
A Unified Scheduling Model for High-Level Synthesis and Code
Generation

Augusli Kifli Gert Goossens Hugo De Man�

IMEC, Kapeldreef 75, B-3001 Leuven, Belgium

Abstract

Scheduling is an essential task both in high-level synthesis and in
code generation for programmable processors. In this paper we
discuss the impact of the controller model on the scheduling task
for DSP applications. Existing techniques in high-level synthesis
mostly assume a simple controller model in the form of a single
FSM. However, in reality more complex controller architectures
are often used. On the other hand, in the case of programmable
processors, the controller architecture is largely defined by the
available control-flow instructions in the instruction set.

In this paper, a unified scheduling model is presented to han-
dle a wide range of controller architectures, from the application-
specific to programmableprocessorsolutions. The impact of chos-
ing a certain controller architecture on the scheduling phase is
investigated. Finally, the tasks of controller generation and code
assembly are discussed, which will generate the FSM or machine
code description from the correct schedule.

1 Introduction
In the past few years, many high-level synthesis systemshave been
developedto map behavioraldescriptions into application-specific
IC architectures (ASICs). Often these systems focused on real-
time DSP applications. The advantage of ASIC solutions is their
cost efficiency. For competitive markets like consumerelectronics
or telecommunications, ASICs however often lack flexibility and
programmability.

In the past, commercial (DSP) processorswere the only choice
when programmability was desired. More recently, a trend
emerged in the DSP community to build application-specific in-
tegrated processors (ASIPs), which offer programmability, while
maintaining low cost and power consumption as well as high
speed. The design of a compiler for each new ASIP is however
a time consuming and tedious task. This has lead to a renewed
search for efficient techniques for retargetable code generation.

In a real-time signal processing system, the advancement in
processing technology has enabled the possibility to integrate
the complete system on one chip. The so-called heterogeneous
ASIC architecturecontains the necessarymemory, accelerator data
paths, an embedded programmable processor and the glue logic
to put these components together [3]. The DSP core can come in
the form of a commercially available DSP processor or ASIP. It is
used to implement the low to medium throughput data processing
parts and some control functions of the system. The accelerator
data paths on the other hand can be used to implement the more
time critical (high throughput) functions of the system. They can
be synthesized by a high-level synthesis tool.

This paper is concerned with control strategies for the different
parts of a heterogeneous ASIC. Accelerator data paths which are

�Professor at Katholieke Universiteit Leuven, Belgium

usually non-programmable can be steered by a FSM type of con-
troller or a microcoded controller. The embedded programmable
processorhas its own sequencerand instruction decoder. Different
types of controllers will strongly influence the scheduling task in
order to produce a valid and effective schedule. Most high-level
synthesis systems, [10] [9] among others, assume a controller
in the form of a single FSM. Some support a more complex mi-
crocoded controller as in [6] [11] [7] [8]. However no system
that is known currently to the author supports a range of controller
architectures.

We present a unified model to capture the control flow of an
application program and the characteristic of the underlying con-
troller architectures, which allows the scheduler to generate a valid
and efficient schedule. The contributions of this paper are the fol-
lowing:

� In Section 2, we will first review a broad range of different
controller architectures which are commonly used in the
DSP domain.

� Next, in Section 3 we will introduce an efficient model to
represent conditional branches in a control-data flow graph
(CDFG).

� It will be shown in section 4 how this model enables the
formulation of additional scheduling constraints, which ex-
actly model the influence of each target controller architec-
ture on the synthesis or code generation process. In this
way, the scheduler can guarantee the correctness of the
produced FSM or machine code descriptions with respect
to the given controller architecture.

� For ASICs, existing high-level synthesis systems usually
try to optimize the operator or storage (and sometimes inter-
connect) cost. However, in some cases the eventual control
logic is dominating the silicon area and delay. In the case of
code generation for ASIPs and commercial DSP processors,
scheduling aims at reducing the number of instructions and
the execution time of the program. Excessive amounts of
branch instructions may however deteriorate these param-
eters and should therefore be avoided. This will the topic
of discussion in section 5.

The models and techniques described in this paper are part of
the Chess compiler, a retargetable code generation system with
extensions for high-level synthesis.

2 Controller architectures
Synthesized hardwired FSM. Most high level synthesis sys-
tems assume this type of controller. This is a non programmable
controller and hence can only execute one specific application pro-
gram. The control logic is synthesized after scheduling, when the
state transition graph of the application program is known. The
state transition graph may contain m-way branches, with m an
arbitrary integer. We call these multi-way branches.

