
Abstract
The research reported in this paper was conducted to

identify those attributes, of both sequential circuits and
structural, sequential automatic test pattern generation
(ATPG) algorithms, which can lead to extremely high test
generation times. The retiming transformation is used as a
mechanism to create two classes of circuits which present
varying degrees of complexity for test generation. It was
observed for three different sequential test generators that
the increase in complexity of testing is not due to those cir-
cuit attributes (namely sequential depth and cycles) which
have traditionally been associated with such complexity.
Evidence is instead provided that another circuit attribute,
termeddensity of encoding, is a key indicator of the com-
plexity of structural, sequential ATPG.

1. Introduction
Despite its maturity, the testing of VLSI circuits must

still be viewed as an arena with a number of unsolved
problems. One of these is a lack of understanding of which
attributes of a sequential circuit lead to long test generation
times (and therefore high test generation costs). Without
such understanding, it is difficult for designers to deter-
mine whether or not design for testability (DFT) tech-
niques need to be employed in order to meet target cost,
quality, or time to market constraints. This often leads to
both high testing costs and inadequate test quality.

The purpose of the research described in this paper was
to identify those circuit attributes which influence the com-
plexity of structural automatic test pattern generation
(ATPG) for sequential circuits. This study focuses on con-
trol logic, because it is in practice the most difficult type of
sequential logic to test. This study does not consider data
path logic, which is typically more easily testable.

Our methodology of investigation was simple. First, we
found a circuit transformation which strongly impacts
ATPG for sequential circuits. This transformation is retim-
ing ([1],[2]), which as has already been reported [3], causes
a (sometimes drastic - more than two orders of magnitude)
increase in test generation time and a decrease in the result-
ant test quality. Hence retiming was used to create two
classes of circuits which present varying degrees of com-
plexity for test generation. Results of ATPG experiments
were then correlated to differences between the attributes
of the two classes of circuits.

The results of our investigations are presented in the fol-
lowing way. Section 2 provides a detailed description of
the test generation experiments and the circuits used. Sec-
tion 3 interprets these results. Section 4 introduces impor-
tant theoretical apparatuses which are used to analyze the
experimental results. Section 5 then addresses the main
topic of this paper, which is to identify those circuit
attributes which influence the complexity of structural,
sequential ATPG.

2. Impact of retiming on testability
The objective of the experiments was to measure the

increase in the required ATPG CPU time caused by retim-
ing. In the experiments three different structural, sequential
ATPGs - HITEC [4], Attest [5], and Sequential EST
(SEST) [6] have been used. The performance of each
ATPG was measured according to the levels of fault cover-
age and fault efficiency attained, and the required CPU
time. Among the three test generators used the emphasis
was placed on HITEC, while Attest and SEST were used to
confirm the HITEC based findings, and not for the purpose
of performance comparison. Details of the experiments,
which consumed a total of more than 5000 CPU hours, are
as follows.

2.1. Circuits used
Circuits synthesized from the MCNC finite state machine

(FSM) benchmarks using the SIS sequential synthesis tool

Complexity of Sequential ATPG

Thomas E. Marchok1, Aiman El-Maleh2, Wojciech Maly1, Janusz Rajski2

1 ECE Department, Carnegie Mellon University, Pittsburgh, PA 15213
2 MACS Laboratory, McGill University, Montreal, Canada - H3A 2A7

This work has been supported by the Semiconductor Research Corp under
contract no. 94-DC-068, Intel, a Cooperative Research and Development
Grant from the “National Sciences and Engineering Research Council of
Canada”, Bell Northern Research, and a scholarship from the Quebec
“Fonds pour la Formation de Chercheurs et l’Aide a la Recherche”.

[7] have been used as a basis in this study. Table 1 lists the
number of primary inputs, primary outputs, and states for
the FSM descriptions used to synthesize the circuits
reported here. The versions of dk16, pma, scf, and s510
used employ an explicit reset line. The reset line circum-
vents the well documented problem which structural
ATPGs commonly have with circuit initialization [8].

The SIS command sequence employed to synthesize the
circuits followed that suggested in the SIS documentation
[9]. The stamina tool was first used to perform state mini-
mization, followed byjedi to perform state assignment
(using the minimum number of state encoding bits). The
extract_seq_dc command was used to extract the unreach-
able states and store them as external don’t cares. This
information was used by one of two scripts distributed with
SIS (script.rugged or script.delay) to synthesize the net-
work to implement the next state and primary output func-
tions. The networks were mapped onto a version of the
mcnc.genlib gate library which had been modified to con-
tain only those gate types recognized by the sequential
ATPGs used to generate test sets for the circuits. The
retime command was then used to create a retimed version
of each circuit. Multiple (non-retimed) circuits were cre-
ated from the same FSM description by using combina-
tions of differentjedi state encoding algorithms and logic
synthesis scripts. Each circuit attained a different area ver-
sus delay trade-off. The name of each circuit contains mul-
tiple fields which reflect the synthesis options employed.
The .j field denotes the jedi state assignment encoding
algorithm used:.jo represents the output dominant algo-
rithm, .ji the input dominant algorithm, and.jc a combina-
tion of the input and output dominant algorithms. The.s
field denotes the SIS script used for logic synthesis:.sd
indicatesscript.delay, and .sr denotesscript.rugged. The
presence of a.re field indicates the circuit is a retimed ver-
sion of the correspondingly named original circuit.

2.2. HITEC results
Table 2 lists the results of the HITEC ATPG on the syn-

thesized circuits. The columns labeled#DFF lists the num-
ber of edge triggered DFFs in that circuit.#CPU seconds

Table 1: Finite state machines used to synthesize
circuits.

