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Abstract

The test generation task involves two separate ques-
tions which are: 1) what should the next test be?, and
2) Have enough tests been selected to achieve an ac-
ceptable defective part level? Historically, the same
fault set (usually the stuck-at-fault set) has been used
to answer both questions. When both questions use
the same fault set, a statistical bias is introduced to
the answer of the second question. In this paper, we
propose the use of independent models for answers to
the two questions above, and we show, via probabilis-
tic analysis as well as experiments, that the result is a
superior test set selection method.

1 Introduction

Testing is performed to weed out the defective parts

coming out of the manufacturing process. Tradition-

ally, test generation targets on a speci�c fault model

to produce tests that are expected to identify defects

such as unintended shorts and opens. There can be an

enormous number of possible defects in a circuit. To

do a good job, most of them should be detected by the

test set. Since the test generation and the test appli-

cation are limited by available resources like memory

and time, generating tests for all defects is infeasi-

ble. Instead, a relatively small set of abstract defects,

namely faults, are constructed and these faults are

targeted to generate the tests. Usually, the test gen-

eration stops when all target faults are detected by the

tests produced. With this approach, the test quality

relies on fortuitous detection of the non-target defects

[[BUTL90] [BUTL91a] [BUTL91b]].

As the quality demands and circuit sizes increase,

the e�ectiveness of test generation on a single fault

model becomes questionable. For instance, [KAPU92]
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showed that for most commonly used model, the sin-

gle stuck-at fault, the range in defective part levels can

spread over several orders of magnitude. [PARK94]

did extensive studies on this issue and demonstrated

that a high fault coverage was hard to predict an

equally high quality.

The weakness of the single stuck-at fault model for

obtaining a good test quality reveals that one model

may bias the selection of tests to miss some non-target

defects. One possibility to remedy this bias is to use

more fault models to generate more tests. For in-

stance, [MAX92] presents a combination of functional,

IDDQ, and scan tests and reported better results than

merely the single stuck-at fault tests. Since each fault

model represents a di�erent perspective toward the

total defect test space, it is likely that an undetected

defect left by one test set can be captured by another.

Here, we attack the problem di�erently. First, we

devise a simple probabilistic model to provide some in-

sight on the testing process. We show analytically that

for a circuit with a very large number of defects, the

quality of tests generated with speci�c fault models

in mind is limited. Then, from the theoretical model,

we propose an unbiased test selection method which

can break such limitation and also has the nice prop-

erty of stably predicting the defective part level. For

very large circuits, we show that an unbiased test set

is more likely to be better than the set from explicit

fault models. In addition to the probabilistic results,

we experimented on two benchmark circuits, C432 and

C499 (circuits larger than these two are hard to ana-

lyze due to their large test set spaces). Encouraging

results that strengthen the theoretical analysis were

obtained.

Plan

Section 2 explains the concept of fortuitous detec-

tion of defects in detail. A review of the William-

Brown model for defective part level prediction is pre-



sented. In section 3, we illustrate the probabilistic

model used to understand the testing process. Based

on the result derived from the model, we address the

question of how to improve the test quality. We also

demonstrate in theory that using fault dropping is un-

likely to produce desired high test quality. In section

4, the tool and the method for experiments are de-

scribed. Additional data with respect to [PARK94]

are reported in section 5, which demonstrate the in-

su�ciency of using the single stuck-at fault model for

testing and the infeasibility of using fault coverage in

place of the defect coverage on defective part level pre-

diction. An unbiased test selection method is pro-

posed in the following section. There, we compare

the e�ectiveness between the new idea and the tra-

ditional one using fault models via the probabilistic

model constructed in section 2. Experimental results

on the unbiased tests are reported in section 7.

2 Basic Concepts

A defect is a 
aw in a circuit. A fault model is

a hypothesis of how defects a�ect the circuit behav-

ior. Given a fault model, a set of faults is derived,

called target faults. Then, tests are generated on these

faults. Usually, target fault coverage is used as an es-

timator for defect coverage. Defects are categorized

into those which can be mapped directly onto modeled

faults and the others which cannot. We call the former

target defects, and the later non-target defects. Since

detecting a particular non-target defect is not ensured,

the accuracy of the estimation for defect coverage de-

pends on fortuitous detection of the non-target de-

fects. Note that there can be an enormous number

of defects in a circuit. While lacking a clear uniform

model to capture all defects, to study the fortuitous

detection, in practice we assume surrogates. Surro-

gates are di�erent faults from those target ones for

test generation, which represent a di�erent perspec-

tive of possible defects. In our study, we used two sets

of surrogates, non-feedback AND bridging and transi-

tion ( gate delay faults). We chose non-feedback AND

bridging faults since feedback bridging faults are easier

to detect [[MILL88] [MEI74]].

