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Abstract { A cost-e�ective built-in self testing
(BIST) method for the detection of delay faults is pre-
sented. A multiple-input signature register (MISR)
with a constant parallel input vector is used as a test
pattern generator.

To reduce the test length of the MISR, a two-step ap-
proach is proposed. First, deterministic delay test gen-
eration is employed to determine a set of two-pattern
tests which detect all testable path delay faults. Second,
a minimal number of constant MISR input vectors is
calculated such that the state sequences generated by the
MISR include the pre-determined test set. The second
step is formulated as a set covering problem.

As the number of MISR input vectors may be expo-
nential in the number of stages of the MISR, their cal-
culation and the set covering are performed implicitly
with BDDs. Experimental results reveal that in almost
all considered cases a maximum robust path delay fault
coverage is obtained with less than 100 MISR input vec-
tors.

1 Introduction

Aggressive statistical timing and synthesis tools are
used to optimize the clock rate of high performance cir-
cuits. It was shown [1] that many paths in optimized
circuits have a propagation delay close to the maxi-
mum circuit delay. To assure a high quality level of
those circuits, delay testing becomes mandatory. De-
tecting a delay fault requires two distinct input vectors
hV;W i. First, the initialization vector V is applied to
the circuit. After all signals have assumed their ini-
tial value, the propagation vector W is applied and the
circuit outputs are sampled at clock speed.

Two main problems are associated with delay fault
models leading to high costs of testing. First, long
test sequences may be required to detect all testable
delay faults. In large circuits the latter may hold even
if test set reduction techniques are utilized. Second,
expensive testers are required to apply the delay tests
at normal clock speed to circuits.

An alternative technique is BIST which provides a
low-cost test solution by building the tester inside the
chip. To exploit BIST for delay fault testing, several
BIST schemes targeting the generation of two-pattern
tests have been proposed in the literature. These
schemes di�er with respect to the achieved fault cover-
age, the area overhead and the test length.

Exhaustive BIST test pattern generators (TPGs)

were proposed [2,3,4,5]. Since the exhaustive two-
pattern count for an n-input circuit under test (CUT)
is 2n � (2n�1), exhaustive TPG methods are limited to
CUTs with a small number of inputs.

A pseudo-exhaustive transition test using a 2n-stage
linear feedback shift register (LFSR) for an n-input
CUT was proposed [3]. The test length of this method
is 22n � 1. To reduce the test length to n � 2n, pseudo-
exhaustive adjacency testing (PEAT) was introduced
[6]. PEAT gives a maximum robust path delay fault
coverage [7], but due to an n-stage non linear feedback
shift register (NFSR) and an additional n-stage regis-
ter its area overhead is high. Recently [5] it was shown
that a multiple input signature register (MISR) with
only n stages allows an exhaustive two-pattern test in
pipelined circuits.

To shorten the test time, m-stage LFSRs that pro-
vide a maximum test pattern-pair coverage with TPG
size m < 2n were identi�ed [4]. However, the achiev-
able robust delay fault coverage can only be deter-
mined via fault simulation in a post processing step.
If the fault coverage is poor, further selection steps
with increased TPG size may be required. A quite
di�erent approach to test set reduction is based on a
pre-determined set of two-pattern tests detecting all
testable delay faults [3,5]. In [3], the feedback function
of an NFSR is designed to generate a given set of test
pattern pairs. The time consuming determination of
the NFSR, however, limits its applicability. In [5] it
is proposed to calculate a minimum number of MISR
input vectors such that the state sequences generated
by the MISR include the pre-determined test set. The
MISR input vectors are computed by clique covering.

In this paper a sophisticated test set reduction tech-
nique based on [5] is proposed. It starts from a given set
of two-pattern tests. In particular, it will be shown that
the determination of a minimal number of MISR inputs
is a set covering problem rather than a clique covering
problem. The set covering problem is e�ciently solved
using Binary Decision Diagrams (BDDs) [8] in all steps.
Experimental results reveal that the test length can be
reduced drastically compared with exhaustive testing.
Our technique combines complete delay fault coverage
with a small test length and low area overhead.

The paper is organized as follows. Section 2 con-
tains some preliminaries on Boolean functions, BDDs
and MISRs. The problem formulation and our solu-



tion strategy is given in Section 3. Our BDD-based
approach is presented in detail in Section 4 and 5. In
Section 6, experimental results are discussed. We give
conclusion and directions for future work in Section 7.