FSM PI PO states

dk16 3 3 27

pma 7 8 24

s510 20 7 47

s820 18 19 25

s832 18 19 25

scf 27 54 121

reports the number of DECstation 3100 CPU seconds
which HITEC required to attain the levels of fault coverage
and fault efficiency reported in the columns labeled%FC
and %FE, respectively, on sequential (non-scan) versions
of each circuit. Fault coverage is defined as the percentage
of faults which were detected. Fault efficiency is defined as
the percentage of faults which were either detected or
labelled redundant. The column titledCPU ratio lists the
ratio of the CPU execution times between the retimed and
corresponding original circuit.

Table 2: HITEC ATPG results.

circuit #DFF %FC %FE
CPU
seconds

CPU
ratio

dk16.ji.sd 5 99.8 100.0 308
323.1dk16.ji.sd.re 19 99.7 100.0 99529

pma.jo.sd 5 99.4 100.0 791
231.5pma.jo.sd.re 21 98.8 99.3 183145

s510.jc.sd 6 98.2 100.0 24507
16.6s510.jc.sd.re 20 95.3 96.0 405630

s510.jc.sr 6 94.3 99.3 43060
9.6s510.jc.sr.re 26 53.9 54.6 415021

s510.ji.sd 6 99.2 100.0 2918
56.6s510.ji.sd.re 11 98.8 99.6 165190

s510.ji.sr 6 98.9 100.0 12460
27.6s510.ji.sr.re 23 91.4 92.0 343420

s510.jo.sr 6 96.2 100.0 3822
261.6s510.jo.sr.re 28 56.5 57.0 1000000

s820.jc.sd 5 99.4 99.9 1536
174.2s820.jc.sd.re 14 95.3 96.6 267502

s820.jc.sr 5 98.7 100.0 1207
6.6s820.jc.sr.re 9 98.5 99.8 7913

s820.ji.sr 5 98.2 100.0 8385
35.4s820.ji.sr.re 8 97.3 100.0 296864

s820.jo.sd 5 100.0 100.0 1282
297.7s820.jo.sd.re 22 92.5 93.6 381636

s820.jo.sr 5 98.6 99.8 1212
80.4s820.jo.sr.re 13 97.3 98.8 97495

s832.jc.sr 5 98.4 100.0 1225
405.7s832.jc.sr.re 27 53.7 56.0 496961

s832.jo.sr 5 98.1 100.0 1103
452.6s832.jo.sr.re 15 96.7 99.1 499200

scf.ji.sd 7 99.6 100.0 17262
40.0scf.ji.sd.re 20 63.1 63.7 689651

scf.jo.sd 7 99.6 100.0 16725
41.8scf.jo.sd.re 23 97.8 97.9 699508

Table 2 contains a number of interesting results. For
instance, rows 13 and 14 of this table describe the circuits
s510.jo.sr and s510.jo.sr.re. While HITEC required only
3822 CPU seconds to attain 96.2% fault coverage and
100% fault efficiency for s510.jo.sr, HITEC was able to
attain only a 56.5% fault coverage and 57.0% fault effi-
ciency in 1000000 (1 million) CPU seconds for
s510.jo.sr.re. (One million seconds is more than eleven
days.) During the final 320000 CPU seconds of HITEC
execution, no additional faults were either detected or
determined to be sequentially redundant. (For each retimed
circuit, HITEC was manually halted after at least 12 CPU
hours had expired without a single additional fault being
detected or labeled redundant.) Though not reflected in
Table 2, HITEC was able to initialize each circuit in less
than 2 CPU seconds.

Table 3: Attest ATPG results.

Table 4: Sequential EST ATPG results.

2.3. Attest and Sequential EST results
Tables 3 and 4 list the Attest and SEST results, respec-

tively, for those circuits which exhibit the most dramatic
difference in the performance of that ATPG between the
original and retimed circuits. The columns titled%FC
(orig) and%FE (orig) list the fault coverage and fault effi-
ciency on the original circuit, while the columns titled
%FC (re) and %FE (re) list the fault coverage and fault
efficiency on the corresponding retimed circuit. In order to
avoid misinterpretations between the relative performance
of the ATPGs, Tables 3 and 4 do not provide the execution
times in terms of the absolute number of CPU seconds.
(However it is worth noting that the CPU times for all
retimed circuits in Tables 3 and 4 except dk16.ji.sd.re mea-
sured in the hundreds of thousands of CPU seconds.)
Instead the most relevant metric, the ratio of ATPG CPU

circuit
%FC
(orig)

%FE
(orig)

%FC
(re)

%FE
(re)

CPU
ratio

dk16.ji.sd 99.3 99.7 95.1 99.3 176.2

pma.jo.sd 99.2 99.4 96.3 98.3 18.8

s510.jc.sd 95.0 95.3 51.9 52.2 23.3

s510.ji.sr 95.6 95.6 79.9 79.9 8.0

s510.jo.sr 94.2 94.2 71.5 71.5 12.3

circuit
%FC
(orig)

%FE
(orig)

%FC
(re)

%FE
(re)

CPU
ratio

dk16.ji.sd 98.0 99.8 97.6 99.3 3.5

pma.jo.sd 98.3 100.0 96.4 97.8 104.6

s510.jc.sd 95.4 98.2 6.7 10.4 2.1

s510.ji.sd 95.7 99.5 95.2 99.1 2.5

s510.jo.sr 92.2 94.6 63.6 65.4 2.7

time between the retimed and corresponding original cir-
cuit, is reported in the column titledCPU ratio.

3. Analysis of experimental results
The results presented above demonstrate that retiming

increases the amount of ATPG time, and decreases the lev-
els of fault coverage and fault efficiency by each of the
three sequential ATPGs employed. Notice that there are
seven instances in Table 2 where the ratio of CPU time
between the retimed and original circuits is more than two
orders of magnitude, and in four instances there is a sub-
stantial difference between the levels of fault coverage and
fault efficiency attained on the original and corresponding
retimed circuit.