There are three possible relationships between tests

for target faults and those for non-target defects. Fig-

ure 1 illustrates the three cases. For instance, F2

dominates S3, F1 overlays S1, and S2 is disjoint from

both F1 and F2. s3 is ensured to be detected by a de-

tection of f2, s1 can be fortuitous detected by a test in

F1, and s2 cannot be detected by any target fault test.

The interaction among the target fault test spaces and

surrogate test spaces a�ects the accuracy of the es-

timation for non-target defect coverage using target

fault coverage.

S1,S2,S3:Test vector spaces for surrogates s1,s2,s3

F1

F2

S1

S2

S3

Total space

F1,F2:Test vector spaces for faults f1,f2

(a blind spot)

Figure 1: An example of distribution of test spaces for

target faults and surrogates

Test generation involves mainly two issues | the

selection of tests on target faults and the number of

tests selected. For selection of tests, a good test should

be able to detect more defects. Without knowing the

test spaces for defects, this goal is hard to achieve.

For the test size, target fault simulation is used to

compute the current fault coverage and usually test

generation stops when a criteria like 99% coverage is

met. During the process of test generation, for the case

with fault dropping, only those target faults currently

undetected are considered for the generation of the

next test, and for the case without fault dropping,

each test is generated for every target fault. There are

two drawbacks with the single fault model approach

for test generation. First, the selection of tests biases

toward the target test space so some test space is not

reachable and some others have reduced chances to

be selected. Second, if 100% fault coverage does not

produce an adequate quality, the next step remains in

question.

Our unbiased test selection method attacks both

issue at the same time. Before we get into that, let

us review a method for defective part level prediction.

Williamand Brown [WILL81] has the followingmodel

DL = 1� Y (1�d)

where DL is the defective part level, d defect cov-

erage, and Y yield. Usually, the yield comes from

empirical data on manufacturing process. In practice,

fault coverage f is used in place of the defect coverage.

For us to be able to achieve desired defective part level



using f , it requires f � d. If f di�ers from d which

is usual for single stuck-at fault model, then even f

being close to 1 cannot ensure a particular DL.

3 A Simple Probabilistic Model for

Testing

In general, let us assume N defects, n target faults,

and a number m which represents the average number

of defects detected by a test generated against a target

fault. Also assume that there is no fault dropping

involved so that the number of tests generated is n.

Then, we can model the detection of defects by the

group allocation problem de�ned below.

1 2 3 N

N slots (N defects)

n*m balls (n faults)

...

Figure 2: Illustration of the Group Allocation Problem

De�nition 1 GroupAllocationProblem Suppose
n groups of m balls are allocated independently in N

slots such that for each group all

�
N

m

�
ways of al-

locating the balls are equiprobable, i.e. for each group
allocation, no two balls go to the same slot. Then, we
are interested in knowing the number of empty slots
after allocating all n groups of balls.

[PARK81] showed that the asymptotic distribution

of the number of empty slots is normal with mean

N (1 � m
N
)n for su�cient large N;n and a �xed n=N .

In particular, the slot, the group, the ball correspond

to the defects, the test and one of the defects detected

by a given test, respectively. Figure 2 illustrates the

setting of the problem. From the result of this prob-

lem, we have

Ave. # of undetected defects = N (1�
m

N
)n (1)

For the case of generating tests based upon a target

fault model, assumeN1 faults and N2 defects. Because

of the targeting, the average number of detected faults

by a test, denoted as m1 is di�erent from the average

number of detected defects, denoted as m2. We note

that m1 � 1 and if each fault models at least one

defect, then we can also say that m2 � 1. Further, let

l = N2

N1
so that if all defects are targeted, l = 1 and in

general l grows toward N2 as fewer faults are sampled.

