
Deadline-Monotonic Software Scheduling for the Co-Synthesis of

Parallel Hard Real-Time Systems

Peter Altenbernd

CADLAB, D-33094 Paderborn { Germany

Tel.: ++49/5251/284-123, Fax.: ++49/5251/284-140, Email: peter@cadlab.de

Abstract

This paper focuses on software scheduling in hard
real-time embedded systems. It uses the deadline-
monotonic scheduling heuristics, where the analysis
whether the hard real-time conditions are met, is done
by a schedulability test. The test presented in this
paper overcomes the problems of existing approaches
with parallel communicating tasks. The essential of
the test is, that the communication caused precedence
constraints are mapped to minimum-maximum o�set
intervals, to deal with multiperiod systems, where �xed
o�set values are insu�cient. By this method the dead-
lines and the o�set intervals are computed automati-
cally during the e�cient analysis.

1 Introduction

Recently, software synthesis becomes more and
more important in the automation of embedded sys-
tem design. An embedded system is a special pur-
pose computer consisting of one or more controllers.
Low-cost embedded systems can be constructed by
using microcontrollers or core processors that do not
use operating systems. Many embedded systems must
meet hard real-time conditions, in order to avoid catas-
trophic failures. The software for hard real-time sys-
tems is often designed by a number of periodic tasks
in a parallel environment.

In this paper the scheduling of hard real-time sys-
tems is addressed, at which the following assumptions
are made:

� Each task re-arrives periodically.

� For each arrival, a task executes a bounded
amount of computation.

� Each task must meet a hard real-time condition,
termed the deadline, measured relative to the be-
ginning of the period of the task, i.e. the task
must be guaranteed by the schedule to have �n-
ished its computation before this deadline.

� Tasks may receive data from one or more other
tasks at their beginning, and tasks may send data
to one or more other tasks at their end.

� Communicating tasks share the same period
length.

� The parallel communicating task set is allocated
on a number of identical processors.

� Scheduling is done locally for each processor.

Static priority preemptive scheduling methods are
an e�cient way of constructing and analyzing sched-
ules for hard real-time systems. Priority preemptive
based scheduling heuristics dispatch tasks in priority
order, and the priorities remain static during runtime.
Lower priority tasks can be suspended by higher pri-
ority tasks. Allowing task deadlines to be before the
end of the periods, and assigning each task a unique
priority with respect to its deadline (the smaller the
deadline, the higher the priority) is called deadline-
monotonic scheduling (DMS) [6]. DMS is very well-
suited for parallel environments with communicating
task, since the e�ort following a sending task can be
taken into consideration by reducing its deadline, and
hence increasing its priority.

Static priority preemptive scheduling is not a
correct-by-construction approach with respect to
guarantee the task deadlines. In order to predict
whether the deadlines are met, schedulability tests
are applied (�rst presented by Liu and Layland [7]
in 1973). In a schedulability test the worst-case re-
sponse time of each task is determined, which is the
longest time ever taken by the task from the beginning
of its period until it completes its required computa-
tion, i.e. including possible interferences by higher
priority tasks. If the worst-case response times of all
tasks are less or equal to their corresponding dead-
lines, all hard real-time conditions are guaranteed to
be met. Due to a better runtime complexity schedula-
bility tests are preferred to simulation. In a simulation
the least-commonmultiple of the task periods must be
inquired, which can last very long. Most schedulabil-
ity tests are not-necessary and su�cient, i.e. they do
not deliver an exact result (to further reduce runtime)
but the computed worst-case response time are guar-
anteed to be not too optimistic.

Schedulability tests for communicating tasks in par-
allel environments are still a di�cult problem. In such
systems precedence constraints may arise, which ex-
isting schedulability tests try to handle by �xed o�set

Processor 1

Processor 2

A B

CF

D E

Priority

Figure 1: Precedence graph of a communicating task
set

values. An o�set value represents the arrival of a cer-
tain task with respect to the beginning of the period.
The representation of precedence constraints as �xed
o�sets is often insu�cient in a system of tasks with
di�erent periods, since the arrival time of a receiving
task may vary due to the interference caused to its pre-
decessors. In the example of Fig.1 a communicating
task set is shown: The nodes of the graph represent
the tasks, the edges represent communications. In the
example it is assumed that the period of task F is dif-
ferent from the common period of the other tasks, and
that the priority is decreasing from left to right in the
picture. Due to a communication, Task D starts when
C is �nished. Due to the higher priority of F , C may
be interfered by F , or may not. This results in two dif-
ferent arrival times of D, a minimum and a maximum
o�set. Checking task D for schedulability by assum-
ing the minimum o�set of D, the test would be too
optimistic, since it is too easy to meet the deadline of
D. Taking the maximum value instead overcomes this
problem. But checking task B for schedulability, the
maximum o�set of D may lead to underestimate the
interference that D can cause to B (due to the higher
priority of D) resulting again in a too optimistic view.