There are a number of possible causes of the observed
effect of the increase in the complexity of ATPG which
should be investigated. First, this effect might be due to a
limitation of the particular heuristics used for sequential
test generation. This is plausible given the difficulty of
sequential test generation, which is much less mature than
combinational test generation. (Of course, the necessity of
handling the “time dimension” makes test generation for
sequential circuits considerably more complex than for
combinational circuits. Unlike combinational ATPGs
which can find a test for any testable fault in a combina-
tional circuit given only structural information of the cir-
cuit under test, no known practical algorithm exists for
structural sequential test generation [8].)

Second, the effect might be caused if retiming introduces
a large number of undetectable (sequentially redundant)
faults into the circuit. The taxonomy of redundant faults
provided in [10] reports that the most commonly occurring
types of sequentially redundant faults (SRFs) are invalid-
SRFs and equivalent-SRFs. Invalid-SRFs are those faults
for which no valid excitation state exists, and equivalent-
SRFs involve the interchange of equivalent states. Retim-
ing adds D flip-flops to a circuit as well as states to the state
transition graph. [11] illustrates that retiming can create
and add equivalent states. Therefore the possibility exists
that retiming introduces equivalent-SRFs. For each D flip-
flop added, the number of possible states which the state
bits can represent is doubled. However, the number of
valid states (those states which are valid and can be tra-
versed) does not necessarily increase accordingly. Hence
retiming introduces the potential for a large number of
invalid states, and therefore the potential for invalid-SRFs.

A large percentage of sequentially redundant faults in
retimed circuits would account for the vast increase in the
amount of CPU time required for test generation. In terms
of the amount of computation time required, it is more
expensive to determine if a fault is redundant than to con-
struct a test for a detectable fault [11]. To label a fault
redundant it must be proven that the fault cannot be

detected by any combination of input vectors and attain-
able states. This requires that the entire primary input and
state space be covered, which is computationally prohibi-
tive for practical circuits.

Third, the effect could be caused by some structural
attribute which differs between the original and retimed
circuits. Unlike behavioral test generation techniques,
structural test generation techniques do not possess a
knowledge of the state transition information of the
machine which the circuit implements. Structural test gen-
erators have knowledge only of the structural nature of the
circuit. Differences in the structural nature of circuits can
therefore affect the performance of a structural ATPG as
well.

The remainder of this paper is used to determine which
of the above options is responsible for the observed
increase in the complexity of ATPG caused by retiming.

4. Reason for high complexity of sequential
ATPG

Among the three possible reasons which may be respon-
sible for the high complexity of ATPG in retimed circuits,
the least likely is the inadequacy of the test generators
employed. Two facts support this observation. First, even
though each ATPG differs in the test generation heuristics
employed and specific implementation details, all three
exhibited greater difficulty in deriving test sets for the
retimed circuits. Second, all three ATPGs produced a few
extremely “bad” results (however on different retimed cir-
cuits). This leads to the conclusion that the high complex-
ity of sequential ATPG must be attributed to the circuit
itself rather than to particular features of the ATPGs
employed. It is therefore necessary to consider the other
two options in more detail.

4.1. Sequentially redundant faults and testability
preservation

In moving registers to the periphery of reconvergent
regions, retiming may transform combinationally redun-
dant faults into sequentially redundant faults [12]. How-
ever, based upon the knowledge that for each of the non-
retimed circuits considered in this study less than 1% of the
total number of faults were combinationally redundant, this
alone could not account for the vast increase in test genera-
tion time required.

Converse to the arguments presented in Section 3, which
postulate that retiming might add a large number of redun-
dant faults to the circuit, it was shown in [13] and [14] that
the retiming transformation preserves single stuck-at fault
testability. For any given input sequence, such as a set of
test vectors, retiming does not alter the sequence of logic
values which propagate through each node in the circuit.
Retiming can only alter the clock cycle at which the logic

values arrive at affected nodes. The logic values them-
selves are not changed. Because the same logic values are
propagated through each node, the same paths are sensi-
tized, and therefore the same (single stuck-at faults) which
those vectors detect in the original circuit are expected to
be detected in the retimed circuit1.

These results lead to the important conclusion that retim-
ing preserves single stuck-at fault testability. Theorem 1
formalizes this concept.

Theorem 1:The retiming transformation preserves single
stuck-at fault testability.

The reader is referred to [14] for the accompanying proof
and further analysis of this concept. This consideration
leads to the important conclusion that the retimed circuits
do not contain a large number of extra redundant faults,
and that the retimed circuits can be efficiently tested with
the test sets generated for the original circuits. This in turn
implies that the experimentally observed increases in
ATPG might instead be caused by some change in the
structural nature of the retimed circuits.

4.2. Structure of the circuits
The widely held belief (presented for instance in [8]) is

that the complexity of structural, sequential test generation
is linearly proportional to the maximum sequential depth
of a circuit, and is exponentially related to the number of
cycles present, and the maximum length of any cycle. The
sequential depth of a path through a circuit (from a primary
input to a primary output) is defined as the number of D
flip-flops encountered along that path, in which each node
is visited at most a single time. Maximum sequential depth
refers to the greatest number of D flip-flops encountered in
a traversal from any primary input to any primary output.
A cycle exists when the same node can be revisited after
starting from that node and traversing the circuit, not tra-
versing any other node more than a single time within the
traversal. The length of the cycle is said to be the number
of D flip-flops encountered in the traversal.