In practice, we can assume l � 1 since normally the

size of the non-target set is much larger than the size

of the fault set. Since all faults are targeted, at the

end of testing when 100% fault coverage is achieved,

some non-target defects can be left undetected and

if without fault dropping, N1 tests should have been

applied. Then for su�cient large N2 and a �xed m2,

by replacing N , m and n in equation 1 by N2, m2,

and N1, we have the number of defects left undetected

as (DC denotes the defect coverage)

N2(1�DC) = N2(1�
m2

N2
)N1

= N1l(1�
m=l

N1
)N1 � l

N1

em=l
= N2e

�

m
l (2)

1�DC � e�(m=l) (3)

We note that equation 2 holds for the case of mul-

tiple fault models as well by replacing m2 with its

average value over all models and N1 the sum of all

target faults.

Implications from the probabilistic model

Based upon equation 2, the obvious way to im-

prove the test quality is to reduce l. Note that m2

depends on the fault model used but how to select a

good model to produce a larger m2 is unclear without

knowing the the defect test space. Since a particular

fault model has its \blind spot" over the whole test

space as shown in �gure 1, continuing test generation

on the same fault model after a high fault coverage is

less e�ective than starting a new one. With a �xed N2,

generating more tests via a new fault model implies a

larger N1 and a smaller l. [MAX92] has demonstrated

the success following this approach.

Equation 2 has another implication. That is by

using William-Brown model and replacing the term

(1 � DC) by its asymptotic approximation e�(m=l),

we obtain

DL = 1� Y (e
(�

mN1
N2

)
) (4)

Many researchers have suggested di�erent re�ne-

ments for DL with respect to the William-Brown

model, for instance [[AGR82] [SETH84]]. The dif-

ference between equation 4 and those in [[AGR82],

[SETH84]] is that no assumption is made by us about

the distribution of fault occurrence. Our purpose

here is to study the testing behavior and hence non-

determinism was applied to the quality of tests.



Since we expect that for target faults, the average

number of \detectability" is larger than that for de-

fects, as the fault coverage approach 100%, the defec-

tive part level should be higher than that predicted by

the William-Brown model by misusing fault coverage

as the defect coverage. More formally, Let T;N be the

fault and defect sets and N1 =j T j, N2 =j N j. Let

n be the number of tests generated for T . For each

test applied, again let m1;m2 be the mean numbers

of faults/defects detected in sets T; S, respectively.

Then, for su�cient large N1; N2 and given n;m1;m2,

using equation 2 we compute the fault coverage as

FC = 1� e�(m1n=N1) (5)

and defect coverage (DC) as

DC = 1� e�(m2n=N2) (6)

Then, using the William-Brown model, we can ob-

tain the defective part level with respect to (1�FC).

By changing n, this gives us a curve showing how e�ec-

tiveness applying n tests varies according to the given

m1;m2.

De�nition 2 We de�ne the detectability for T to be
dt = m1=N1, for N to be dn = m2=N2, and the test
e�ectiveness (") for a test set to be " = dn

dt
= m2N1

m1N2
.

0.001

0.01

0.1

1

0.001 0.01 0.1 1

D
L

1 - (fault coverage)

A family of curves for differnt test effectiveness
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"0.1"
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"0.3"
"0.4"
"0.5"
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"0.7"
"0.8"
"0.9"
"1.0"

"WB-Model"

Figure 3: A family of e�ectiveness curves, " =

0:01 : : :1:0

Normally, we should have " � 1. Figure 3 shows

a family of curves as " ranges from 0.01 to 1. We ob-

tained this �gure by assuming that N2 = 5000; N1 =

500 and m1 is �xed at 2. Then, " depends on only

m2. For " = 1, m2 = 20, " = 0:9, m2 = 18, and so on.

We also assumed that there is no limit on the num-

ber of tests applied so that fault coverage can be as

close to 100% as possible at the end. Two things can

be observed from the �gure. First, as the test e�ec-

tiveness reduces, the defective part level increase, i.e.

the tests do a worse job (consider the top curve with

" = 0:01). Second, when " = 1, the curve matches to

the William-Brown model, which under the assump-

tion " � 1 represents the optimal case. We call a test

set with " = 1 the unbiased tests. In section 5, we

will develop a test selection scheme based upon the

idea of the unbiased test set.

