Value Relationships:
if a constant Boolean value v 2 f0; 1g at a given gate
implies another constant Boolean value at another gate.
However, they cannot detect more involved relationships
between a set of functions with another set of functions.
For example, a gate f = 0 may simply imply that a dis-
junction taken over some given set of functions must be
1. Or, under f = 0, a set of gates must assume identi-
cal value. Clearly, these techniques cannot easily learn
conditions implied by more complex Boolean relations
among two or more gates in the circuit.

We suggest one possible solution to the combinational
veri�cation problem through a learning technique based
on OBDDs. We will show that this technique can work
as e�ciently or even better than typical learning tech-
niques. The capability of OBDDs to model various func-
tions and also symbolically manipulate them is well ac-
cepted. Hence it is not surprising that OBDDs can be
also easily used to derive more involved internal rela-
tionships implications as well. Our results show that
the sizes of the OBDDs that are required to be built are
extremely small. Hence, there is no memory explosion.
Although not used in the present work, use of dynamic
reordering [11] can make it even further e�cient for most
combinational circuits encountered in real life.

In this paper we will chie
y focus on demonstrat-
ing that functional learning is an e�cient tool for de-
tecting internal correspondences. Since constant-value
relationships are the only kind which existing learning
techniques can detect, our chief task in this paper is to
show that functional learning can be as e�cient as exist-



ing learning techniques in the determination of constant-
value relationships.

2 On Functional Learning
The learning techniques involve the temporary injec-

tion of logic values at arbitrary signals in a digital cir-
cuit and the subsequent examination of its logical conse-
quences. Socrates [8] carried out static learning and the
method of learning was further improved in [12]. Func-
tional learning, introduced in [1] is easily seen as the su-
perset of all the previous learning methods [8, 12]. Func-
tional learning is a complete method, i.e. given su�cient
time, it can identify all necessary assignments from a
given situation of value assignments in a circuit. The
concept of functional learning is explained below with
the help of an example. We will illustrate the added ca-
pability of functional learning using an example in Fig-
ure 3.
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Figure 1: Functional learning

Consider the wire 23 in the circuit shown in Figure 1
to be unjusti�ed to a 1. G and H are the OBDDs for
the wires 23 and 16 respectively, built in terms of the
pseudo inputs a, b and c. The two OBDDs are shown in
Figure 2 [1]. The result of the AND operation between

G and H is H. This implies that when G is a Boolean
1, H is a Boolean 0. Hence, it is learned that a Boolean
1 on the wire 23 implies a Boolean 0 on the wire 16. By
forward implication, it is learned that the wire 24 must
carry a Boolean 1. A Boolean 0 on the wire 16 and a
Boolean 1 on the wire 24 are the necessary conditions
for a Boolean 1 on the wire 23.
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Figure 2: OBDDs for wire 23 and wire 16

The theorem that governs the learning operations in
functional learning is presented below [1].

Theorem 2.1 a. If G = 1 ) H = 1 then G
V
H = G.

Conversely, if G
V
H = G, then G = 1 ) H = 1. By

the Law of Contrapositum H = 0 ) G = 0.
b. If G = 1) H = 0 then G

V
H = H. The converse

is also true. That is if G
V
H = H, then H = 1 )

G = 0. By the Law of Contrapositum G = 1 ) H = 0.
As shown in [1], the above two operations su�ce in

checking any simple constant-value relationship between
two points G and H.

As shown in the Figures 4, if a Boolean 1 is injected
at the gate G in the circuit shown in the Figure 3, then
the gate becomes unjusti�ed. The OBDD for this wire
in terms of (a,b,c) is shown in the Figures 4(a), and the
OBDDs for both the wires H, and I, in terms of (a,b,c,d)
are shown in the Figure 4(b). The result of the AND
operation between the OBDD G and the OBDD H is
OBDD R and is shown in Figure 4(c). It can be seen
that there is no unique learning but we learn that under
the condition G = 1, both Y1 and Y2 must carry iden-
tical Boolean values. Note that checking for the equiva-
lence of two OBDDs is a constant time operation.
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Figure 4: BDDs in Circuit of Figure 3. (a) BDD G; (b)
BDD H; (c) BDD G ^H