The above reasoning makes intuitive sense for structural
ATPGs, which are based on the iterative array model [15]
in which a separate copy of the circuit is maintained to rep-
resent the value of each node at each cycle in time. The

1 However, it is shown in [14] that there are faults in the retimed
circuit that might not have equivalent single stuck-at faults in the
original circuit. Furthermore, a synchronizing sequence (or a test)
for a single stuck-at fault in a circuit K might not synchronize (or
test) the corresponding fault(s) in a circuit K’ resulting from a
retiming of K. This can occur when retiming moves sequential
elements (D flip-flops) forward across nodes (gates and fan-out
stems). Furthermore, it is also shown in [14] that if T is a test for a
single stuck-at fault in the circuit K, then the sequence PU T is a
test for the corresponding fault(s) in the retimed circuit K’. Here
P is a sequence of arbitrary vectors of length equivalent to the
maximum number of forward retiming moves across any node in
the circuit.

presence of cycles increases the dependency of logic val-
ues on specific nodes in the circuit across time. The greater
the number of cycles, the greater this dependency, and the
more complex the task of establishing the desired logic
values needed on certain nodes to sensitize a path. The
same can be said about the maximum length of any cycle.
The greater the maximum length of any cycle, the greater
the number of time frames across which the dependency
exists, and thus the greater the complexity of test genera-
tion.

Determining the number of cycles in a circuit is an NP-
hard problem [16]. Fortunately cycle counting algorithms
of reasonable complexity do exist. In order to investigate
the suppositions mentioned above, the algorithm presented
in [17] was implemented to measure the number and maxi-
mum length of any cycle. A separate algorithm was imple-
mented to measure the maximum sequential depth of a
circuit. Table 5 lists the obtained results, showing both the
maximum sequential depth and cycle information of each
of the circuits in Table 2. Columns titledmax seq depth list
the maximum sequential depth. Columns titledmax cycle
length and#cycles list the maximum length of any cycle
and the number of cycles according to the algorithm pre-
sented in [17], respectively. Column names which include
(orig) refer to the non-retimed circuit, and those which
include(re) refer to the corresponding retimed circuit.

Table 5: Structural attributes of each circuit.

circuit

max
seq

depth
(orig)

max
cycle
length
(orig)

#cy-
cles

(orig)

max
seq

depth
(re)

max
cycle
length
(re)

#cy-
cles
(re)

dk16.ji.sd 4 4 10 4 4 19

pma.jo.sd 5 5 12 5 5 18

s510.jc.sd 6 6 15 6 6 26

s510.jc.sr 6 6 16 6 6 32

s510.ji.sd 6 6 18 6 6 21

s510.ji.sr 6 6 18 6 6 33

s510.jo.sr 6 5 15 6 5 28

s820.jc.sd 5 5 14 5 5 19

s820.jc.sr 5 5 14 5 5 18

s820.ji.sr 5 5 12 5 5 14

s820.jo.sd 5 5 14 5 5 24

s820.jo.sr 5 5 13 5 5 19

s832.jc.sr 5 5 11 5 5 25

s832.jo.sr 5 5 14 5 5 22

scf.ji.sd 7 6 22 7 6 32

scf.jo.sd 7 6 19 7 6 27

The results in Table 5 clearly indicate that retiming does
not affect the sequential depth of a circuit. Such an obser-
vation can be generalized in the following way.

Theorem 2: Retiming does not affect the sequential depth
of any path through the circuit.
Retiming of a network can be thought of as a collection of
atomic transformations where an atomic transformation
moves registers forward or backward across combinational
logic gates, or forward or backward across a fanout stem.
For simplicity and without loss of generality, an atomic
retiming transformation that moves registers forward
across a combinational logic gate is shown in Figure 1,
where the circuit K1 is transformed into circuit K2. I1, I2
and Z are assumed to be functions of the primary inputs
and the state variables. Z is assumed to be a primary out-
put, G is a combinational gate, and Q is a sequential ele-
ment (edge triggered D flip-flop). Note that all the nodes in
K2 have structurally equivalent nodes in K1 except inside
the marked (dotted) region. To show that retiming does not
affect the sequential depth of any path through the circuit,
it is sufficient to show that atomic retiming transformations
do not affect the sequential depth of any path through the
circuit.

Figure 1. Atomic retiming transformation.

Proof: No two fan-ins to the same logic gate can be tra-
versed without traversing the output of that gate more than
a single time. Thus, according to the definition of sequen-
tial depth, at most a single fan-in stem to any gate can be
traversed in any given path through the circuit. Referring to
the atomic retiming transformation illustrated in Figure 1,
the same number of D flip-flops will be traversed through
the dashed region in Figure 1 whether the D flip-flops are
at the input nodes to or output node of the gate. Since the
rest of the circuit is unaffected by this atomic retiming
operation, it is clear that a single atomic retiming operation
that moves D flip-flops either forward or backward across
combinational logic gates does not alter the sequential
depth of any path through the circuit. Because retiming is a

K1

I1

I2

O
Z

K2

I1

I2

O Z

Q0

Q1

G Q

G

collection of these atomic operations, this statement can be
generalized to multiple and/or serial instances of this
atomic operation. The same argument also holds for both
forward and backward moves across fanout stems. Thus
retiming cannot alter the sequential depth of any path
through the circuit.■

The second result to note from Table 5 is that retiming
increases the number of cycles, according to the algorithm
used. However one should note that, as pointed out in [17],
the number of cycles computed varies according to the
algorithm used. Before the difference in the number of
cycles computed is used to account for the increase in the
complexity of sequential test generation for retimed cir-
cuits, one should consider how the algorithm employed
counts cycles. This counting is done according to the iden-
tity of the D flip-flops in the cycle - where at most a single
cycle can exist for any unique subset of D flip-flops,
regardless of the number of combinational paths which
connect those D flip-flops.

Figure 2. Example circuit to demonstrate
behavior of cycle counting algorithms.

Careful discretion must be exercised to differentiate
between the actual cyclical nature of a circuit and the num-
ber of cycles measured by standard algorithms. Consider
the simple retiming example illustrated in Figure 2. The
circuit on the top represents the circuit before retiming, and
the circuit on the bottom the retimed circuit. The algorithm
used to report the results in Table 5 reports two cycles of
length two in the retimed circuit on the bottom of Figure 2
- one through {G1, Q1a, G3, Gbuf, Q2} and a second
through {Gnot, G2, Q1b, G3, Gbuf, Q2}. This algorithm
counts cycles involving any one set of D flip-flops a single
time, and therefore counts only a single cycle of length two
in the original circuit on the top of Figure 2, even though
two such cycles exist - one through {G1, G3, Q1, Gbuf,
Q2} and the second passes through {Gnot, G2, G3, Q1,
Gbuf, Q2}.