[PARK94] demonstrated the questionability of fault

dropping by experiments on C432. Here, we will ad-

dress the question using the probabilistic results ob-

tained. When fault dropping is involved in testing, we

can no longer model the fault coverage as in equation

5. This is because the behavior of testing becomes

more deterministic, i.e. at least a new fault will be

taken out with each test application. Without fault

dropping, a newly applied test can detect no faults

currently left due to the fact that the particular fault

targeted by that test was fortuitously detected by an

earlier test(s).

Hence, we modify 5 as the following, assuming

m1 > 1 and n tests, n � N1, are applied. Note that

m1 can be any real number close to 1.

FC =
[N1 � N1e

�((m1�1)n=N1)] + n

N1
(7)

The numerator in equation 7 consists of two terms,

n which accounts for the detection of at least n unde-

tected faults and N1�N1e
�((m1�1)n=N1) for fortuitous

detection of other faults. We use m1�1 instead of m1

in the second term since one fault has been counted

deterministically by the term n for each test. Since

0 � FC � 1, there is an upper bound imposed on n,

the number of tests applied, by equation 7. Suppose

n = N=q where q � 1 is a real number. By a straight-

forward calculation, we obtain q ln(q) > m1 � 1 or in

other word, qq > e(m1�1). Hence, for a large m1, i.e.

an easily detected set of target faults, q should be large

and n will be small. With a smaller n plugged into

equation 6 for defect coverage, we see that DC be-

comes smaller, i.e. the quality becomes worse. There-

fore, we can conclude that with fault dropping, the

easier the faults to be detected, the worse the testing

quality will be.

Using equation 7 for the case of fault dropping,

we drew the defective part level curve and showed in

�gure 4 with two other curves with " = 0:7 and 1

for comparison. These three curves represent three

di�erent models for testing | fault dropping, no fault

dropping (with " = 0:7), and unbiased (with " = 1).
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Figure 4: Comparison in theory among fault dropping,

no dropping, and unbiased

4 The Tool and the Method for Exper-

iments

Ordered binary decision diagram (OBDD) [BR86]

was used to compute the whole test space for each

target fault. Due to the large memory requirements,

currently OBDD is unable to handle circuits larger

than C499. Since our goal was to study the testing

behavior in general, test generation should not be bi-

ased toward a particular algorithm or implementation.

Instead, thousands of test sets are computed and the

average results and their variances were obtained for

each case study. This procedure was done for test gen-

eration using the single stuck-at fault model, as well

as on the unbiased selection of tests described later.

Average results are used when comparing these two.

To evaluate the test quality, we are interested in

knowing the defective part level resulting from a test

set. As described before, we assumed surrogates. Sup-

pose that the number of surrogates assumed is N and

the number of faults considered is n. After testing, let

N 0 and n0 be the surrogates and faults detected. We

compute defect coverage to be the surrogate coverage

and use the William-Brownmodel to approximate the

\real" defective part level with respect to the surro-

gate coverage. Although this is not necessary the true

defective part level, it is a good estimator for the pur-

pose of studying testing behavior since usually, surro-

gates perceive a di�erent test space from faults, where

this di�erence is the main reason for the reduction of

test quality. To obtain the defective part level, we also

assumed that the yield is 0.5 for all experiments.

5 The Limitations on Single Stuck-at-

fault

Previously, [PARK94] studied the limitations of the

single stuck-at fault model. Their conclusions about

the single stuck-at fault model include 1) test qual-

ity varies as fault coverage approaches 100%, 2) fault

dropping is questionable, and 3) using fault coverage

in place of defect coverage with the William-Brown

model is also questionable. Their results were ob-

tained using C432 and non-feedback bridging AND

surrogates. Here, we extend their studies by includ-

ing transition surrogates (gate delay faults). Besides,

we implemented a more e�cient OBDD tool to ana-

lyze C499. In addition to con�rming their conclusions,

we show that transition surrogates consistently result

in a higher uncertainty with respect to test quality

and test prediction than bridging surrogates. This is

expectable since usually the transition test space is

larger (which require two tests for a fault). Figures 5

to 8 show the results.

Assuming no fault dropping, for C432 there are 524

stuck-at fault tests and for C499 there are 758 tests.