2 Preliminaries

2.1 Boolean Functions
We are dealing with Boolean functions f : Bn !

B, where B = f0; 1g. Let y = (y0; : : : ; yn�1) de-
note a vector of Boolean variables yi. The existen-
tial quanti�cation 9yi of a Boolean function f(y) with
respect to the variable yi is de�ned by 9yif(y) =
f(y0; : : : ; yi�1; 0; : : :) + f(y0; : : : ; yi�1; 1; : : :): The ex-
istential quanti�cation of a Boolean function f(y;d)
with respect to the variable vector y = (y0; : : : ; yn�1)
is given by 9yf(y;d) = 9y09y1 : : :9yn�1

f(y;d): The

density �(f) of a Boolean function f : Bn ! B is the
number of minterms in the onset of f divided by 2n.

2.2 MISR with Constant Parallel Input
The next state y' and current state y of an n-stage

MISR (see Fig. 1) with a constant input vector d =
(d0; :::; dn�1) can be related by the transfer function0
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where h0 = 1, hi 2 f0; 1g for 1 � i � n � 1, andPn�1

i=0 xi being the addition modulo 2. The char-
acteristic polynomial of the MISR with input vector

d = (0; :::; 0) is given by f0(x) = 1 +
Pn�1

i=0 hi � x
n�i.

In [5] it has been shown that for each input vector d
there exists a maximum period of length 2n�1 if f0(x)
is primitive [9] . The sequence of 2n�1 states generated
by the MISR with input vector d is called maximum
length sequence (MLS) Sd.

Another important property was also proven in [5]:

Theorem 1 Let f0(x) be primitive and let Sd and Sd0

denote the MLSs for two distinct inputs d and d0 of
the MISR. Then, two consecutive states hy;y'i that are
contained in Sd will not be repeated in Sd0 .

According to Theorem 1, an exhaustive two-pattern
test can be generated with an n-stage MISR if all 2n

input vectors are used and every single input vector
d is held constant while the MISR cycles through its
MLS Sd. Let us, e.g., consider a 3-stage MISR with
transfer function 
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and the primitive polynomial f0(x) = x3 � x� 1.
Fig. 2 depicts the eight MLSs for the eight input vectors
d. The �rst variable y0 represents the most signi�cant
bit, i.e., y = (100) is state 4. As an example, consider

...

d n-1 d1 0d

Y0
t

Y n-2
t

Y1
t

Y n-1
t + + + +

h0 h1 h n-1

+ ++...

d n-2

h n-2

Figure 1: MISR with constant input vector d 2 Bn.
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Figure 2: All MLSs representing an exhaustive two-

pattern test.

the current state 6. All possible next states 0-7 except
6 are generated by the MISR if all input combinations
except d = (001) are used. The same holds for all other
current states.

2.3 Test Application
Since the test length of an exhaustive two-pattern

test, as shown before, is 2n(2n � 1), a test set reduc-
tion method is required. In general, only a fraction
of all constant input vectors are needed for complete
fault coverage. Our algorithm described in the follow-
ing sections determines a minimal number of inputs d
such that the generated Sd's detect all testable delay
faults in a given CUT. Fig. 3 shows the test application.
For each input vector d, the MISR generates 2n�1 test
pattern pairs applied to the CUT.

If there is no direct access to the MISR inputs (e.g.
in a piplined data path), each calculated input vector
d has to be justi�ed through the previous circuit C
(see Fig. 3). The resulting vector i is serially loaded
into the previous MISR and held constant for 2n � 1
clock cycles. To accomplish this, either two clocks with
di�erent periods or an additional mode is required to
freeze the content of the previous MISR. As will be
described in Subsection 5.3, our method is capable of
calculating only those input vectors d that are valid
outputs of C.

The constant input vectors d (or i, if the d-vectors
are justi�ed through the previous circuit C) can be
stored in a simple read-only memory.

d
M
I
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S
R

Figure 3: Test application.



3 Problem Formulation and Solution

Approach

Let Mtest = ftp1; : : : ; tpmg with tpj = hVj ;Wji be
a set of deterministically generated two-pattern tests
which detect all testable delay faults in the CUT. Then
the problem is:

Determine a minimum cardinality set MMLS of
maximal length sequences Sd such that each test pat-
tern pair tpj 2 Mtest is contained in at least one
Sd 2 MMLS.