Though retiming may alter the number of cycles which
are counted by various cycle counting algorithms, retiming

Q1b

PIA

PIB
Q1

POZ

.
.

G2

G1

G3

Gnot

Gbuf Q2

PIA

PIB

Q1a

POZ

.
.

G2

G1

G3

Gnot

Gbuf Q2

does not alter the (actual) number of cycles. The following
theorem has been formulated to support this claim.

Theorem 3: Retiming does not change the number of
cycles in a circuit.
Proof: The atomic operation illustrated in Figure 1 pre-
serves the connectivity involving the input and output
nodes of the dotted region. Paths are not added which alter
the set of nodes which can be reached from some other
node. The atomic retiming operation does not create any
new paths between any two nodes outside the dotted
region, nor does it break any paths between any two nodes
outside of the dotted region. Furthermore, retiming neither
creates any new cycles nor breaks any existing cycles
within the dotted region. In preserving the exact connectiv-
ity of nodes outside of the dotted region, and in neither
adding nor deleting any new cycles within this dotted
region, an atomic retiming operation that moves D flip-
flops either forward or backward across combinational
logic gates preserves the exact number of cycles. The same
argument can be applied to atomic operations which move
D flip-flops either forward or backward across fanout
stems. This result can be generalized to the retiming trans-
formation since retiming is a collection of these atomic
operations. ■

The results in Table 5 also indicate that retiming does not
increase the maximum length of any cycle, thereby offer-
ing experimental data to support the following Theorem.

Theorem 4: Retiming does not affect the length of any
cycle in a circuit.
Proof: Any cycle beginning and ending at the output node
of the gate G in Figure 1 can traverse at most a single input
to Gate G. The same number of D flip-flops are encoun-
tered in a traversal through the dotted region regardless of
whether the D flip-flops are at the output node of gate G or
if the retiming transformation has been used to move D
flip-flops to the input nodes of that gate. Because a single
atomic retiming operation would not affect any other por-
tion of the circuit outside of the dotted region in Figure 1, a
single atomic retiming operation that moves D flip-flops
either forward or backward across combinational logic
gates does not change the length of any cycle, regardless of
whether or not that cycle traverses the dotted region. The
same argument can be applied to moves across fanout
stems. This result can be generalized to multiple atomic
retiming operations, and therefore the retiming operation
does not change the number of D flip-flops encountered
within a cycle traversal. ■

Theorems 2 and 4 can also be shown based on Lemma 1
of [2].

4.3. General observations
At this point is it useful to summarize the results pre-

sented so far with a couple of more general observations.

Recall that experimental results and theorems have been
presented which show that neither extra sequentially
redundant faults nor such structural circuit attributes as the
basic characteristics of sequential cycles could be responsi-
ble for the observed retiming related increase in ATPG
complexity. This leads to the more general conclusion that
the high complexity of ATPG tasks for any circuit should
not be explained (or quantified) using solely notions pro-
posed in the past literature and commonly accepted by both
test generation software developers and IC designers. The
remainder of this paper suggests a circuit attribute which
can be used to explain the observed increase in ATPG com-
plexity.

5. Complexity of sequential ATPG
The difference between the original and retimed circuits

which causes the increase in complexity is most likely
related to the (three separate) tasks necessary to generate a
test to detect a fault in a sequential circuit. In the first task
the values of the machine state and primary input values
which excite the fault must be determined. Next a justifica-
tion sequence must be derived in order to attain the value
of the excitation state on the state bits. Finally, the effect of
the fault must be propagated to a primary output [11]. The
task of exciting the fault is on the order of complexity of
combinational test generation. However the tasks of state
justification and fault propagation both involve traversing
distinct states of the circuit.

For structural test generation, the complexity of state tra-
versal must be correlated to the size of the state space
which must be traversed. The total number of possible
states in a circuit is 2#D flip-flops. However not all states are
necessarily valid, meaning that not all states can be tra-
versed. (Valid states are those states which can be reached
from the reset state of the machine. A state which cannot
be reached from the reset state is called an invalid state.
The circuit is known to be in a reset state after either a
hardware reset or a synchronizing sequence of inputs is
applied [18].) Structural test generators do not possess a
knowledge of the state transition information, and thus at
the beginning of test generation have no knowledge of
which states (combinations of D flip-flop values) are tra-
versable. The presence of invalid states is known to
increase the difficulty of state traversal [19]. Based upon
this knowledge, some sequential ATPG algorithms employ
state learning techniques to eliminate duplicate searches in
the invalid state space, thereby increasing their efficiency
[20], [21]. These techniques have proven to decrease the
amount of ATPG time which is required for some circuits
by an order of magnitude. However state learning cannot
completely eliminate the increase in complexity due to the
presence of invalid states, it can only increase the effi-

ciency with which circuits which contain invalid states are
processed.

Table 6: HITEC ATPG state traversal information.

