Proving Testing Preorder$or Process Algebra Descriptions

Fulvio CorNO, Marco QJSINATO, Mario FERRERQ Paolo RINETTO

Politecnico di Torino
Dipartimento di Automatica e Informatica
Torino, Italy

Abstract” ism, asynchronous evolution, hierarchy, communica-
tion, and data handling.

Process Algebras (PAs) [14] [12] [1&le one such
extension, aiming at modeling concurrent communicat-

Process Algebras are rapidly becoming a mathe-
matical model used by verification engineers to extend

the description capabilities of Finite State Machines ing systems at a verliigh level of abstractionThey
towards higher abstraction levels. As long as design overcome moslimits of FSMs, especially for control-
and verification methodologies at the system level are dominated systemsndthey profit by a soundhathe-
developed, thwu_zle spectrum of equwalenc_e relations matical framework. In formal verification, PAs support
Fhat can be_ defined over PrOCESSES TECEIVES an evey, o powerful notion ofobservational equivalencesnd
increasing importance.Testing Equivalencesand preorders[8], which allowthe designer to Iset the

Testing Preqrders_lre partigula_rly suited fo_r formgliz- resolution power he needs when comparing systems.
ing the relationships holding itop-down hierarchical The main limit to the applicability of PAs is the lack

methodologies. The main deterrent to Uaglespread of efficient tools. The algorithms presented in this

use of Process Algebras seems to be the lack of efﬁ'paper have been implemented iav&ro [4] [5], a

cienrt] tools. V_ery e::fic_ient allgjori_thmith_echmques, based BDD based tool for Process Algebraanipulation. Its
on the adoption of Binary Decision Diagrams, are now efficiency is orders afmagnitude superior to traditional

beir_19 used in different fields_. This paper presents al- approaches [6] [9hnd comparable or better to other
gorithms for the proof of testing preorders and equiva- symbolicimplementations [1]. The PA impemented in

lences t?alt are, to the.beslt of our kn_owled?e: t.h;: first severois Circal [15] [17], whose capability of describ-
successful attempt TO lmpl err:]enthtestlr:]g rﬁa’;mﬂl ing concurreneventsand multi-pointcommunications
BDDs. Experimental resultshowthat the the imple- o5, 0y apje in describing hardware systems.

mented algorithms are able to deaith medium- and The goal of this paper tvofold: from onehand, it

large-size systems. presentslesting Preorderand Equivalencesshowing

1. Introduction how they can be used in system desigdverification.
From the otherhand, it describes a set afymbolic

Finite State Machines (FSMs)e one of thenost g|gorithms to minimizeprocesses according to Testing

popular formalisms for describirthe behavior of sys- Equivalence and to check for testing relations.

tems. They proved an excellent formalism to describe The paper is structured fallows. Section 2 shortly

and manipulate systems when synchronous descriptiongstablishes the theoretical framework of Rsl Test-

are consideredJnfortunately, they lack versatility and jng Relations. Section 3 details the algorithused in

expressive power to be used in higher-level descrip-yerification. Section 4 reports some experimental re-

tions, where more sophisticated modei® needed. gults proving the étiency of the approach, while in
This lead to thedevelopment of several extensions of gection 5 some conclusions are drawn.

FSMs, in the directions of concurrencen determin-]
2. Theoretical Framework

* This work hasdeenpartially supported bthe Esprit Projedd575
“ATSEC”, Human Capital and Mobilty EEC-HCM-0061 2.1. Process Algebras
“EUROFORM: Formal Methods for Correct System Design” and by the
ltalian National Research Council “Progetto SpecBgecifica ad alto A processis a black box ¢éring to the external en-

Livello e Verifica Formale di Sisteniigitali”. Contact address: Paolo yironment a set of communicatioports, through
Prinetto, Dipartimento di Automatica e Informatica, Politecnico di hich h dEollowi Circal
Torino, CorsoDucadegli Abruzzi24, 1-10129 Torino (ltaly)e-mail which eventsare exchanged-ollowing Circal’s para-