Hence, this paper presents a not-necessary and suf-
�cient DMS schedulability test for parallel communi-
cating tasks that handles minimumand maximumo�-
sets. For testing the current task on schedulability the
latest possible arrival time, the maximum o�set, is as-
sumed. For a task that may interfere the current task
due to a higher priority, an arrival in between the min-
imum and maximum value is assumed. The computed
response time of the current task is used to determine
the min/max o�sets of its successors. Because of its
low runtime complexity, the test is very well-suited
to be used as a subroutine of task-to-processor allo-
cation. In distinction to former approaches the de-
signer does not need to care about appropriate dead-
lines and o�sets, which are computed automatically
by this method.

The remainder of the paper is structured as follows.
The next section illustrates how this approach is re-

lated to others. In Section 3, the new schedulability
test is described. The mapping towards DMS (i.e. the
deadline computation) is done in Section 3.1, and the
actual test is presented in Section 3.2. In Section 3.3,
an example is discussed, and experimental results are
presented. Finally, Section 4 gives some conclusions.

2 Related Work

If precedence constraints are represented by �xed
o�sets, schedulability testing may lead to dangerous
optimistic results (see above). Nevertheless o�sets are
useful for other situations like mutual exclusion.

Schedulability tests which ignore o�sets, like [1], as-
sume that all tasks on a processor arrive simultane-
ously. Since this is not true for the sequential behav-
ior of communicating tasks, the test may overestimate
some worst-case response times. There is the possibil-
ity to make the test less pessimistic by modifying the
task set parameters (like in [3]) in order to pass the
test. In contrast to this, including o�sets directly into
the analysis allows evaluating the test results without
re-translating the modi�ed task set into the initial one.

The most accurate analysis which includes �xed o�-
sets is presented by Tindell [9]. For this purpose,
the open framework of the University of York [3] is
used, which is appropriate to simultaneously consider
many aspects of schedulability analysis. In contrast to
Tindell's approach, the method presented in this pa-
per overcomes the above mentioned �xed-o�sets prob-
lem by handling min/max o�sets, and determines o�-
sets and deadlines automatically. Many of the fea-
tures of Tindell's test, like the arbitrary deadlines, are
not needed for DMS schedulability analysis. Because
of this, this paper focuses on the essential needs of
scheduling parallel communicating tasks by the DMS
approach.

The problem with correct-by-construction ap-
proaches (like [5]), when determinating a feasible
schedule of systems involving di�erent periods, is that
the least-commonmultiple (LCM) of the periods must
be inquired. If this is combined with allocation (NP-
hard) [11], it is still harder (impossible for large sys-
tems and large LCMs) to determine the schedule.
However, in this paper the well-known, optimal and
more
exible DMS heuristics (i.e. not NP-hard) is
used, that allows e�cient schedulability testing which
at most needs to inquire the length of the longest pe-
riod.

Another correct-by-construction approach is, to
�nd static cyclic schedules [12], by constructing a set of
tasks sharing the same period length. As pointed out
in [2] this procedure is very similar to the approach of
modifying the task set. Hence, static cyclic scheduling
is merely a special case of a schedulability algorithm
that includes o�sets.

Using �xed priority scheduling heuristics in an over-
all manner and using the allocation as a subroutine
(e.g. [4]), it is di�cult to address the allocation prob-
lem adequately, resulting in poor processor utiliza-
tions. Utilization can be enhanced by handling the
allocation at the highest level (like in [10]), and by per-
forming scheduling (incl. test) at a lower level. This
is supported by the method of this paper and in con-
trast to [10] the precedence constraints are taken into
consideration.

3 The Schedulability Test

Before the actual schedulability test, the precedence
constraints are mapped to the deadline-monotonic ap-
proach (see Section 3.1). After that as the main part
of the test, the worst-case response time is computed
for each task (see Section 3.2), taking into account the
former mapping and the precedence constraints.