2.1 Precise marking of potential learning
area

Given an unjusti�ed wire, functional learning �rst
chooses an appropriate cut. The present technique for
choosing a cut is based on a simple breadth-�rst traver-
sal of the transitive fan-in cone of the unjusti�ed wire,
starting at the unjusti�ed wire. Next, the OBDD for
the unjusti�ed wire is built in terms of the cut variables.
Once the OBDD is built, appropriate AND operations,



as explained in the previous section, must be performed
in order to learn indirect implications. But, the wires
where learning will be possible under the given situa-
tion of value assignments in the circuit are not known
before hand. In order to precisely demarcate the poten-
tial learning areas in the circuit a preprocessing of the
OBDD is carried out.

De�nition 2.1 A justi�cation vector in an OBDD is a
path from the root variable in the OBDD to that terminal
node whose value is equal to the value of the unjusti�ed
wire.

During the preprocessing of the OBDD for the unjus-
ti�ed wire, a constant k number of justi�cation vectors
are extracted. These vectors are applied to the circuit
and a complete implication is carried out. After the ap-
plication of all the k justi�cation vectors, the wires that
carry common Boolean values for all the consistent jus-
ti�cation vectors are marked as the potential learning
areas. Only these wires are subjected to the learning
operations using the procedure explained earlier. The
number of justi�cation vectors that need to be applied
in order to demarcate the potential learning areas with
high amount of precision is a matter of heuristic. The
process of justi�cation vector evaluation is stopped if
either no new wires are eliminated from the list of po-
tential learning areas after two successive evaluations or
if a user-de�ned upper limit on the number of justi�ca-
tion vectors to be extracted is reached or if evaluation of
all the justi�cation vectors in the OBDD is completed.

In the case of a larger OBDD for which a complete
enumeration of all the justi�cation vectors is not feasi-
ble, the procedure outlined above gives the wires which
comprise the potential learning area. Once the poten-
tial learning area has been marked, learning operations
based on the theorem stated above are carried out at
these wires.

3 Algorithm for Veri�cation
As is customary in such approaches, the problem of

design veri�cation has been converted to the problem of
checking for satis�ability. The two circuits to be veri�ed
are joined at their primary inputs. Their correspond-
ing primary outputs are fed in pairs to 2-input XOR
gates. This new circuit will be henceforth referred to as
the composite circuit. Thus, if the two circuits are to
be proven inequivalent, all that needs to be done is to
prove the satis�ability of the output of any of the above
XOR gates. In this work it is assumed that there are no
external don't cares in the circuits. However, this work
can be extended to incorporate external don't cares as
well. In this context, results presented in [19] can be
easily incorporated.

The complete 
ow diagram for the logic veri�cation
algorithm is shown in Figure 5. In the learning phase,
indirect implications from one circuit to the other circuit
are learned by injecting Boolean values at di�erent wires
in the circuit.

At each gate a Boolean value is injected such that the
gate becomes unjusti�ed. For example a Boolean 0 is in-
jected at the output of an AND gate and a Boolean 1 at
the output of an OR gate. Similarly, both a Boolean
0 and a Boolean 1 are injected at the output of an
XOR/XNOR gate. This phase is carried out using a
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Figure 5: Flow Diagram for Veri�cation

certain initial level of learning LL. In our implemen-
tation, we start with an initial learning level of 1. All
the indirect implications learned during this phase are
stored along with the data structure of the wire from
which it was learned. In this phase it is important to
have �nished processing all the wires in the transitive
fan-in of the present wire. This is needed to ensure that
during the processing of the present wire we can make
use of the pre-stored implications of the wires in its tran-
sitive fan-in to speed up the process of learning indirect
implications.