Hardwired microcoded controller. This type of controller ar-
chitecture also executes only one application program since it is

non programmable. It consists of two major parts : a micropro-
gram ROM, which stores the micro-instructions, and a sequencer
block, which controls the execution sequence of the program. A
micro-instruction usually takes only one cycle to execute. Since
the sequencerblock is to be synthesized, it basically has the power
of hardwired FSM controllers (i.e. multi-way branch). The se-
quencer itself usually contains an incrementer/adder to generate
sequential addresses. The non-sequential (branch) addresses are
generated by a dedicated logic block. This type of controller ar-
chitecture is used in Cathedral [6] [11], ASYL [8] and [7] among
others.

Programmable microcoded controller. As mentioned in Sec-
tion 1, there is a trend in the DSP community to build pro-
grammable architectures in the form of ASIPs. In this case the
controller architecture itself must be programmable. Usually a
programmable microcoded controller is chosen. Unlike the hard-
wired microcoded controller, the sequencer and instruction de-
coder blocks of the programmable microcoded controller are fixed
in advance. This means that there is a limitation on the type of
branches that can be executed. In most cases, only the 2-way con-
ditional branch and the unconditional branch are available. De-
pending on the actual architecture, these branch operations may
or may not be executed in parallel with other operations. The
micro-instructions can be stored in RAM, EPROM or ROM.

The controller architecture in this case can be partly represented
by the available control flow instructions(conditional and uncon-
ditional branch) defined in the instruction set. In this paper, the
term controller architecture will be used to represent the control
flow instructions when we talk about programmable processors.

Programmable macrocoded controller. In this case, the in-
structions in the program ROM are macro-instructions rather than
micro-instructions. The instructions can take more than one cycle
to execute in the execution unit of the processors. This controller
architecture is found in a number of commercial DSP and micro-
processors [1].

We do not claim that the above classification is complete but
we believe that most existing controller architectures fall into one
of the above categories.

3 Modeling of conditional branch
A classical approach used in software compilation and in high level
synthesis, is to break up the CDFG into basic blocks which depend
on the control constructs. Control dependencies are introduced
between basic blocks, but do not occur inside a basic block. Older
scheduling tools are mostly basic block schedulers. A basic block
scheduler only considers data dependencies and resource conflicts
within basic blocks but does not move operations across the basic
block boundaries. The latter is however crucial to obtain highly
optimized schedules.

We use a different model for control constructs, with two major
advantages :

� It facilitates moving of operations across traditional basic
blocks boundaries during scheduling, thus optimizing the
condition structure.

� It can be used by the scheduler to generate a controller
implementation for a wide range of controller architectures,
including most of those introduced in Section 2.

A conditional branch consists of a number of conditional paths
and a condition select node. The conditional paths will be activated
depending on the value of the signal evaluated by the condition
select node. For example, a 2-way conditional branch has two

if (c1)
 y = a + c + d;
else {
 x = a + c ;
 if (c2)
 y = x - c - d ;
 else y = x ;
}

timing dependency

data dependency

weak control dependency

+

-

+

cjump

c
d

c2

+ +

cjump

a c a

c1

JUMP

d

x

y

y

y

JUMP

c

t

f
f

t

Figure 1: CDFG model of conditional branch

conditional paths, referred to as the “true” and “false” conditional
paths. In [9], several representations of a conditional branch have
been discussed. The representation we use is similar to the one
used by [9] and [2] in a number of aspects.

Figure 1 shows a 2-way conditional branch and the corre-
sponding CDFG representation. A 2-way conditional branch is
represented by one “CJUMP” node, one “JUMP” node, and one
or several “MERGE” nodes. The MERGE nodes are represented
by reverse triangles in the figure. A case statement is represented
as nested 2-way conditional branches.

The CJUMP node starts the conditional branch by evaluating
the values of certain status signals (conditions). The MERGE
nodes mark the definition of signals based on different values
produced in each conditional path. The values (signals) being
transferred out of the conditional branch must go through MERGE
nodes. The inputs of a MERGE node are two signals which are
defined in a mutually exclusive way, one coming from the true
and the other from the false conditional path. The operations
that consume the signal produced by a MERGE node can only
be scheduled after the MERGE node is scheduled. The different
MERGE nodes associated with a CJUMP node can be scheduled
at different time steps.