The used notations are:
Tp = The period of task p

C
min=max
p = The minimum/maximum com-

putation time of task p
Dp = The static deadline of task p,

measured relative to the begin-
ning of the period of the task,
and Dp � Tp

hp = The processor where task p is
hosted

The tasks compose a directed acyclic precedence
graph PG = (V;E) where V is the set of tasks, and
E is the set of edges representing communications be-
tween tasks, i.e. if task a sends to task b: a! b 2 E.

3.1 Mapping the Precedence Graph to
DMS

G

F

E I

D

H

Processor 1

Processor 2

C

A

B

Priority

Processor 3

J

K

Figure 2: Precedence graph of a communicating task
set

The mapping towards DMS is done by comput-
ing appropriate deadlines using the precedence graph.
The deadline, Dp, does not take into account the com-
putations following p. Furthermore, it cannot be as-
sumed that all tasks are dispatched in parallel. If a
task A sends to tasks B and C, and B and C are
hosted on the same processor, B and C are always pro-
cessed consecutively (see Fig.2, the non-dashed edges
only). This means that for one of the two tasks, ei-
ther B or C, the deadline is too optimistic. To avoid
this, further edges expressing the sequential behavior
(e.g. B ! C, the dashed edges in Fig.2) are added to
the precedence graph resulting in the de�nition of an

extended precedence graph EPG = (V;E
0

) with:
E(0) := E

8 : 0 � i < m :
E(i+ 1) :=

E(i) [fq1 ! q2 j 9p : p! q1 2 E(i) ^
p! q2 2 E(i);

hq1 = hq2 ; dq1(i) � dq2(i) g

E
0

:= E(m)

If, for instance, task q1 is followed by some subse-
quent tasks, while q2 is the end of the line, deadline-
monotonic scheduling is more e�ective by giving q1 a
higher priority. This fact is taken into consideration
by the condition dq1(i) � dq2 (i) when determinating
E(i + 1). (By further similar conditions it is possible
to get a unique priority for each task). The extended
precedence graph is used to compute the real-deadline
values, d, which involve consecutive processing of par-
allel tasks on the same processor, and the e�ort fol-
lowing a task.

8 : 0 � i � m :

dp(i) :=

�
Dp; if 6 9q : p! q 2 E(i)
MINfdq(i)� Cmax

q j p! q 2 E(i)g; else

dp := dp(m)

The task set is mapped to DMS with respect to
the real-deadline values, which are exploited by the
schedulability test (see Section 3.2). With the help of
the additional edges, it can easily be determined where
a timing violation is located. Without these edges, the
true error location could be hidden. Regarding the
example of Fig.2, the schedulability test could report
a timing violation with respect to B or C, but not with
respect to A, which may be the real cause of the error.
Recursively adding a new edge if the last added edge
has imposed again the same situation, as expressed
by the de�nitions of the E(i), helps the schedulability
test to accurately estimate the response time of tasks
belonging to the same subgraph (see Section 3.2).

The computation of the real-deadlines can be per-
formed by a breath-�rst-search (BFS) technique for

each E(i). Its runtime grows linear with the number
of edges and vertices.

3.2 Worst Case Response Time

The actual schedulability test consists mainly of the
computation of the worst-case response time of each
task, rp. For this purpose, it is distinguished between
tasks with the same period, and tasks with distinct
periods. According to this, a transaction is de�ned

as the maximum set of vertices (tasks) of E
0

sharing
the same period length. The distinction is done to
appropriately handle the o�set intervals.

The worst-case response time is de�ned as:

rp := Ip + rTmaxp

where Ip denotes the interference, and rTmaxp the
maximum transaction response time. The worst-case
response time must be compared to the deadline, i.e.
if rp � dp, p is guaranteed to hold its deadline.

The interference is given only with respect to other
transactions, as the next de�nition states.

Ip :=
X

q2hp(p)

�
dp � oTp
Tq

�
Cmax
q

The higher priority set hp(p) = ft1; :::; tmg is the
set of higher priority tasks of p with 8 : 1 � i � m :
Tti 6= Tp, and hti = hp.