650 and 1162 bridging surrogates are randomly picked

for C432 and C499, respectively. The numbers of tran-

sition surrogates for C432 and C499 are 320 and 404

which are twice the numbers of gates since each gate

output can have a slow-to-rise and a slow-to-fall tran-

sition. We chose the number of bridging surrogates

1162 = 758 + 404 for the purpose of evaluating the

unbiased tests presented later. 650 bridging faults for

C432 are selected to match that in [PARK94]. As we

can observe from �gures 5 to 8, previous conclu-

sions are con�rmed on the new surrogates and circuit.

Besides, if we compare �gures 5 to 7 with the test

e�ectiveness �gure 3, we observe that the curves in

�gures 5 to 7 go from high e�ective region to low

e�ective region. This indicates that as the fault cover-

age approach 100%, the e�ectiveness of a test to detect

non-target defects reduces.

6 An Unbiased Test Generation

In section 3, we de�ned the test e�ectiveness as

" = dn
dt

= m2N1

m1N2
(see De�nition 2). We see there

that an unbiased test set (" = 1) is a better choice

to enhance test quality. Based on the test generation

with speci�c fault models in mind, we need to ensure

dt � dn to obtain a good quality. Without knowing

the defect test space, this can be very hard. Instead,

in this section, we propose a di�erent approach from

trying to re�ne the fault models in use.



Remember that for an input vector to be a test for

a defect, this vector must excite the defect (produce

a di�erence at the defective site from its normal be-

havior) , as well as make the di�erence observable at

one of the primary outputs. Without knowing how a

defect can change the logical behavior at the local site

(for instance, a logical gate), it is hard to achieve the

excitation criteria. However, no matter what excita-

tion requirements are, the observation criteria remain

the same. To achieve an unbiased testing, we propose

to use a combination of random excitation and de-

terministic observation. In other words, there will be

no e�ort made in test generation to ensure fault exci-

tation. Only the observation condition is satis�ed on

each test, and since no fault model is used, a good test

will be evaluated based upon the number of observable

sites.

What advantages do we gain by taking this ap-

proach? First, the test generation can be easier be-

cause one of the requirements has been dropped. Now

assume that each time, C sites are observed by a test,

and with a probability p, a defect on an observed site

is detected. Note that p should depend on the fanin

to the site and the defect type. Also assume that n

tests are generated and N = N1 +N2 defects are pre-

sented, where N1 is the number of defects to be used

for test quality evaluation and N2 are all others. For

test quality evaluation, we mean that the set is used

to compute the fault coverage so that test generation

stops when a preset number is reached. Then, we have

Average number of defects left = N (1�
C � p

N
)n (8)

Suppose we will generate tests until N1 defects are

all detected. In this case, we have

N1(1�
C � p

N1
)n < 1 =) n >

� log(N1)

log(1� Cp=N1)
= ns

(9)

We can plug in ns to obtain the formula N2(1 �
C�p
N2

)ns as the prediction of the number of defects left.

Assuming N1 � l = N2; l � 1, the closer the N1 is to

N2, the better the test quality will be. From equa-

tion 8 and 9, it is not hard to derive that the number

of defects left when all N1 defects are detected ap-

proximates l. Comparing this result with equation 2

before, we see that the di�erence comes from the term
N1

e(m=l) . If l is �xed as N1 and N2 grows, equation 3 im-

plies the quality of testing remains �xed given a �xed

fault model. However, the quality of the unbiased test-

ing becomes better. Fixing l while N2 grows requires

a larger number of sampling faults. Since usually, the

number of faults is in the linear order of the circuit

size but the number of defects is in a higher order,

keeping l �xed is hard. Suppose N1 is �xed instead,

which equals to the maximal test length we can a�ord.

Then, as N2 grows, equation 3 says that the test qual-

ity becomes worse, but an unbiased testing can deliver

a �xed testing quality, i.e. 1 �DC = 1
N1

( l
l+1 ) <

1
N1
.

In both cases discussed above, unbiased testing is bet-

ter than that based upon explicit fault models.

From the viewpoint of test e�ectiveness in De�ni-

tion 2, it is more likely for the unbiased testing to

achieve dt = dn since now T , the target fault set, can

be selected freely to cover a wide spectrum of the per-

spectives toward the whole test space. We note that

the selection of T is independent of the test generation

process. T only tells when to stop the process.