Paolo.Prinetto@polito.it

digm [15], actions can occur simultaneoushd can be
shared amongrocesses according to multi-point ren-
dez-vouschannels When an externabbserver is not
allowed to monitorthis exchange of actions thmoc-
essesare said texecuteinternal communications,
calledt or silentactions

The behavior of @procesK is specified interms of
the events it is able to exchange and Labeteddition
Systems (LTSs@areused as a concrete representation.
A LTS is a 4-tuplK = (§ A, T, &), whereSis a set of
statesA is the set ofctionsthatK is allowed to exe-
cute, where an acticai A is a set of events takdérom
the setlL of allowed eventsA=2", ands, is the initial
states0S. T is a relationTOSxAxS, calledtransition
relation, thatdetermines the sequential behavior of the
process: it recordthe set ofransitions[3s a, adJthat
can be traversed by tleystem, wherssadlS are the
startand thearrival state andalJA is anaction

Process Algebras provide operators for manipulating

An different approach to observational equivalence
is that oftesting equivalenceor, in generaltesting
relations[8]. This approach is trulgpbservational since
two systemsare said equivalenthenever thesatisfy
the same set afbservers Depending on the definition
of the universe obbserversand on the notion of satis-
faction, different testing equivalences can be defined.

SYSTEM

O
B
S
E
R
\Y
E
R

processes described by LTSs. Process Algebra operators

areused to build composite systestarting from sim-
pler ones [17]. The most important operators are:

» Composition operators the concurrenevolution
of two processes is defined bgnsidering all the
interleavingsof their actionsand thesynchronizaz-
ions due to rendez-vous ahared actionswhich
model communications.

» Choice operators the composite behavior tbat of
oneof the components.

* Abstraction operators aredefined tohide from an
externalobserverthe innercommunicationsand to
simplify processes according tioe constraints im-
posed by their environment.

When Finite State Machines are considered, a sim-
ple notion of equivalence is used, namélgce (or
language equivalence. Unfortunately, tracequiva-
lence is not resolutive enough to casgdmeimportant
properties of concurrerdnd notdeterministic proc-
esses, such as deadloghus, morepowerful notions
of observational equivalendeave to be defined.

A first approach to observational equivalence [14]
defines two processes plistinguishableif each one
is able tosimulatethe behavior of the other one, i.e., if
it is able to provide the sansets of events tthe exter-
nal world. Two such processese said to bbisimilar.
There areseveral possible definitions for bisimilarity,
in terms of increasing resolutiopower, e.g., weak
branching andstrong bisimilarity They differ mainly
for the kind of internal actions eaginocess is allowed
to execute when trying to simulate the other.

Figure 1:Definition of an observer

2.2. Testing Relations

Given a systenK defined on a set of evenits an
observer[7] O for K is a process defined over events
LO{w}. wis an additional evergtvictory”) used by the
observer to report tthe external world theuccess of
its observation. Thebserverand thesysteminteract
via their common events(Fig. 1).

To define the satisfaction of an observer, one consid-
ers theprocess obtained by compositige system and
the observerj.e., the set oéll possible common com-
putation paths. Given aobserver, a systemmust sat-
isfy it if, for every path, theobserver is satisfied,
whereas a systemay satisfythe observer ifthere ex-
ists at least onpath in which theobserver is satisfied.
If none of these conditions hold$en thesystemcan
not satisfythe observer.

For example, in Fig. 2 aystemK is defined by its
LTS. By the above definitions, it turns out that:

* K mustsatisfy O; since in theprocessKk*O,, ob-
tained by parallel composition of tkgstemand the
observerthe eventvis inevitable;

* K may satisfyO, since inK*O, wis possible;

» K can not satisf{D; sinceK*O; can't executav.