To represent optimizations of the condition structure in an easy
way, the concept of weak control dependencies is introduced.
Weak control dependencies denote dependencies that can be vio-
lated. They are added between every CJUMP node and all oper-
ations inside the conditional branch started by this CJUMP and
terminated by the corresponding JUMP (see Figure 1). Whether or
not a weak control dependencyis violated, is decidedby the sched-
uler. A violation of a weak control dependency means that the
target operation to which it is pointing will be executed irrespec-
tive of the condition value (i.e., it will be executed unconditionally
with respect to this condition). The position of the CJUMP and
JUMP nodes in the schedule defines the scope of the conditional
operations.

3.1 Checking mutual exclusivity

The scheduler must be able to find out whether two operations are
mutually exclusive. For that purpose, condition vectors have been
introduced in [10]. However, as pointed out in [9], these con-
dition vectors may yield wrong results in specific configurations
of conditional branches. The alternative condition tag method
proposed in [9] itself is a pessimistic approach. This means that
when the condition tags can not determine whether two operations
are mutually exclusive, they are assumed to be non-exclusive. To
alleviate this problem, a tautology checking tool is used in our
scheduling algorithm to check mutual exclusivity when simple
heuristics cannot decide.

4 Constraints imposed by the chosen con-
troller architecture

With the introduced condition representation, the control flow of
the application is captured. In this section, it will be shown how
the scheduler is able to capture the characteristic of the chosen
controller architecture and generate a correct and efficient sched-
ule.

We introduce virtual resources in the controller that can execute
the CJUMP and JUMP operations. The resource that is capable
of executing CJUMP operations is called CJUMP operator and
the resource that executes the JUMP operations is called JUMP
operator. The conflict behaviour of both the CJUMP and JUMP
operations is modeled in a similar way as other data operations
like addition or subtraction.

The different types of controllers described in section 2 can be
characterized by the following parameters:

� Number of CJUMP and JUMP operators that is allocated.
� The delay slot of the CJUMP operation.
� Whether the CJUMP operation is a delayed-branch or not.
� Conflict information between CJUMP, JUMP and other

operations.
High-level synthesis systems typically explore different allo-

cations of operators in the data path. In a similar fashion, we
can explore different allocations of CJUMP and JUMP operators
in the controller. By having more CJUMP operators allocated,
we can potentially schedule more conditional branches in parallel.
In this way, area/time tradeoffs can be made with respect to the
controller architecture. This issue has been ignored hitherto in
most high-level synthesis systems. The same approach can also
be followed by designers of an ASIP. By iteratively calling a code
generator that supports our model, different controller architecture
for the ASIP can be explored.

We will now described how the different types of controllers
can be characterized in terms of the above parameters.

Synthesized hardwired FSM. Since the FSM which contains
the CJUMP and JUMP operators is to be synthesized, we can
allocate an unlimited number of CJUMP and JUMP operators
to execute the CJUMP and JUMP operations. In this way, the
scheduler is allowed to generate an unrestricted multi-way branch
schedule. The conditional branch representation introduced in
Section 3 only has two branches, namely the true and the false
branch. Multi-way branches are realized by scheduling several
mutually non-exclusive CJUMP operations on the same control
step (c-step). In general, when n mutually non-exclusive condi-
tional branches are scheduled on the same c-step, we can have
at most a 2n-way branch in the schedule. Scheduling parallel
conditional branches is useful to maximize resource sharing and
minimize the schedule length. The delay slot of the CJUMP is
the number of pipelines in the FSM controller minus one. The
CJUMP operations will always be a delayed-branch. The CJUMP
and JUMP operations will not be in conflict with other operations.

Hardwired microcoded controller. This type of controller con-
tains a dedicated logic block to test on the conditions and generate
the target jump addresses. Since this logic block will be synthe-
sized only after the CDFG is scheduled, we can again allocate
an unlimited number of CJUMP and JUMP operators. However,
similar to the case of FSM controller architectures, we can play
with the number of branch operators to make area/time tradeoffs.

The microcoded controller in most cases is a pipelined archi-
tecture. We can easily model the delay slot [4] of the CJUMP

operations by putting a weight on the weak control dependencies
that exist between a CJUMP operations and all operations in the
conditional branch started by the CJUMP operation. For example,
when we have a delay slot of 1, the weight of the weak control
dependency is set to 2, which means that the dependency’s tar-
get operation is only executed conditionally with respect to the
given condition when it is scheduled 2 c-steps after CJUMP is
scheduled. Other operations may or may not be scheduled in the
delay slot, depending on whether we have a delayed-branch [4]
architecture or not. Delayed-branch is useful in order to reduce
the penalty of control hazards. Together with speculative schedul-
ing of operations, the penalty of control hazard is more or less
minimized.