In the checking phase, we check for the equivalence of
the corresponding primary outputs of the two circuits.
In this phase a Boolean 1 is injected at the output of
the appropriate XOR gate and prestored implications
are used to try and prove a con
ict of this situation
of value assignment. An OBDD for the output of the
XOR gate is built in terms of an appropriate cut at a
level LC in the two circuits. Next, the indirect impli-
cations among the cut variables are utilized in order to
try and prove that all the paths in the OBDD start-
ing from the topmost variable and terminating at the 1
node are inconsistent. If a con
ict is proved, then the
two corresponding primary outputs are equivalent. This
phase is initiated with an initial level LC = 1. If the
two outputs cannot be proved to be equivalent, then LC
is incremented and the process is repeated till LC ex-
ceeds a preset LCmax. If after this phase, we still have
primary outputs remaining that have not been shown to
be equivalent, the learning level for the learning phase
is incremented and learning for indirect implications is
carried out with a higher precision. If the learning level
LL for learning phase exceeds a preset LLmax, then for
the remaining primary outputs we use an ATPG tool
that tries to generate a test for the fault s-a-0 at the



output of the appropriate XOR gate at the output of
the composite circuit. The ATPG tool makes use of all
the pre-stored indirect implications, thus e�ectively re-
ducing the search space for a test. The two correspond-
ing primary outputs are equivalent if the fault is proved
to be redundant. Otherwise, a test vector is generated
which is the distinguishing vector for the two circuits. If
the ATPG tool fails to prove the fault to be redundant
and also fails to �nd a test vector for the fault, then
VERIFUL aborts. It should be noted that the learning
phase is by itself a complete algorithm for logic veri�ca-
tion. Given enough time, the learning phase itself can
prove the circuits to be equivalent or inequivalent as the
case may be.

Now, we brie
y discuss some other interesting charac-
teristics of functional learning. However, detailed proofs
of the theorems have been omitted due to space con-
straint.

Assume that Sf (L) and Sr(L) are the set of con-
ditions learned respectively by the functional learning
(FL) technique when operating at a distance L from an
initial value assignment (or \operating at level L" as we
will use in the following), and recursive learning (RL)
technique at recursion level L. It can be proved that

Theorem 3.1 Sf (L) � Sf (L � 1) [ : : : [ Sf (L � 2) [
Sf (1)

An important di�erence between FL and RL tech-
niques can be noticed in following. Assume tf (L), tr(L)
are the time required to learn operating at level L in FL,

and recursion level L in RL. Hence Tf (L) =
Pi=L

i=1 tf (i)
is the time required if the method begins by learning at
each level beginning from level 1. However, in FL one
can choose to begin at level L and bypass the e�orts
required at earlier levels.

Theorem 3.2 In Recursive learning, to learn condi-
tions in Sr(L) - at recursion level L, one needs to spend

at least Tr(L) =
Pi=L

i=1 tr(i) units of time. However, in
functional learning, only tf (L) units of time can su�ce
in providing the lower bound on disovering Sf (L).

Ignoring the arguments about BDD variable order-
ing, an RL method apparently has a higher computa-
tional complexity. As shown in [1], for some functions,
FL takes time polynomial in number of gates analyzed
but RL requires exponential time resources. The reverse
is not true. It does not appear possible one can require
polynomial time for an RL method but exponential time
for the FL method. Interestingly, our experiments show
that FL performs equally well as RL based veri�cation
even on c6288, a multiplier, having an exponential rep-
resentation using OBDDs.

Note, typically a BDD has exponentially many path
in it. Hence it is wiser to write the conjunction of all
learned conditions themselves as a BDD. Hence learning
a = 0) b = 1 can be written as (a^ b) � a. Let each of
the learning condition ci be expressed as a BDD, and LC
represent the set of such BDDs. Let � be some cutset
such that it separates the output F1 of circuit C1 and
output F2 of circuit C2 from the primary inputs. Con-
sider F1(�) and F2(�) to be the corresponding output
OBDDs when expressed in terms of gates at the cut �.
In other words, the gates on cut � are now the (pseudo)

inputs through which outputs F1 and F2 are expressed.
Let LC(�) be the set of learning condition BDDs, again
expressed in terms of cut-points (gates) on �.