Thus, the interference value gives the amount of
time a task is prevented from �nishing by other tasks.
The interference might happen between oTp , called the

transaction o�set, and dp. o
T
p is equal to the beginning

of the earliest higher priority task of the transaction
on the processor, as the next de�nition states.

oTp :=MINfominq j hp = hq ^ Tq = Tp
^ q 2 hpT (p) [fpg g

(See below for the de�nition of minimumo�set, omin.)
The de�nition of the transaction higher priority set

hpT (p) needed above is as follows:
hpT (p) = fq1; :::; qng is the set of higher priority tasks
of p with 8 : 1 � i � n : Tqi = Tp and hqi = hp.

The rest of this section deals with the handling of
the interferences caused by tasks of the same transac-
tion. It is distinguished between the earliest possible
arrival of a task, the minimum o�set, omin, and the
latest possible arrival of a task, the maximum o�set,
omax. Regarding a task p, the maximum-o�set, omaxp ,
represents that the beginning of p is deferred as much
as possible towards the end of the period, which makes
it harder to meet the deadline of p. The minimum
o�set, ominq , is of interest for the interference a higher
priority task q of the same transition can cause to p.

The interval [ominq ; omaxq], is the interval in which q ar-
rives, and hence can interfere p. The two o�set types
are de�ned as follows.

omaxp :=

�
0; if 6 9q : q ! p 2 E

0

MAXfomaxpq j q! p 2 E
0

g; else

with

omaxpq :=

�
rTmaxq ; if hq = hp
rq ; else

and

ominp :=

�
0; if 6 9q : q ! p 2 E

0

MAXfrTminq j q ! p 2 E
0

g; else

In other words, the maximum o�set of a task is
either 0 if there is no predecessor, or equal to the
maximum transaction response time (the maximum
response time of a task with respect to its transaction;
see below) of a predecessor hosted on the same proces-
sor, or equal to the worst-case response time of a pre-
decessor hosted on a distinct processor. The minimum
o�set of a task is either 0 if there is no predecessor, or
equal to the minimum transaction response time (the
minimum response time of a task with respect to its
transaction; see below) of a predecessor.

The transaction response times, r
T (min=max)
p , are

computed without taking into account the interference

of tasks outside the transaction, i.e. r
T (min=max)
p � rp.

The de�nition of the minimum (maximum) transac-
tion response time is as follows.

rT (min=max)p := o(min=max)p +IT (min=max)p +C(min=max)
p

For this formula the minimum (maximum) transac-

tion interference, IT (min=max), is needed which is the
minimum (maximum) interference caused by tasks of
the same transaction (see below).

In the following de�nitions, four di�erent situations
are distinguished. First, the considered task p is dis-
patched earlier than a higher priority task q arrives,
(denoted as (early) in the following de�nitions). Sec-
ond, p arrives later than q is dispatched (denoted as
(late)). In these two situations, p is not interfered
by q. Third, p arrives while q is running (denoted as
(wait)). In this case, p is interfered by the remain-
ing part of q. And last, p is preempted by q (denoted
as (pree)). In this case, p is interfered by the full
computation time of q.

In each of the four cases, the arrivals of q and p are
assumed in a way to keep the minimum (maximum)
transaction interference as low (high) as possible. Nev-
ertheless, the minimum transaction interference does
not need to be less or equal to the corresponding max-
imum value. In the case of an extreme early arrival
of a task the interference may be higher than in the
case of a later arrival. Only the minimum transaction

response time is always less or equal to the correspond-
ing maximum value. The transaction interference val-
ues are de�ned as follows.
ITminp (0) := 0

8 : 1 � i � n :

ITminp (i) := ITminp (i� 1)

+

8>>>>>>>>>>>><
>>>>>>>>>>>>:

rTminqi
� sminp (i � 1); (wait)

if sminqi
� sminp (i � 1) < rTminqi

^ smaxqi
< ominp + ITminp (i� 1) + Cmin

p

Cmin
qi

; (pree)

if sminp (i� 1) < sminqi

^ smaxqi
< ominp + ITminp (i� 1) + Cmin

p

^ sminqi
� ominp < rTminqi

0; (early, late)

else

ITminp := ITminp (n)

with: qi 2 hpT (p) and 81 � i < n : sminqi
� sminqi+1

ITmaxp (0) := 0

8 : 1 � i � n :

ITmaxp (i) := ITmaxp (i � 1)