In this framework,all thepossible relations among
processesire defined as relationbetween sets of ob-
servers. In particular:

* the may preorder K<, K, between processé§
and K, holds iff the set obbserverghat K; may
satisfyis contained in the set abserverghat K,
may satisfyMay preorderis equivalent to classical
trace inclusion when completely specifieaind de-
terministic systemsare considered (e.g., classical
FSMs), this is the only preorder of interest;

* the must preorder K<.,,stK> between processég
and K, holds iff the set obbserverghat K; must
satisfyis contained in the set abserverK, must
satisfy checking for must preorder amounts to a
comparison of thepossible deadlock conditions for
the two processes;

 according to [7], one cadefine atesting preorder
K: <estK2 between processds; and K,, which
holds iff K; Smay Kz andKy <mustKo; the testing pre-
order specifieshat K, possessesll the traces oK,
anddoesnot present any deadlock condition which
is not inKy;

* as usual, equivalencesin bedefined from preor-
ders:two systemare mustequivalent if thesets of
observers theynust satisfyis the samethey are
may-equivalent if theymay satisfythe samesets of
observersand they are testing equivalenif both
sets coincide.

O

N
O7ACI

C w
w w
K 01 02 03
O

O, O,
?/ a ?/ a
O
b b c
w w w
K* O K* O, K

Figure 2:Satisfaction of observers

* 05

The abovepreorders play aimportant role in sys-
tem descriptionand verification methodologies, since
they can describethe relation thaholds between a
specificationand acorrect implementation. Given a
specificationSpec

* the set of computatiorthat the implementation is
requested to possess is modelethieyset obbserv-
ers thatSpecmust satisfy;

* the set of computationthatshould never happen in
a correct implementation is modeled thg observ-
ers thatSpeccan not satisfy.

During the desigmprocess (Fig. 3), one must gener-
ate an implementatiolmpl and guarantee that both the
above sets ofomputations are not violated, while the
observers thabpecmay satisfyare adegree of freedom
during design.

Spec MUST MAY CAN'T

Design
step

Impl MUST MAY CAN'T

Figure 3:Implementation Preorder

This intuitive relation is calle@mplementation pre-

order, and is defined as follows:
SpecSimp Impl iff
Specsmys Impl andSpec,, Impl.

As theabovedefinitions imply, checking for testing
relations should involvéhe computation céll possible
observers, which isot feasible in any practicakali-
zation. [8], to which the interested reader is referred,
effectively bridges the gapetweenthe abstract defini-
tion and aroperationaliew. It provides an alternative
characterization of the preorders which directly oper-
ates on LTSs, based oime definition of the set of ac-
tions that must beacceptedafter a specified sequence
of actions has been executed.

3. Verification Algorithms

The algorithms implemented ine@&Rro for the
proof of testing preordersand equivalencesare pat-
terned after the conceptual procedure ofd8fl are, to
the best of our knowledgehe firstsuccessful attempt
to implement testing relations with BDDEhe goal of
this section is to introduce the reader to steategy
adopted for proofand togive some details about the
implemented symbolic algithms.

Procedures for checking relatiobstweertransition
systems have to solte/o problems: the identification
of thecouples of statethat are incorrespondence (i.e.,
are reachable under the same 1/O conditi@m) the
check of a given relation on such state couples. While

the former isusually complexand involves traversals
and fixed point computations othe state transition
graph, the latter is a stagwoperty check. Usually, the
two problemsare solved together by means afome
fixed point computation interleaved withe check of
the property over each generated state set.

The implementation of testing relations w®pose,
instead, solves the two problems separately, in two
different computation step&his is convenient since
different possible preorders exmhd the result of the

computation of the first step, by far more complex, can

be reused several times.

The whole procedure can be schematicadigcribed
as follows,assuming thabne wants to check f@ome
testing relation< between process#&s andKj:

 Step 1 transform the LTS oK; to a canonical form

[8] by computing the smallest LT, still testing
equivalent toK;, and do thesame forK,. Minimi-
zation amounts to finding all thsetatesthat are
reachable under the same conditicarsd which
possesshe samealeadlock propertiesThe algo-
rithm for minimization under the testingquiva-
lence constraint is composed of two sub-steps:

—Step la build a deterministic finite automaton
(DFA) D, starting from the LTS oK; by inter-
preting the LTS as a non deterministic finite
automaton (NFA) and applyinggDD implemen-
tation of the classical conversion algorithm [13].
This sub-step also computesnaapping function
Mi(s«, Sp) between each stasg of the DFAD;
and theset of states¢ corresponding to it in the
LTS K;. This information imneeded in order to be
able to detect, inthe following sub-stepall the
deadlock conditions.