Note that each D flip-flop that retiming adds doubles the
size of the state space which an ATPG must search. Fur-
thermore, the number of valid states grows at a rate lower
than the total number of states. Hence, not only does retim-
ing increase the size of the search space, it also decreases
the fraction of the total number of states which are valid. It
is therefore worthwhile to investigate differences in the
characteristics of the state spaces between the original and

circuit
#states
HITEC

trav

#valid
states

% valid
states
trav

total
#states

density
of

encoding

dk16.ji.sd 27 27 100 32 0.84

dk16.ji.sd.re 89 105 85 5.24E5 2.0E-4

pma.jo.sd 27 27 100 32 0.84

pma.jo.sd.re 27 27 100 2.09E6 1.3E-5

s510.jc.sd 47 47 100 64 0.73

s510.jc.sd.re 47 47 100 1.04E6 4.5E-5

s510.jc.sr 47 47 100 64 0.73

s510.jc.sr.re 18 148 12 6.71E7 2.2E-6

s510.ji.sd 47 47 100 64 0.73

s510.ji.sd.re 69 70 99 2048 3.4E-2

s510.ji.sr 47 47 100 64 0.73

s510.ji.sr.re 64 202 32 8.38E6 2.4E-5

s510.jo.sr 47 47 100 64 0.73

s510.jo.sr.re 22 490 5 2.68E8 1.8E-6

s820.jc.sd 24 24 100 32 0.75

s820.jc.sd.re 100 164 61 16384 1.0E-3

s820.jc.sr 24 24 100 32 0.75

s820.jc.sr.re 42 47 89 512 9.1E-2

s820.ji.sr 24 24 100 32 0.75

s820.ji.sr.re 40 50 80 256 3.9E-3

s820.jo.sd 24 24 100 32 0.75

s820.jo.sd.re 77 297 26 4.19E6 7.1E-5

s820.jo.sr 24 24 100 32 0.75

s820.jo.sr.re 46 48 96 8192 5.9E-3

s832.jc.sr 24 24 100 32 0.75

s832.jc.sr.re 23 273 8 1.34E8 2.0E-6

s832.jo.sr 24 24 100 32 0.75

s832.jo.sr.re 47 54 87 32768 1.6E-3

scf.ji.sd 94 94 100 128 0.73

scf.ji.sd.re 41 209 20 1.04E6 2.0E-4

scf.jo.sd 94 94 100 128 0.73

scf.jo.sd.re 93 94 99 8.38E6 1.1E-5

retimed circuits. Information concerning the nature of the
state space in each circuit can be gained by considering the
number of valid states, the total number of states, and the
actual number of distinct states traversed during test gener-
ation. This information is presented in Table 6 for the
HITEC test results for those circuit pairs reported in Table
2. In Table 6, the column titled# states HITEC travlists
the number of states which HITEC traversed during test
generation. The column titled# valid states lists the actual
number of valid states for that circuit2. The column titled
% valid states travlists the percentage of valid states
which HITEC traversed in deriving the test set for that cir-
cuit, and the column titledtotal #states lists the total num-
ber of possible states (2#D flip-flops).

The information in Table 6 suggests what might cause the
dramatic increase in the complexity of test generation in
the retimed circuits. The data supports the conjecture that
this increase is related to both the explosion in the size of
the state space which the ATPG must traverse and the per-
centage of states which are valid. Because structural test
generators do not possess state transition information, the
smaller the percentage of states which are valid, the greater
the chance that the test generator will spend time attempt-
ing to traverse to an invalid state. Thus the smaller the frac-
tion of the total number of states which are valid, the
greater the difficulty of state traversal, and the higher the
complexity of sequential ATPG. Table 6 reveals that the
percentage of states which are valid is considerably less in
the retimed circuits than in the original circuits. For exam-
ple, in deriving the test set for the original circuit
dk16.ji.sd, HITEC searched a state space where 27 of a
total of 32 possible states were valid. However to derive
the test set for the corresponding retimed circuit
dk16.ji.sd.re, HITEC was forced to navigate a state space
where only 105 out of 5.24e+05 (219) states were valid.
Comparing the test generation results in Table 2 with the
state space information in Table 6, it is clear that test gener-
ation is least complex in those circuits which use the mini-
mum number of state bits to encode the possible machine
states (the original circuits), and is more difficult in circuits
which use more than the minimum number of state bits
necessary to encode the states of the machine (the retimed
circuits). We will use the termdensity of encoding to
describe the fraction of the total number of possible states
which are valid.

The right-most column of Table 6 lists density of encod-
ing information for each circuit. This column reveals a
number of interesting results. Comparing the original and
retimed circuits (and referring to the test generation results
in Table 2), HITEC is able to attain higher levels of test
coverage (fault coverage and fault efficiency) for those cir-
cuits with higher densities of encoding, and lower levels of
test coverage for those circuits with lower densities of
encoding. Furthermore, HITEC attained the lowest levels
of test coverage for the three retimed circuits for which the
densities of encoding are the lowest (s510.jo.sr.re,
s832.jc.sr.re, and s510.jc.sr.re). It is difficult to draw con-
clusions from a direct comparison of the density of encod-
ing values and the test generation results of the retimed
circuits because of the non-linear relationship between the
amount of CPU time which is required to attain given lev-
els of test coverage. In addition, we do not claim that the
density of encoding is the only circuit attribute which
impacts the complexity of sequential ATPG.

Table 7: Density of encoding sensitivity analysis.

A more effective way to isolate the effect of the density
of encoding on the complexity of test generation is to con-
sider multiple retimed versions of the same original circuit.
Each circuit would have a different density of encoding,
however all circuits would implement the same functional-
ity, and have identical values of sequential depth, number
of cycles, and maximum length of any cycle (according to
Theorems 2, 3, and 4). Table 7 lists one such set of circuits.
In addition to the already existing retimed circuit
s510.jo.sr.re, SIS was used to synthesize three additional
retimed circuits (s510.jo.sr.re.v1, s510.jo.sr.re.v2,
s510.jo.sr.re.v3) from the original circuit s510.jo.sr. Each
retimed circuit has a different number of D flip-flops (and
therefore area) and achieves a different level of perfor-
mance (delay). The columns in Table 7 titled#DFF and
delay list the number of D flip-flops and the cycle time (in
nano-seconds) for each circuit. The column titled# valid
states lists the number of valid states for that circuit, the
column titledtotal #states lists the total number of possible
states (2#D flip-flops), and the right-most column lists the
density of encoding for each circuit. Figure 3 plots the
amount of (DECstation 3100) CPU time required to attain
the level of fault efficiency listed on the vertical axis for

circuit
delay
(nsec)