+

8>>>>>>>>>><
>>>>>>>>>>:

rTmaxqi
� smaxp (i � 1) (wait)

if smaxqi
� smaxp (i� 1) < rTmaxqi

Cmax
qi

(pree)

if smaxp (i � 1) < smaxqi
^

ominqi
< omaxp + Ip + ITmaxp (i � 1) + Cmax

p

^ smaxqi
� omaxp < rTmaxqi

0 (early, late)

else

ITmaxp := ITmaxp (n)

with: qi 2 hpT (p) and 81 � i < n : smaxqi
� smaxqi+1

The negated expressions in these formulas are not
necessary to express the (pree) condition, but to
avoid that a qi is taken into account twice. The

I
T (min=max)
p (i)-values are determined in increasing or-

der over the min/max start-time values, smin=max, for
each qi. The min/max start time declares the ear-
liest/latest possible time instant when a task starts
processing with respect to the transaction. The start-
times are computed simultaneously with the transac-
tion interferences, as expressed by the next de�nitions.
sminp (0) := ominp

8 : 1 � i � n :

sminp (i) :=

8>><
>>:

rTminqi
; (wait)

if sminqi
� sminp (i� 1) < rTminqi

^ smaxqi
< ominp + ITminp + Cmin

p

sminp (i� 1); else

sminp := sminp (n)

smaxp (0) := omaxp

8 : 1 � i � n :

smaxp (i) :=

8<
:

rTmaxqi
; (wait)

if smaxqi
� smaxp (i � 1) < rTmaxqi

smaxp (i � 1); else

smaxp := smaxp (n)
Note, that the qi and the value n are the same as in

the de�nition of the min/max transaction interference.
In the wait case, the start time of p is equal to the
end of qi. In all other cases, the real o�set remains
unchanged.

With the computation of the minimum and the
maximum transaction interference, all components of
the worst-case response time are determined, and can
now be checked against the deadline.

The schedulability test can also be implemented by
a BFS, at which each edge and each vertex is visited
once. For computing the interference, I, there is an
additional e�ort of at most O(jV j) for each vertex.
Hence, the complexity of the whole schedulability test

is: O(jE
0

j+ jV j2).

3.3 Example and Experimental Results

In Fig.2 the precedence graph of a communicating
task set is shown. The 11 tasks are located on three
processors as indicated by the picture. The three sub-
graphs compose two transactions. It is assumed that
all tasks have a constant computation time, C. More
detailed information can be found in Fig.3.

Processor 1:

id T d C o s o
T

I
T

I r
T

r

F 20 14 2 [0,0] [0,0] 0 [0,0] 0 [2,2] 2
D 14 14 2 [6,6] [6,6] 6 [0,0] 2 [8,8] 10
J 20 18 2 [0,0] [2,2] 0 [2,2] 4 [4,4] 8

Processor 2:

id T d C o s o
T

I
T

I r
T

r

B 14 10 2 [2,2] [2,2] 2 [0,0] 0 [4,4] 4
C 14 12 2 [4,4] [4,4] 2 [0,0] 0 [6,6] 6
E 20 14 3 [0,0] [0,0] 0 [0,0] 4 [3,3] 7
G 20 16 2 [3,3] [3,3] 0 [0,0] 8 [5,5] 13
H 20 18 2 [5,5] [5,5] 0 [0,0] 8 [7,7] 15
I 20 20 2 [7,7] [7,7] 0 [0,0] 8 [9,9] 17
K 20 20 2 [4,8] [9,9] 0 [5,1] 8 [11,11] 19

Processor 3:

id T d C o s o
T

I
T

I r
T

r

A 14 8 2 [0,0] [0,0] 0 [0,0] 0 [2,2] 2

Figure 3: Input and output data of the example task
set

The tasks are listed in priority order for each pro-
cessor. It is assumed that the initial deadline, D, is
equal to the period of each task. All information com-
puted by the test is also included in the table. K is the
only task with distinct minimum and maximum o�-
sets. Nevertheless, the minimum transaction response
time of K is equal to its maximum value.