In general, Vj and Wj of tpj are incompletely spec-
i�ed. Hence, a large number of MLSs may contain tpj
after proper assignment of don't care values. Since a
fully de�ned vector pair is contained in exactly one
MLS (see Theorem 1), an incompletely speci�ed tpj is

included in 2p+q MLSs, where p and q is the number
of don't cares in Vj and Wj , respectively.

De�nition 1 A MLS that contains tpj with properly
speci�ed don't cares is called permissible for the two-
pattern test tpj .

The problem can be solved in two stages. First,

the set P
j

MLS of all permissible MLSs is calculated
for each two-pattern test tpj 2 Mtest. Note that

1 � jP
j

MLSj � 2n. Second, a set covering prob-
lem has to be solved. Given the sets of permissible
MLSs, determine a minimum cardinality set MMLS =

fSd1 ; : : : ; Sdrg �
S

tpj2Mtest

P
j

MLS such that for each

tpj 2 Mtest at least one of the MLSs Sd1 ; : : : ; Sdr is
permissible. If the inputs d1; : : : ;dr are applied to the
MISR, the MLSs Sd1 ; : : : ; Sdr are generated and com-
plete delay fault coverage is achieved in the CUT.

Both stages have not been thoroughly addressed
in [5]. First, no systematic method is given to com-
pute permissible MLSs. Second, the covering problem
is formulated as a minimum clique covering problem.
There is a node for each two-pattern test, and an edge
between two nodes if the corresponding two-pattern
tests are contained in one MLS. However, the two-
pattern tests of a clique are not necessarily contained
in a single MLS. Therefore, each clique found by min-
imum clique covering actually must be checked if its
two-pattern tests are contained in a single MLS, and
if not the clique must be postprocessed. Furthermore,
even medium-size circuits have more than a thousand
two-pattern tests and millions of possible MLSs such
that explicit covering techniques would hardly succeed.

Figure 4 sketches the e�ect of both stages of our al-
gorithm. The horizontal dimension displays the length
of a single MLSs, the vertical dimension the number
of MLSs needed for complete robust delay fault cov-
erage. The whole rectangle represents the test length
of an exhaustive two-pattern test as mentioned in Sub-
section 2.2 and shown in Fig. 2.

Solving the �rst stage, i.e., calculation of permissi-
ble MLSs for each two-pattern test, makes it possible
to choose an arbitrary permissible MLS for each two-
pattern test. This would reduce the test length from

number
of MLSs

b)

jMtestj
jMMLSj

2n � 1 2n � 1

2n 2n

length of MLS length of MLS

a)

Figure 4: Test length reduction by a) calculation of

permissible MLSs b) subsequent set cover-

ing.

2n �(2n�1) to jMtestj �(2
n�1), as shown by the shaded

area in Figure 4 a). Note that jMtestj typically is much
smaller than 2n. E.g., for the industrial circuit ind1 we
have jMtestj = 1685, whereas 2n is larger than 6:7�107.

The solution of the second stage, i.e., the set cov-
ering problem, further reduces the test length from
jMtestj � (2

n � 1) to jMMLSj � (2
n � 1) as shown in

Figure 4 b). Again for circuit ind1, we have a reduc-
tion from jMtestj = 1685 to jMMLSj = 62.

4 Generation of All Permissible MLSs

In this section we show how to implicitly compute
the set of all permissible MLSs for a two-pattern test,
using the characteristic function of the MISR.

As shown in Equ. (1), the function of the MISR
output y00 is

y00 =

n�1X
i=0

hi � yn�1�i � d0 : (3)

We de�ne an individual characteristic function
�0(y

0
0;y; d0) which is equal to 1 i� the input and output

values of the MISR output y00 are consistent,

�0(y
0
0;y; d0) = y00�

 
n�1X
i=0

hi � yn�1�i � d0

!
; (4)

where � denotes XNOR.
The function of any other MISR output y0k; k =

1; : : : ; n� 1, was given in Equ. (1) as

y0k = yk�1 � dk; (5)

thus its individual characteristic function �k(y
0
k;y; dk)

is
�k(y

0
k;y; dk) = y0k� (yk�1 � dk) : (6)

Combining the individual characteristic functions
of each output, we obtain the characteristic function
�MISR of the MISR, which yields 1 for any consistent
assignment of input and output values of the MISR:

�MISR(y';y;d) =

n�1Y
k=0

�k(y
0
k;y; dk) (7)

Now let us consider a speci�c test pattern pair
tpj 2 Mtest, and set y = Vj and y' = Wj . In gen-
eral, not all the variables y00; : : : ; y