Programmable microcoded controller. Programmable proces-
sors usually contain conditional branch instructions(for example:
branch if zero) in their instruction set. The CJUMP operations
will eventually be mapped into one of these control flow instruc-
tions available in the instruction set of the programmable processor
depending on the condition flag that the CJUMP operation is eval-
uating.

By limiting the number of CJUMP and JUMP operators to
execute the CJUMP and JUMP operations, we can model a pro-
grammable controller architecture. In most DSP processors and
ASIPs, only 2-way conditional branch and unconditional branch
instructions are available. We can model this by allocating only
one CJUMP operator. The number of parallel instruction streams
that can be issued by the processor is defined by its instruction set.
In some high performance processors, branch operations (CJUMP,
JUMP) can be put in the same instruction with other data opera-
tions. Some processors support fall through m-way conditional
branches. In the fall-through m-way conditional branch, m � 1
branch target addresses are put in the instruction word. To model
the fall throughm-way conditional branch,m� 1 branch opera-
tors are allocated. In addition, the constraint is imposed that only
the CJUMP operations belonging to the same nested conditional
branch can be scheduled on the same c-step.

The controller of the ADSP-2100 from Analog Devices can be
categorized in this class of controllers. The CJUMP operation has
no delay slot which means that no penalty is incurred by executing
a CJUMP operation. The CJUMP and JUMP operations can not
be executed in parallel with other operations. It allows only 2-
way conditional branch which means only one CJUMP operator
is allocated.

Programmable macrocodedcontroller. This type of controller
is mainly present in commercial DSP processors or cores. The
instructions can take more than one cycle to execute in the data
path. In this case, structural hazards can be present. Structural
hazardexists when two instructions want to use the same execution
unit. We are currently working on a model [5] which will be able
to capture structural hazards.

For example: the 2-way conditional branch instructions in the
TMS320C5x instruction set have 3 delay slots. They can not be
issued in parallel with other operations. The 2-way conditional
branch instructions of Motorola 96002 have no delay slot and can
not be issued with in parallel other operations.

Explicit modeling of the various controller architectures al-
lows the scheduler to generate a correct schedule for the under-
lying controller. The schedule which is achieved by assuming
a certain controller architecture may not be a valid schedule for
another controller architecture, not to mention the optimality of
the schedule.

5 Global scheduling and control generation
5.1 Global scheduling

The scheduler used in our system is a list-based scheduler. It is
not the intention of this paper to discuss the scheduling technique.
We will briefly point out some features that are present in our
scheduler.

� With the weak dependencies that are introduced, the sched-
uler is able to schedule an operation speculatively. The
execution condition of an operation is updated whenever a
weak dependency to that operation is violated.

� The list scheduling priorities of operations that violate the
weak dependencies are lowered such that they will not
compete too heavily for resources with other operations
which retain their execution condition.

� The priorities of two mutually exclusive operations that
utilize the same type of resource are increased by our list
scheduler. This is done to increase their chances to share
resources.

The controller architecture that is chosen not only imposes
constraints on the schedulerbut also affects the schedulingstrategy
in order to produce a better result. This will be demonstrated by the
following small example. Supposewe are given a CDFG as shown
in figure 2(a). We would like to map the CDFG into an architecture
with two general purpose ALUs which can perform comparison
and arithmetic operations. We will show three different schedules,
corresponding to three different controller architectures, each time
assuming the same data path composition.

The first controller architecture has 1 CJUMP and 1 JUMP op-
erator allocated (2-way branch controller). The CJUMP operation
is a delayed-branch and has a delay slot of 1. The second one is
the same as the first one except that 2 CJUMP operators are allo-
cated. The third one has unlimited CJUMP and JUMP operators
allocated and has no delay slot for the CJUMP operation (m-way
branch controller). In all three controllers, the CJUMP and JUMP
operations can be scheduled in parallel with the addition and sub-
traction operations. The CJUMP and JUMP operations however
can not be scheduled in the delay slot of a CJUMP operation in
the first 2 cases.