The table in Fig.4 shows some experimental results
about �xed examples which were analyzed by simula-
tion and schedulability testing. The results show that

n m t LCM sim test Q QFO

tmn 11 3 2 140 0.5 <0.1 91 89
cpf 14 3 4 7920 4.5 <0.1 100 91
tnn 43 8 4 420 1.1 0.1 84 75
bnn 48 8 1 2000 2.4 0.1 99 52
mc 100 16 4 420 2.1 0.2 89 79

n = # tasks, m = # processors, sim = CPU-time of simulation,
t = # transactions, test = CPU-time of schedulability test

Figure 4: Experimental results

the schedulability test is much more e�cient than sim-
ulation, though the examples and the LCMs are quite
small. The test quality, Q, was determined by:

1�
X
p2V

rp � rSIMp

dq

where rSIM is the worst-case response time deliv-
ered by the simulation. With large LCMs the test
becomes more e�cient, and with less tasks and trans-
actions the test becomes more accurate. Similary the
quality of a test using �xed o�sets, QFO , was com-
puted, but in contrast to above each negative term
rp� r

SIM
p was replaced by dq, which extremely penal-

izes underestimations. For the �xed o�set schedula-
bility test [9], the o�sets were determined correspond-
ing to the structure of extended precedence graph, at
which the o�set, o, of a node is the maximum value
oq + Cq of all predecessors q. Comparing the quality
values shows that the new test signi�cantly enhances
the accuracy of the test results.

4 Conclusions and Future Work

Due to the low costs of microcontrollers or core-
processors, the software synthesis for hard real-time
embedded systems becomes an emerging �eld. This
paper targets in the use of the DMS heuristics,
by presenting a su�cient and not-necessary DMS
schedulability test for parallel communicating tasks.
The precedence-constrained tasks are automatically
mapped towards DMS by computing appropriate
deadlines. Multiperiods are handled by minimum and
maximum o�sets as the representation of the prece-
dence constraints. For testing the current task the
maximum o�set is taken into account, while for com-
puting the interference a task can cause, the whole
interval between the minimum and maximum value is
considered. The test is e�cient to implement by a
BFS.

The schedulability test will be used to analyze real-
time systems speci�ed by Petri nets (Cadlab) [8] and
di�erential equations (University of Paderborn), which
is currently under development.

Acknowledgement The author would like to thank
Carsten Ditze, and Frank Buijs for some helpful com-
ments on an earlier version of this paper.

References

[1] N. C. Audsley, A. Burns, M. F. Richardson, and
A. J. Wellings. Hard Real-Time Scheduling: The
Deadline Monotonic Approach. In IEEE Work-
shop on Real-Time Operating Systems and Soft-
ware, 1991.

[2] N. C. Audsley, K. Tindell, and A. Burns. The End
of The Line for Static Cyclic Scheduling? In Pro-
ceedings of the 5th Euromicro Workshop on Real-
time Systems, 1993.

[3] A. Burns. Preemptive Priority Based Scheduling:
An Appropriate Engineering Approach. Report
YCS214, Department of Computer Science, Uni-
versity of York, 1993.

[4] B.-C. Cheng, A.D. Stoyenko, and T.J. Marlowe.
Least-Space-Time-First Scheduling Algorithm: A
Policy for Complex Real-Time Tasks in Multi-
ple Processor Systems. In Proceedings of the
WRTP'94, 1994.

[5] P. Chou and G. Borriello. Software Scheduling in
the Co-Synthesis of Reactive Real-Time Systems.
In Proceedings of the DAC'94, 1994.

[6] J.Y.T. Leung and J. Whitehead. On the Complex-
ity of Fixed-Priority Scheduling of Periodic Real-
Time Tasks. Performance Evaluation, 2(4):237{
250, December 1982.

[7] C.L. Liu and J.W. Layland. Scheduling Algorithms
for Multiprogramming in a Hard Real-Time Envi-
ronment. Journal of ACM, 20(1):46{61, 1973.

[8] F. J. Rammig. System Level Design. Nato Ad-
vanced Study Institute, 1993.

[9] K. Tindell. Adding Time-O�sets To Schedulability
Analysis. Report YCS221, Department of Com-
puter Science, University of York, 1994.

[10] K. Tindell, A. Burns, and A. Wellings. Allocat-
ing Real-Time Tasks (An NP-Hard Problem made
Easy). Journal of Real-Time Systems, 4(2):145{
165, 1992.

[11] J. Xu. Multiprocessor Scheduling of Processes
with Release Times, Deadlines, Precedence, and
Exclusion Relations. IEEE Transactions on Soft-
ware Engineering, 19(2):139{154, February 1993.

[12] J. Xu and D. L. Parnas. Scheduling Processes with
Release Times, Deadlines, Precedence, and Exclu-
sion Relations. IEEE Transactions on Software
Engineering, 16(3):360{369, March 1990.

	ED&TC95
	Front Matter
	Table of Contents
	Session Index
	Author Index