0
n�1 and y0; : : : ; yn�1

are speci�ed. We ask for values of these variables
so that the MISR input and output value assign-



ments are consistent. If there exists a combination
of values for y0

0
; : : : ; y0n�1 and y0; : : : ; yn�1 so that

�MISR(y';y;d) = 1 then we have found a consistent
value assignment. Performing existential quanti�cation
with respect to the vectors y' and y on the characteris-
tic function �MISR of the MISR, we obtain a function
denoted pfj(d),

pfj(d) = 9
y';y

�MISR(y' = Wj ;y = Vj;d); (8)

which depends on the d-variables only. The onset of
pfj(d) consists of all those d-vectors for which a con-
sistent value assignment to the don't cares of the test
pattern pair tpj exists. Therefore, the onset of pfj(d)

uniquely de�nes the set P
j
MLS of permissible MLSs for

the test tpj: P
j
MLS = fSdi jpfj(di) = 1g. The function

of permissibles pfj(d) is called the p-function for test
tpj.
Example:

For the 3-stage MISR with transfer function (2),
see Subsection 2.2, we get �MISR(y';y;d) =
(y0
0�(y2 � y0 � d0)) � (y

0
1
�(y0 � d1)) � (y

0
2
�(y1 � d2)) :

For tpj = hX01; 011i we have y00 = 0; y01 = 1; y02 =
1; y0 = X; y1 = 0; y2 = 1 and therefore
pfj(d) = 9

y;y'

�MISR(y';y;d)

= 9
y0

((0�(1� y0 � d0))(1�(y0 � d1))(1�(0� d2)))

= 9
y0

((y0 � d0) � (y0 � d1) � (d2))

= d0d1d2 + d0 d1d2:
There are two permissible MLSs for tpj : S111 and S001,

thus P
j
MLS = fS001; S111g.

5 Implicit Set Covering

Each d-vector which is in the onset of a p-function
pfj(d) represents a MLS permissible for tpj . Our goal
is to determine a minimum cardinality set of d-vectors
such that for each tpj 2 Mtest at least one of these
d-vectors is in the onset of pfj(d).

Obviously, we have to solve a set covering problem.
In the table associated with this set covering problem,
there is a row for each test pattern pair tpj and a col-
umn for each d-vector. The set covering problem is
to �nd a minimum cardinality subset of columns that
cover all the rows [10].

We know of two BDD-based algorithms for a set
covering problem where the rows of the table are given
by functions, as it is the case with the p-functions in
our problem. The �rst [11] tackles the more general
binate covering problem. However, each column of the
covering table is represented by a variable, which is not
applicable in our case where the number of columns is
2n. An exact set covering algorithm was proposed in
[12] in a di�erent context. In our case, the entries of the
table depend on the particular two-pattern tests which
are determined by automatic test pattern generation
(ATPG). Since ATPG methods usually do not provide
an optimal test set with respect to size and a maximum
number of don't cares, the optimality of an exact set

Table 1: Example for row dominance

tpj hVj ;Wji pfj(d) row dominance

tp1 (00X, 10X) 11001100 tp1 � tp4
tp2 (10X, 00X) 00110011 tp2 � tp3
tp3 (01X, 111) 00100010

tp4 (111, 011) 10000000

tp5 (01X, 11X) 00110011 tp5 � tp3
tp6 (X01, 011) 01000001

tp7 (01X, 001) 10001000 tp7 � tp4
tp8 (00X, 01X) 00110011 tp8 � tp3
tp9 (01X, 00X) 11001100 tp9 � tp4
tp10 (10X, 11X) 11001100 tp10 � tp4
tp11 (X00, X01) 01010101 tp11 � tp6
tp12 (X01, X00) 10101010 tp12 � tp3

Table 2: After exploiting row dominance

tpj pfj(d)

tp3 00100010

tp4 10000000

tp6 01000001

covering step has only restricted practical value.
Therefore we use a computationally inexpensive

heuristic algorithm to �nd a minimal column covering.
Our set covering algorithm is characterized by three
steps. First, we exploit row dominance. We then deter-
mine essential columns [10], which is not described here
due to space limitations. Finally, the resulting table is
covered greedily by columns which cover a maximum
number of rows. All steps are performed with BDDs.