The scheduling results for all three cases are shown in figure
2. The scheduler has changed some execution condition of some
operations. These operations are shown shaded in figure 2. In
figure 2(a), the second CJUMP operation can not be scheduled on
cstep-2 because we have only 1 CJUMP operator allocated for the
controller. The two CJUMP operations can be scheduled in the
same cstep in figure 2(b) since we have two CJUMP operators
in the controller in the second case. The schedule can be further
compacted in figure 2(c) when there is no delay slot for the
CJUMP operations. The delay slots of the CJUMP operations are
filled with useful operations in the first two schedules. This small
example shows how a valid and efficient schedule can be produced
for different types of controller architectures by using the model
introduced in this paper. The rightmost schedule for the m-way
branch controller is not a valid one when we choose a controller
of type assumed in case 1 or 2. The schedule in figure 2(a) is also
a valid schedule for the other 2 types of controllers but clearly not
an efficient one.

5.2 Control generation

After scheduling, we can construct the state transition graph in
a Moore model. The state transition graph can then be mapped
into the chosen controller architecture. When the FSM is chosen
as the controller architecture, logic synthesis tools can be used to
map the state transition graph into PLA or multilevel logic. When

+ +

-

+ +

cjump

cjump

a b b

c d

c3

c1

c

+ +

cjump

a

c

a

c2

t f

t f
f

t

-

s1/cjump

s2/ +, cjump s3/ +, cjump

c1 c1

c3

s4/ + s5/+,cjump s6/-, + s7/-,+,cjump

s8/ + s9/ +, +

c3 c3 c3

c2c2c2c2

s10/ nop s11/ -

Figure 3: Optimized schedule and state transition graph .

a microcoded type of controller is chosen, address assignment is
done and the states in the state transition graph correspond to the
instruction words in the microprogram.

In some DSP algorithms where fixed sample rate is desired,
worst case schedule length is of interest. Fixed sample rate means
that we can introduce input samples at a fixed time interval which
will reduce the complexity of the interface logic. If fixed sam-
ple rate is indeed desired, all possible conditional paths must be
given the same length. Shorter execution paths due to conditional
branches are therefore padded with NOPs (no-operations), in or-
der to achieve a fixed schedule length. This also means that each
operation in the CDFG is mapped to one fixed c-step, regardless
of which conditional path is taken. In the sequel, we will assume
that all conditional paths must be given the same length.

The execution of two parallel conditional branchescan be over-
lapped. Overlapping execution of conditional branches incurs a
certain cost in the controller. The complexity of the controller is
proportional to the number of states and transitions in the state
transition graph.

Figure 3 is an example taken from [10]. It shows the schedule
of two parallel conditional branches and the corresponding state
transition graph. Since we require that all the execution paths
have equal length, shorter execution paths are padded with NOPs.
States which contain NOPs only are present in the state transi-
tion graph. This schedule executes the two conditional branches
in parallel to minimize the machine cycle count. It assumes a
FSM type of controller. The schedule shown in Figure 3 takes
5 c-steps to execute and needs 11 states in the state transition
graph. The schedule would require 6 c-steps and 11 states if the
two conditional branches are scheduled in sequence. This demon-
strates that some optimization can be done to reduce the number
of machine cycles and states when parallel conditional branches
are overlapped. The operations that are executed in each state are
shown after the state number.

In general, overlapping of parallel conditional branches results
in a certain degree of state duplication. When the CJUMP oper-
ation a has delay slot and only 2-way conditional or fall-through
m-way conditional branch is allowed, uncareful overlapping of
conditional branches can result in excessive amounts of code du-
plication. The scheduler tries to schedule operations that belong
to the same condition tree as closely to each other as possible. By
doing so, the code duplication is minimized.

6 Experiments
We have implemented the scheduler which uses the models de-
scribed in Section 3 in order to produce valid and efficient schedule
for different types of controllers.

We have tested the scheduling algorithm on real life design
examples. Table 1 shows the result of the schedule with different

+

_

JUMP

JUMP

T F

T
F

> 0

CJUMP

+

-

+ -

+ CJUMP

+

+

-

T

> 0

CJUMP

+

-

+ -

+

CJUMP +

+

_

JUMP

JUMP

T F

+

-

T

> 0

CJUMP

+

-

+ -

+

CJUMP +

+

_

JUMPJUMP

T F +

-

cstep

1

2

3

4

5

6

7

8

(a) (b) (c)

Figure 2: Schedules for different controller architectures.

design # nodes ctrl arch. method 1 method 2
c-s # sts # c-s # sts

test 30 FSM 12 20 11 16
2-way �c 16 45 14 21
m-way �c 15 26 12 20

ched 67 FSM 25 40 24 38
2-way �c 25 82 24 57
m-way �c 26 43 25 40

echo 160 FSM 43 60 40 53
2-way �c 44 73 45 68
m-way �c 43 60 40 51

Table 1: Experimental results

controller architectures. The three examples shown in Table 1
have a quite complex condition structure in the CDFG. The “test”
example contains 2 parallel conditional branches. One of them is
a nested conditional branch, while the other contains a loop struc-
ture. The “ched” example is a part of a GSM channel decoder
algorithm. It has a loop structure which contains 5 parallel con-
ditional branches and one of them is nested. The “echo” example
is a full echo canceler algorithm. The input to the scheduler is
a CDFG in which the functional unit and register assignment as
well as interconnect synthesis are already performed.