—Step 1h convert the DFAD, to the canonical LTS
K:' by splitting each state according to thessi-
ble deadlock conditions it presenfEhis task is
accomplished by identifying, through the map-
ping functionM(x, S), the set of statex corre-
sponding to each stage and by partitioning them
according to the set gfossible actions. For each
partition, a new state is generatein

» Step 2 oncethe canonical formK;" and K, are
available, check the desired propertyon them.

This stephas tacheck forlocal conditionsonly,

since theminimal form is canonicaland non de-

terminism is confined tthatintroduced in Step 1b.

This is again composed of two sub-steps:

—Step 2a compute a relatiorR(s;, s), called
compatibility relation This relation is theonly

be proven. It records which statgsof K, are in
relation with s, in K. The equationsfor the
compatibility relations othe different preorders
and equivalences are in Tab. 1, whé(s, a, p) is
true when a transitios[T] - p[IT - exists.

—Step 2h check whether thgossible combined
evolutions ofK; andK, arecompletely contained
in R.(s;, &), i.e., whether no statuple accessi-
ble tothe systems violatethe preorder oequiva-
lence. This isdone by computing the reachable
state setR;, of the product machine of the two
LTSs, and by checking for the inclusiBi, < R..

R(s;, &) = Preorder Equivalence

May ~A (- Os, a p) 0 RemalS, &) O
(g Ox(s2, & Q) Remay(S1, S2)

Must Op (-Ca (Oxs2, &, Q) | Remus(S1, &) O
—0u(s1, & p))) Remus(S1, S2)

Test Rzmusl(sly 52) thesl(sly 52) O
Remaf(S1, S2) Retes(S1, S2)
Imple' Rsmusl(sl, 52) R:tesl(sl, 52)

mentation Roma(S1,)

Table 1:Expressions for the Compatibility Relations

4. Experimental results

This section presents an example to shbe effi-
ciency ofthe algorithms. To quantify theomplexity of
the proofs, avariant of thedining philosophergprob-
lem hasbeen consideredlThe system is modeled by
defining the behavior of eadbrk andphilosopher as a
separate procesand composingthem. Thefork mod-
els a shared resource, recording whether it is on the
table or it is held bysome philosopher. Two different
configurations of the system were considered:

» Case l:each philosopher gelss left fork, then the
right one and releases them in the reverse order.

» Case 2:in order to avoid deadlock, philosophers
are given the option of layindown their left fork
whenever they are not able to acquire the right one.
The systenhasbeen chosen suthatCase Zan be

animplementatiorof Case 1li.e.,Case 1<y, Case 2

Tab. 2and 3 summarize thesults obtained with

SEVERO ON a SparcStation2 with 32bytes of memory.
A limit of 800,000BDD nodes was set fail the com-
putationsand CPU timesare reported iseconds. Col-
umn (a)reports the numbar of philosophersand the
system configuration. The size of the composite system,

part of the algorithm depending on the relation to in terms of number of statemd transitions, and the

CPU time to compose itare in columns (b), (c), and [8]
(d), respectivelyColumns (e), (fland(g) report results
for obtainingthe minimal LTS(Step 1),and (h) the
time needed to estabilish the existence of the imple-[g]

mentation preorder (Step 2).

5. Conclusions
[10]

This paper presentedome sophisticated equiva-
lence notions for Process Algebra descriptiand the
corresponding proo&lgorithms. Testing equivalences
andtesting preordersare shown to be much more ex-
pressiveandsuitable for system-level descriptiotign
trace equivalence or bisimulations. In particular, the
implementation preorder modelse relation thammust
hold between a specificatioand one of its correct
implementations.

For the first time, testing relations are implemented [14)
resorting tosymbolic techniquesand BDDs, and are
implemented in the efficiertbol SEvERO. Experimen-
tal resultsshowthat proofs oftesting relations can be
accomplished in acceptable time.