Theorem 3.3 F1 and F2, corresponding output func-
tions of the circuits C1 and C2 are equivalent if (F1(�)�
F2(�)) ^ ci, ci 2 LC(�) is not satis�able.

For a path enumeration mechanism, following simple
observation is quite useful.

Observation: A scheme working by path extraction
can easily exhaustively analyze a function without ex-
tracting all paths since we wish to test for satis�ability
only by determining whether a con
ict exists on all sat-
is�able paths. Let ! be some cutset separating the root
and the terminals in BDD F1(�) � F2(�).

Theorem 3.4 If we (breadth-�rst) enumerate all paths
from root leading up to cutset ! within BDD F1(�) �
F2(�) then F1 and F2 are not equivalent if there is a
con
ict on each such path.

4 Results
In this section the results on ISCAS 85 benchmark

circuits are presented. These results are extremely en-
couraging and prove that functional learning based ver-
i�cation can be a very powerful tool that designers can
use to verify their designs during the synthesis proce-
dure.

We present here the results where the redundant
combinational circuits are veri�ed against their non-
redundant versions. To obtain a correct perspective of
our results, note that the corresponding space as well as
times required for veri�cations using OBDDs is about
three orders of magnitude higher for circuits such as
c6288! The experiments have been carried out on a Sun
Sparc Station 10. The times reported are in seconds.1

The results show that functional learning is an ex-
tremely fast and e�cient method to extract internal
equivalences and indirect implications in digital logic.
Note, Theorems 3.3 and 3.4 were not employed for the
results obtained in this paper; only simple path enumer-
ation was used in the checking phase. An added advan-
tage of functional learning that we intend to utilize in
our future work is its ability to work on circuits where
parts of the logic are not represented as logic gates but
simply as Boolean functions. This is because of its ca-
pability to manipulate information on Boolean functions
by using BDDs. Note that the other existing learning
techniques [8, 12] do not have this capability. We also
intend to use additional relationships (indirect implica-
tions which are not constant-value relations) that are
easily described in our approach.

5 Conclusion
In this paper we have presented the preliminary re-

sults on VERIFUL, a design veri�cation tool based on
functional learning, an extremely powerful learning tech-
nique for digital logic, which was �rst introduced in
[1]. We have conducted experiments on the ISCAS 85
benchmark circuits. These experiments indicate that

1Note, the number of prestored implications are indirect impli-

cations except a small number of dispensable, direct implications

that our preliminary version of program stores.



Table 1: Veri�cation of some benchmark circuits

Circuits being veri�ed LL LC # prestored implications CPU time (min:sec)
c432 vs. c432nr 1 2 976 00:0.49
c499 vs. c499nr 1 1 1056 00:1.14
c1355 vs. c1355nr 1 1 2616 00:3.50
c499 vs. c1355 1 1 3834 00:1.94

c1908 vs. c1908nr 1 2 5336 00:5.76
c2670 vs. c2670nr 1 1 7498 00:48
c3540 vs. c3540nr 1 1 28541 06:05
c5315 vs. c5315nr 1 1 17126 06:57
c6288 vs. c6288nr 1 1 9194 00:24.5
c7552 vs. c7552nr 1 1 69379 31:51

functional learning based veri�cation can become a very
powerful and versatile tool for use during circuit synthe-
sis. Further, in this paper we have also brie
y pointed
out theoretically the superiority and greater power of
functional learning over the other existing learning tech-
niques [8, 12]. Many other interesting properties of func-
tional learning can also be shown as well as the fact that
these techniques can easily be integrated with conven-
tional OBDD based veri�cation methods to yield very
powerful veri�cation methodologies [2]. After further
improved integration of current programs with a sophis-
ticated ATPG tool, our subsequent research will be di-
rected towards the application of functional learning to
the �elds of OBDD based sequential circuit testing [13]
and veri�cation, and optimization of both combinational
and sequential logic circuits. We also intend to use var-
ious new kinds of learnings such as indirect implications
between sets of functions and generalized relationships
in a circuit that can be easily extracted by our method.
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