Method 1 in the table refers to the schedule where speculative
execution is not allowed while method 2 allows speculative exe-
cution. Both methods uses the combination of scheduling beyond
basic blocks and parallelization of conditional branches.

The following controller architectures are used. “FSM” refers
to a single non-pipelined FSM controller. “2-way �-coded” is
a microcoded controller with a pipeline delay of 3 and a delay
slot of 1 for CJUMP operations. Only one CJUMP operator is
allocated which means that only 2-way branches can be generated
in the schedule. However, the CJUMP and JUMP operations do
not conflict with other operations. Finally, “m-way �-coded" is
similar to “2-way �-coded”, except that an unlimited number of
CJUMP and JUMP operators are now allocated.

7 Conclusion
We have presented a scheduling model which can cope with the
restrictions imposed by a wide range of controller architecture
types. Scheduling operations independent of control dependen-
cies, parallel execution of conditional branches and optimization
of resource sharing are features present in our scheduling algo-
rithm. The scheduling model we introduce allows the scheduler
to produce a valid and efficient schedule for the chosen controller
architecture. This versatile scheduling model is an essential com-
ponent of a hardware/software codesign environment, where the
use and co-existence of different architecture targets (accelera-

tor data paths, various programmable processor cores) must be
explored.

Acknowledgments. The research described in this paper has
been carried out in the context of the ESPRIT 2260 (Sprite) project
of the European Union. The “ched” example has been worked out
in cooperation with Alcatel-Bell (Antwerp).

References
[1] Edward A.Lee. "Programmable dsp architectures, part i, ii". In

IEEE ASSP Magazine, October 1988.
[2] A. Fauth and A.Knoll. "Translating signal flowcharts into microcode

for custom digital signal processors". In ISCP 93, 1993.
[3] G. Goossens, I. Bolsens, B. Lin, F. Catthoor, "Design of heteroge-

neous ICs for mobile and personal communication systems", Pro-
ceedings IEEE International Conference on Computer-Aided Design
(ICCAD-94), San Jose (Calif., U.S.A.), November 1994.

[4] D. Patterson J. Hennessy. "Computer Architecture - A Qualitive
Approach". Morgan Kaufmann Publishers, 1990.

[5] J. Van Praet, G. Goossens, D. Lanneer, H. De Man. "Instruction
Set Definition and Instruction Selection for ASIPs." Seventh Inter-
national Symposium on High-Level Synthesis, Niagara-on-the-lake,
Ontario, Canada, May 1994.

[6] A. Kifli and et. al. "Flag/Condition Handling and Branch Assign-
ment for Large Microcoded Controllers" . In G. Saucier, editor,
Control dominated Synthesis From a Register Transfer Description.
Elsevier Science Publisher, 1992.

[7] S.Z. Lin, H.T. Hwang, and Y.C. Hsu. "Efficient Microcode Arrange-
ment and Controller Synthesis for Application Specific Integrated
Circuits". In Proc. Int. Conf. on Comp. Aided Design, pages 38–43,
1991.

[8] F. Poirot and G. Saucier. "Controller Synthesis in the ASYL Sys-
tem". In North Holland, editor, International Workshop on Logic
and Architecture Synthesis for Silicon Compilers, 1989.

[9] Minjoong Rim and Rajiv Jain. "Representing conditional branches
for high-level synthesis applications". In Proc. 29th Design Au-
tomation Conference, pages 106–111, 1992.

[10] K. Wakabayashi and H. Tanaka. "Global scheduling independent
of control dependencies based on condition vectors". Proc. 29th
Design Automation Conference, pages 112–115, 1992.

[11] J. Zegers, P. Six, J. Rabaey, and H. De Man. "CGE: Automatic Gen-
eration of Controllers in the CATHEDRAL-II Silicon Compiler".
In Proc. European Design Automation Conference, pages 617–621,
March 1990.

	ED&TC95
	Front Matter
	Table of Contents
	Session Index
	Author Index