#DFF
#valid
states

total
#states

density
of

encoding

s510.jo.sr 43.87 6 47 64 0.73

s510.jo.sr.re.v1 42.51 8 71 256 0.28

s510.jo.sr.re.v2 42.04 16 150 65536 2.3E-3

s510.jo.sr.re.v3 41.55 22 233 4.19E6 5.6E-5

s510.jo.sr.re 41.51 28 490 2.68E8 1.8E-6

2 The SIS commandextract_seq_dc was used to determine the actual
number of valid states. The state minimization procedure employed dur-
ing logic synthesis minimized the total number of states in all non-retimed
s820, s832, and scf circuits to 24, 24, and 94, respectively. SIS added
three states to pma.jo.sd to specify edges which were previously unspeci-
fied in the pma FSM, thereby resulting in a better implementation of that
circuit (which contains 27 states). The original circuits synthesized from
all other FSMs contain the number of valid states listed in Table 1.

each of these circuits. Figure 3 clearly demonstrates that as
the density of encoding decreases, the greater the amount
of ATPG CPU time required to achieve a given level of
fault efficiency.

Circuits with a low density of encoding reduce the test
generator’s ability to traverse the state space. Examination
of state traversal data underscores the importance that the
test generator be able to traverse the state space. According
to the data in the column titled% valid states travin Table
6, while HITEC was able to traverse all of the valid states
in each of the original circuits, the same is not true of the
retimed circuits. While traversing all valid states does not
guarantee 100% fault efficiency (since to detect some
faults a specific sequence of states might have to be tra-
versed), there is a definite trend that when the ATPG is able
to traverse a majority of the valid states it consistently
attains a level of fault efficiency near 100%. HITEC is able
to traverse at least 80% of the valid states for each retimed
circuit for which it is able to attain greater than 96% fault
coverage. HITEC was unable to traverse more than 20% of
the valid states in those retimed circuits for which it did not
attain a fault coverage above 65%. The lowest percentage
of valid states traversed corresponds to those 4 retimed cir-
cuits (s510.jc.sr.re, s510.jo.sr.re, s832.jc.sr.re, and
scf.ji.sd.re) for which HITEC attained the lowest levels of
fault coverage and efficiency.

It is possible to determine the number of valid states
which HITEC would have to traverse in these circuits to
attain higher levels of fault coverage by fault simulating
the test set derived for the original circuit on the retimed
circuit. When the test set derived for the original circuit
s832.jc.sr is fault simulated on the retimed circuit
s832.jc.sr.re using PROOFS [22], the test set attains a
98.2% fault coverage and traverses 69 states. HITEC tra-
versed only 23 of the possible 273 valid states in deriving

the test set for s832.jc.sr.re, which attains only a 53.7%
fault coverage. These results indicate that HITEC was not
able to traverse an adequate number of states to attain the
higher levels of fault coverage and efficiency which are
achieved by fault simulating the test sets derived for
s832.jc.sr on s832.jc.sr.re.

Table 8: Number of states which would have to be
traversed to attain higher fault coverage.

Table 8 presents the results of this same fault simulation
experiment for each of the four retimed circuits for which
HITEC did not attain a fault coverage greater than 65%.
The columns titled%FC and%FE list the fault coverage
and fault efficiency, respectively, attained by HITEC for
each circuit. The column titled# states HITEC travlists the
number of states which HITEC traversed during test gener-
ation. The column labelled#valid states lists the number of
valid states in the circuit. The column titled#states trav by
orig test set and%FC orig test set list the number of states
traversed and the fault coverage attained, respectively,
when the test set derived for the corresponding original cir-
cuit is fault simulated on that retimed circuit. In each
instance the test set for the original circuit achieves at least
a 94.6% fault coverage and traverses at least three times as
many states than HITEC traversed during test generation
for the retimed circuit. Thus for the retimed circuits listed

circuit %FC %FE
#states
HITEC

trav

#valid
states

#states
trav

by orig
test set

%FC
orig
test
set

s510.jc.sr.re 53.9 54.6 18 148 72 94.6

s510.jo.sr.re 56.5 57.0 22 490 102 96.2

s832.jc.sr.re 53.7 56.0 23 273 69 98.2

scf.ji.sd.re 63.1 63.7 41 209 147 99.5

Figure 3. ATPG performance as a function of density of encoding.

0 200000 400000 600000 800000 10000000

20

40

60

80

100

3

33 3

33
3

3 3 33 3 3 3

3 3 3 3 3 3 3

2

2

2

2
22

2
222 2 2 2 2 2 2 2 2 2 2

r

r r
r

r r
r r r r

o
o

o

o

o

1

1

o

o

o

o

o
o
o

1

1

1

1

1

1 LEGEND: s510.jo.sr
s510.jo.sr.re.v1
s510.jo.sr.re.v2
s510.jo.sr.re.v3
s510.jo.sr.re

HITEC CPU time (seconds)

%
 F

au
lt

E
ffi

ci
en

cy

2
1
o

3
r

3
1

in Table 8 HITEC was not able to traverse a sufficient num-
ber of states to attain greater than 90% levels of fault cov-
erage and efficiency. The previous analysis suggests that
the cause of this must be the low density of encoding in
each of those retimed circuits. For these circuits the low
density of encoding not only increased the amount of CPU
time needed for sequential ATPG, but it also resulted in
low levels of test coverage.

The analysis presented here investigates the properties of
the broad class of heuristics used for sequential, structural
ATPG. By comparing the test generation results (in Tables
2, 3, and 4) for any given pair of original/retimed circuits,
it is evident that the density of encoding impacts each of
the ATPGs to a different degree. These differences are
understandable, as there are many differences between the
algorithms which are employed by the ATPGs considered.
The degree to which the density of encoding impacts these
various algorithms motivates further research.