5.1 Exploiting Row Dominance
The test pattern pair tpj associated with row j is

said to dominate test pattern pair tpk associated with
row k, if each MLS permissible for tpj is also permissi-
ble for tpk. The dominance relation between test pat-
tern pairs can be expressed using the p-functions:

tpk � tpj () (pfj(d) + pfk(d) = 1) (9)
Dominated test pattern pairs are deleted because

any d-vector which is in the onset of the p-function
pfj(d) of tpj will also be in the onset of the p-function
pfk(d) of tpk. Deleting dominated test pattern pairs
reduces the problem size without sacri�cing optimality.

An example is shown in Table 1. Twelve test pattern
pairs tpj = hVj;Wji have been generated determinis-
tically for the circuit shown in Fig. 5 of [5]. The
respective Vj and Wj patterns are given in column 2.
The truth table of each pfj(d) is shown in column 3 as
a row vector, where the leftmost value is pfj(000). For
example, pf1(000) = 1 and pf1(111) = 0. Note that
tp6 is the example given at the end of Section 4.

The complete column 3 represents the table of the
set covering problem. The row dominance relations are
given in column 4. Nine of the twelve test pattern pairs
are dominated so that only three pattern pairs need to
be considered in the following step of the set covering.
The resulting table after exploiting row dominance is



shown in Tab. 2. Three columns are necessary to cover
the remaining three rows.

5.2 Selecting a Maximum Column
To determine a column which covers a maximum

number of rows, the covering matrix is constructed as
a BDD. Let there be m dominating p-functions after
exploiting row dominance. We assign a unique code
c 2 Bz ; z � dld me to each of these p-functions. Then,
the function CM representing the covering matrix is

CM (c;d) =

mX
j=1

cj � pfj(d): (10)

The maximum covering column is determined as
suggested in [13]. The variables in d must be ordered
before the variables in c. Let the variables in d have
index 0; : : : ; n�1, and let the variables in c have index
� n. By top c nodes we denote the set of BDD nodes
which have an index � n and at least one predecessor
with index < n.

For �j 2 top c nodes , let hj(d) be the function hav-
ing as its onset all those d-product terms which cor-
respond to paths from the root node of the BDD to
�j, and let fj(c) = BDD(�j ) be the Boolean function
represented by node �j. Then, for each �j the function
hj(d) represents all the columns which cover the same
rows. These rows are represented by function fj(c).

The density � is calculated for each BDD node �j 2
top c nodes. We choose �j 2 top c nodes such that the
density of its function, i.e. �(BDD(�j )), is maximum.
Since all d-minterms in the onset of hj(d) cover the
same rows, we arbitrarily select one of these minterms.
This minterm d de�nes the MLS Sd, which is assigned
to the solution set MMLS .

The rows covered by the selected column are re-
moved, i.e., the function CM is updated, and the next
maximum covering column is calculated.

5.3 Justifying Constant Input Vectors
If each d-vector must be justi�ed through the pre-

vious circuit C as described in Subsection 2.3, we �rst
compute the range RC(d) of the multiple-output func-
tion implemented by circuit C. Range computation
can be done as suggested in [14].

Before we exploit row dominance, each p-function
pfj(d) is simply multiplied with the range RC(d):
pf 0j(d) = pfj(d) �RC(d). Thus we do not further con-

sider all those MLS Sd for which the d-vector cannot
be produced by the preceding circuit C.

6 Experimental Results

To evaluate our method, we used ISCAS-85 and
ISCAS-89 benchmark circuits as well as some industrial
examples. Only the combinational parts of the circuits
were used. The second column of Table 3 shows the
number of inputs ]Inputs= n of the circuits. Since
the test length for each calculated input vector d is
2n � 1, test application time can become too large for
circuits with n > 30 inputs. Therefore, only circuits
with n < 30 have been selected.

In a �rst step, we determined robust two-pattern
tests for all path delay faults using DYNAMITE [15].

The number of generated two-pattern tests, ]TPs=
jMtestj, is given in column 3. Note that the random
assignment of values 0 or 1 to the don't cares after
ATPG was omitted to make many MLSs permissible
for a two-pattern test.

In a second step, we computed the permissible MLSs
as described in Section 4 for each two-pattern test.
Then, row dominance according to Equ. (9) was ex-
ploited. The resulting number of dominating two-
pattern tests, ]Rows, is given in column 4 of Table 3.
Solution of the set covering problem, as discussed in
Section 5, yields a minimal number of maximumlength
sequences ]MLS= jMMLSj which is given in column
5. Except for circuit ind2, the �nal number of MLSs is
always below 100. It can be seen from the result table
that most of the reduction from jMtestj to jMMLSj is
due to the initial exploitation of row dominance.