We conclude this section by making a �nal remark.

Note that pure random testing is also likely to achieve

a test e�ectiveness close to 1. However, the term Cp

implied by a purely random testing process can be

very small. As a result, an enormous number of tests

will be generated to obtain the desired quality. In

practice, this is not economically feasible.

7 Experiments

We obtained the unbiased tests by computing the

whole boolean di�erence space for each site using the

OBDD tool we built. As usual, thousands of test sets

are selected randomly. However, for each test set, we

ensure that if possible, every site should be observed

at least once. The cardinality of the test set is equal

to the number of tests generated before using the sin-

gle stuck-at fault model. Again, the average results

and their variances for defective part level curves were

plotted. The average results are presented in �gures

9 to 10, with those average curves from stuck-at fault

tests and curve from William-Brown model for com-

parison. One question which remains is \What target

fault set should we select to compute the fault cov-

erage?". In the �gures, for C432, the fault coverage

is obtained using the single stuck-at fault model. For

C499, when the defect is bridging, the fault coverage is

based upon stuck-at and transition faults, and when

the defect is transition, upon stuck-at and bridging

faults.

Figure 9 to 12 con�rm our previous conclusion that

an unbiased test set should be superior in terms of re-

ducing the defective part level. If we compare those

�gures with the e�ectiveness curves shown in �gure

3, we see that the unbiased approach is more e�ective



(closer to 1) in all cases. Perhaps the most surpris-

ing result is the case when using transition surrogates

for C432, where a test e�ectiveness greater than 1 is

observed.

As shown in section 5 as well as in [PARK94], test

quality results using the stuck-at fault tests varies as

the fault coverage approach to 100%. This situation

is much worse for transition surrogates. In �gures

13 and 14, we compare the variances for the stuck-

at fault tests and the unbiased tests using transition

surrogates. For each testing approach, 2 curves were

drawn in each �gure, where the upper curve is ob-

tained by computingMean+2�StandardDeviation

and the lower one Mean � 2 � StandardDeviation.

In both �gures, the variance of quality (defective part

level) using the unbiased tests is consistently smaller

than the single stuck-at fault approach. By this, we

conclude that the unbiased selection of tests can re-

duce the uncertainty in testing quality as well.

8 Conclusion

Many researchers have questioned using a single

fault model, in particular the single stuck-at fault

model, on test generation for high quality testing. The

conclusions made before by experiments include 1)

fault dropping can degrade test quality seriously, 2)

testing quality can vary signi�cantly for a given high

fault coverage, and 3) multiple fault models may be re-

quired to get a desired testing quality. In this paper,

we model the testing process by the Group Allocation

Problem, and provide, for the �rst time, mathematical

explanations to the three conclusions above. From our

probabilistic analysis, we propose an unbiased testing

method of which the test e�ectiveness is higher for

high quality testing of large circuits. The superior-

ity of the unbiased testing, predicted by our analysis,

is then con�rmed by extensive experiments on bench-

mark circuits.
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Figure 5: Results on bridging surrogates, C432 (Ave

is the mean, Std is the standard deviation)
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Figure 6: Results on transition surrogates, C432 (Ave

is the mean, Std is the standard deviation)
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Figure 7: Results on bridging surrogates, C499 (Ave

is the mean, Std is the standard deviation)
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Figure 8: Results on transition surrogates, C499 (Ave

is the mean, Std is the standard deviation)
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Figure 9: Comparison between unbiased and SAF

tests using bridging surrogates and C432
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Figure 10: Comparison between unbiased and SAF

tests using transition surrogates and C432
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Figure 11: Comparison between unbiased and SAF

tests using bridging surrogates and C499
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Figure 12: Comparison between unbiased and SAF

tests using transition surrogates and C499

0.001

0.01

0.1

1

0.001 0.01 0.1 1

D
L

1 - (fault coverage)

"SAF_Tests+2Std"
"Unbiased+2Std"
"Unbiased-2Std"

"SAF_Tests-2Std"

Figure 13: Comparison of test quality uncertainty be-

tween unbiased and SAF tests using transition surro-

gates and C432
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Figure 14: Comparison of test quality uncertainty be-

tween unbiased and SAF tests using transition surro-

gates and C499
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