6. Conclusion
The research reported in this paper was conducted to

identify those attributes, of both sequential circuits and
structural, sequential ATPG algorithms, which can lead to
extremely high test generation times. The retiming trans-
formation was used as a mechanism to create two classes
of circuits which present varying degrees of complexity for
test generation. It was determined that the increase in com-
plexity of testing was present in three sequential test gener-
ators, thus eliminating the possibility that the effect was
specific to a single ATPG. The difference in this complex-
ity was then related to well controlled differences in the
structural nature of the original and retimed circuits, and it
was determined that this difference was not due to differ-
ences in either sequential depth or cycles - those circuit
attributes which have traditionally been associated with the
complexity of sequential ATPG. Evidence was then given
that another circuit attribute, termed density of encoding, is
a key indicator of the complexity of structural, sequential
ATPG. Density of encoding seems to capture well the
essence of the difficulty with which structural ATPGs must
struggle to produce adequate test sets.

The experimental and theoretical results presented here
permit the complexity of sequential ATPG to be viewed
from a new perspective. This new perspective should ulti-
mately help to affect the way ATPG algorithms should be
constructed and to optimize design for testability (DFT)
solutions which can be applied to target both reduction in
cost and improvements in the quality of IC testing.

References
[1] C.E. Leiserson, F.M. Rose, and J.B. Saxe, “Optimizing Syn-

chronous Circuitry by Retiming”,Advanced Research in
VLSI: Proceedings of the Third Caltech Conference, pp. 86-
116, 1983.

[2] C.E. Leiserson and J.B. Saxe, “Retiming Synchronous Cir-

cuitry”, Algorithmica, Vol. 6, No.1, 1991, pp. 5-35.
[3] T.E. Marchok and W. Maly, “Automatic Synthesis and the

Cost of Testing”, Proceedings of the 1994 Custom Integrated
Circuits Conference, pp. 132-135, May, 1994.

[4] T.M. Niermann and J.H. Patel, “HITEC: A Test Generation
Package for Sequential Circuits”,Proceedings of the Euro-
pean Design Automation Conference, pp. 214-218, 1991.

[5] “TDX Product Description Sheets”, Attest Software, Inc.,
4677 Old Ironsides Drive, Suite 100, Santa Clara, CA 95054.

[6] X. Chen and M.L. Bushnell, “SEST - A Sequential Circuit
Automatic Test Pattern Generator at Rutgers - User’s Guide”,
Rutgers University, Piscataway, NJ, March, 1994.

[7] E.M. Sentovich, K.J. Singh, C. Moon, H. Savoj, R.K. Bray-
ton, and A. Sangiovanni-Vincentelli, “Sequential Circuit
Design Using Synthesis and Optimization”,Proceedings of
the International Conference on Computer Design, pp. 328-
333, 1992.

[8] A. Miczo, Digital Logic Testing and Simulation, Harper &
Row Publishers, New York, 1986.

[9] E.M. Sentovich, et.al., “SIS: a System for Sequential Circuit
Synthesis”, U.C. Berkeley Memorandum No. UCB/ERL
M92/41, May, 1992.

[10] S. Devadas, H.T. Ma, A.R. Newton, and A. Sangiovanni-
Vincentelli, “Irredundant Sequential Machines via Optimal
Logic Synthesis”,IEEE Transactions on Computer Aided
Design, pp. 8-16, January 1990.

[11] A. Ghosh, “Techniques for Test Generation and Verification
of VLSI Sequential Circuits”, Ph.D. Dissertation,. U.C. Ber-
keley Memorandum No. UCB/ERL M91/73, Sept., 1991.

[12] S. Dey and S.T. Chakradhar, “Retiming Sequential Circuits
to Add Testability”, Proceedings of the VLSI Test Sympo-
sium, pp. 28-34, 1994.

[13] T.E. Marchok, A. El-Maleh, J. Rajski, and W. Maly, “Test Set
Preservation Under Retiming Transformation”, Carnegie
Mellon University Technical Report CMUCAD 94-23, May,
1994. Presented at theFirst International Test Synthesis
Workshop, May, 1994, Santa Barbara, CA.

[14] A. El-Maleh, T.E. Marchok, J. Rajski, and W. Maly, “Behav-
ior and Testability Preservation Under the Retiming Trans-
formation”, McGill University Technical Report #94-R3,
December, 1994.

[15] M.A. Breuer and A.D. Friedman,Diagnosis and Reliable
Design of Digital Systems, Computer Science Press, 1976.

[16] M.R. Garey and D.S. Johnson,Computers and Intractability:
A Guide to the Theory of NP-Completeness, W.H. Freeman
& Co., New York, 1979.

[17] A. Lioy, P.L. Montessoro, and S. Gai, “A Complexity Analy-
sis of Sequential ATPG”,Proc. of ISCAS, 1989, pp. 1946-9.

[18] F. Hennie,Finite State Models for Logical Machines, John
Wiley, New York, 1986.

[19] K.R. Bowden, “A Technique for Automatic Test Generation
for Digital Circuits”, IEEE Intercon Conference Record,
Paper 15/1, 1975.

[20] N. Gouders and R. Kaibel, “Test Generation Techniques for
Sequential Circuits”,Proceedings of the VLSI Test Sympo-
sium, pp. 221-226, 1991.

[21] X. Chen and M.L. Bushnell, “Dynamic State and Objective
Learning for Sequential Circuits Automatic Test Generation
Using Decomposition Equivalence”,Proceedings of the
Fault Tolerant Computing Symposium, 1994.

[22] T.M. Niermann, W.T. Cheng, and J.H. Patel, “PROOFS: A
Fast, Memory Efficient Sequential Circuit Fault Simulator”,
Proceedings of the 27th Design Automation Conference, pp.
535-540, 1990.

	ED&TC95
	Front Matter
	Table of Contents
	Session Index
	Author Index