[11]

[12]

[13]

[15]

Acknowledgments [16]

The authors wish to thank Prof. Rocco De Nicola for [17]
the useful discussions.

R. De Nicola, M. Hennessyfesting Equivalences for
ProcessesTheoretical Computer Science, vol.34, pp.
83-133, North Holland, Amsterdam (NL), 1984

J. C. Godskesen, K. G. Larsen, M. ZeebefdV
(Tools for Automatic Verification) Users Manual
Dept. of Mathematics and Computer Science, Institute
for Electronic Systems, Aalborg (DK), August 1989

M. Hennessy, R. MilnerAlgebraic Lawsfor Nonde-
terminism and Concurrengyd. ACM, 32 (1985), pp.
137-161

M. Hennessy:Algebraic Theory of ProcesseMIT
Press, Cambridge, Mass. (USA), 1988

C. A. R. HoareCommunicating Sequential Processes
International Series in Computer Science, Prentice
Hall, Englewood Cliffs, NJ (USA), 1985

J. E. Hopcrofr, J. D. Ulimarntroduction to Automata
Theory, Languages, and ComputatiorAddison-
Wesley, Reading, Mass, 1979

R. Milner: A Calculus of Communicating Systems
Lecture Notes Computer Science, vBR, Springer-
Verlag, New York, NY (USA), 1980

G. J. Milne:Circal and the Representation Gbmmu-
nication, Concurrency and TimACM Transactions on
Programming Languages and Systems, vol. 7, 1985
R. Milner: Communication and Concurrencirentice
Hall, Englewood Cliffs, NJ (USA), 1989

G. J. Milne:The Formal Description and Verification
of Hardware Timing IEEE Trans. on Computers, 40,
N. 7, July 1991, pp. 811-826

References

[1] A. Bouali R. de Simone:Symbolic Bisimulation System Build system
%?irgi\z/ati_?n C_:AV’;)Z: zfl"gg\;orkshgg loon8 Computer- n/ case #S #T Time [s]

ided Verification, June , pp. 97-

[2] K.S. Brace, R.L. Rudell, R.BBryant: Efficient Imple- o/1 392 5193 6.21
mentation of a BDD Package DAC'90: 27th 5/2 392 11254 6.76
ACM/IEEE Design Automation Conference, Orlando, 6/1 1297 28890 20.34
FL (USA), June 1990, pp. 40-45 6/2 1297 72890 27.53

[3] R. E. Bryant: Graph-based Algorithms foBoolean 7/1 4286 160317 70.66
Function Manipulation IEEE Transactions on Com- 7/2 4286 471454 83.63
puters, vol. C-35, N. 8, August 1986, pp. 677-691 @) () © (d)

[4] P. Camurati, F. Corno, P. Prinett&xploiting symbolic
traversal techniques for efficiefrocess Algebra Ma- Table 2:Experimental results
nipulation, CHDL'93: IFIP Conference on Hardware
Description Languages, Ottawa (CAN), pp. 21-34 -

[5] P. Camurati, F. Corno, P. Prinettn efficient tool for System Mimimization - Pre_order
system-level verification of behaviors and temporal n/case #S #T Time [s Time [s]
properties EURO-DAC'93: IEEE European Design 5/1 17 56 31.66
Automation Conference, Hambur@), September 5/2 11 50 7.40 2.23
1993, pp. 124-129 6/1 31 149 | 152.54

[6] R. Cleaveland, J. Parrow, B Stt_afférme Concurrency 6/2 18 136 17.83 6.45
Workbench “Automatic Verification Methods for Fi- 71 51 330 843 58
nite State Systems,” J. Sifakis Editorl. NCS 407, :

Springer Verlag, Berlin (Germany), pp. 24-37 712 29 308 49.19 25.84

[71 R. De Nicola:Extensional Equivalences for Transition @ (e) ® (9) (h)

Systems Acta Informatica, vol. 24, pp.211-237,
Springer-Verlag, New York, NY (USA), 1987

Table 3:Experimental results (cont'd)

	ED&TC95
	Front Matter
	Table of Contents
	Session Index
	Author Index