Column 6 displays the quotient 2n/]TPs, which is
the test length reduction achieved by the �rst stage of
our BDD-based algorithm as shown in Fig. 4a). This
value ranges from below 3 for s27 up to over 105 for
ind3. Apparently, the reduction is more drastic for
circuits with a large number of inputs.

Column 7 shows the average number of two-pattern
tests per maximum length sequence, ]TPs/]MLSs,
which is the test length reduction obtained by the sec-
ond stage of our algorithm as shown in Fig. 4b). The
reduction ranges from 6.3 for ind2 up to 46.5 for ind3.
We can conclude that both stages of our BDD-based
algorithm signi�cantly contribute to a reduction of the
test length. The last two columns show the CPU time
in seconds on a DecStation 5000/200 (22 MIPS) spent
for ATPG and our BDD-based calculation of a minimal
set of MLSs.

A comparison of the number of MLSs for s386 and
s444 illustrates that a smaller number of two-pattern
tests need not cause a smaller number of MLSs. The
�nal number of MLSs also depends on how many per-
missible MLSs exist for each two-pattern test: exper-
imental data reveals that the average density of the
dominating p-functions of s386 is 0.024 while the av-
erage density of the dominating p-functions of s444 is
0.093, i.e., almost four times as large. Maximizing the
number of don't cares in the test patterns can therefore
be viewed as an additional objective during ATPG.

7 Conclusion

We have developed a new BIST method for the de-
tection of delay faults. The method is based on a MISR
generating a maximum length sequence of patterns for
each constant input vector.

The test length is determined by the number of pat-
terns of a maximumlength sequence and the number of
constant input vectors. In this work, we concentrated
on minimizing the number of constant input vectors.
Using deterministically generated two-pattern tests, we
calculated the set of permissible maximum length se-
quences for each two-pattern test. The calculation is
performed implicitly with BDDs.



circuit ]Inputs ]TPs ]Rows ]MLSs 2n/]TPs ]TPs/]MLS CPU/sec

ATPG MLS

s27 7 50 10 6 2.6 8.3 3.7 0.7

s208 18 284 51 26 923.0 10.9 5.4 14.0

s298 17 343 35 17 382.1 20.2 5.5 7.2

s386 13 413 85 49 19.8 8.4 7.5 17.8

s444 24 586 109 16 2:8 � 104 36.6 8.7 361.4

s510 25 729 51 34 4:6 � 104 21.4 13.5 16.9

s526 24 694 71 37 2:4 � 104 18.8 8.3 71.8

s820 23 980 140 71 8:6 � 103 13.8 19.5 88.7

s832 23 984 148 71 8:5 � 103 13.9 20.2 104.0

s1488 14 1875 198 76 8.7 24.7 82.3 112.9

s1494 14 1882 187 73 8.7 25.8 84.0 109.5

ind1 26 1685 165 62 4:0 � 104 27.2 33.9 166.6

ind2 24 1155 246 183 1:5 � 104 6.3 26.0 899.4

ind3 26 186 7 4 3:6 � 105 46.5 4.4 4.5

ind4 25 1393 113 66 2:4 � 104 21.1 556.8 680.2

Table 3: Calculating the minimal cardinality set of MLSs

We obtain sets of permissible maximum length se-
quences and use a BDD-based set covering algorithm
to compute a minimal number of maximum length se-
quences, and thus a minimal number of constant input
vectors. If each of these input vectors is held constant
while the MISR cycles through its maximum length
sequence, complete fault coverage is obtained in the
circuit under test.

Our approach can be summarized as follows. First,
because a n-stage MISR is used in our BIST approach,
area overhead is low compared with other approaches
which require a 2n-stage test pattern generator. Sec-
ond, the use of deterministically generated two-pattern
tests allows complete delay fault coverage with moder-
ate test length. Finally, to handle the huge number of
permissible maximum length sequences, the computa-
tion is based on e�cient implicit BDD-techniques.

So far we only considered the vertical dimension of
Fig. 4 to reduce the test length. As each maximum
length sequence consists of 2n � 1 patterns, our ap-
proach is still con�ned to circuits with less than 30
inputs. To be able to also handle large circuits without
partitioning, our future work will focus on the horizon-
tal dimension of Fig. 4. This means that we will try to
determine a set of sequences of length < 2n � 1 such
that the test length, as given by the shaded area in
Fig. 4, is minimized.
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