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Abstract

Despite the fact that retiming circuits has a large po-
tential (especially in automatically synthesized circuits
from higher-level descriptions) it has not been widely
included in the current design methodologies. One of
the main problems is �nding an equivalent initial state
for the retimed logic. In this paper we introduce a new
reverse retiming algorithm which will �nd a retiming
for a given cycle time, if one exists. This new algo-
rithm minimizes the e�ort required to �nd equivalent
initial states and reduces the chance that the network
needs to be modi�ed to �nd an equivalent initial state.
This algorithm is the kernel of a new e�cient retiming
method, which searches for optimal retimings preserv-
ing the initial state condition.

1 Introduction

Retiming is a transformation to relocate the registers
in sequential circuits. It has been shown [6] that (under
certain restrictions) this transformation preserves the
functionality of the design. Retiming may be applied
for several optimization goals e.g. minimizing the cycle
time, minimizing the area, minimizing the number of
registers or improving testability.
An example of retiming a circuit is shown in �gure 1.a).
The initial circuit has three registers (r1; r2 and r3 and
a maximumcombinatorial delay of three units through
gates g2, g3 and g4. (Assuming unit delay model, no
fan-in fan out delays etc.). In order to reduce the cycle
time to two units and minimize the registers to two
we can retime gate g4. The two registers r2 and r3
at its outputs are moved to the input and replaced by
register r4. The retimed circuit is shown in �gure 1.b).
A retiming can be described by an integer function L()
(called the lag) of all nodes in the network. This func-
tion represents the number of registers that are to be
moved from each output of node v to each of its inputs.
In �gure 1, one register is removed from each output
and one register is inserted in the input. Therefore,
the lag of gate g4 equals one, L(g4) = 1. Note that a
positive lag causes registers to move backward in the
network while a negative lag moves them forward. The
direction forward is de�ned as the direction in which
the data 
ows through the nets.
The initial state of a circuit is determines by the ini-
tial values of the registers in the circuit. For the cases
where the initial state of the sequential circuit is mean-
ingful, it is necessary to �nd an equivalent initial state
for the retimed circuit. It can easily be shown that it
is not always possible to �nd the initial state of the
retimed circuit. For example, let us assume that in

�gure 1 the initial value of r2 is 1 and of r3 is 0. The
retimed circuit cannot be initialized to have the same
behavior as the original circuit. One cannot �nd an
initial value for the new register r4.
A retimed circuit has an initial state equivalent to an
initial state in the original circuit if for any input se-
quence applied to both circuits (one circuit started in
the initial state, the other in the equivalent one) the
same sequence of outputs is produced.
One way to assure that a corresponding initial state
can be found in the retimed network is to only move
registers forward in the network [3]. Let us de�ne this
as simple forward retiming. In this case the initial
state can be propagated to the new register positions
by a simple simulation (i.e. forward implication) of the
values in the network.
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Figure 1: a) Original circuit. b) Retimed circuit

Forward retiming through the primary outputs/ pri-
mary inputs (OIs) removes a register from each path
to a primary output and inserts one on each path from
a primary input [8]. Notice that the number of regis-
ters on each path remains unchanged before and after
such a retiming [7]. In the simple forward retiming, re-
timing through OIs is not allowed, since one will loose
track of the initial values. As shown is �gure 2 this
imposes a signi�cant restriction on the retiming and
prohibits various retimings from being found. The cir-
cuit in �gure 2 cannot be retimed to obtain a delay of
two units by allowing only simple forward moves and
not allowing moves through the outputs and inputs.
Eliminating the constraint on retiming through the
OIs makes forward retiming a general retiming. Every
backward retiming can be obtained by applying a se-
quence of forward retimings through OIs.



The basic problem is to determine the initial values for
the registers inserted in the primary input paths.
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Figure 2: No simple forward retiming

For example, the register r1 in �gure 2 can be du-
plicated. One of the duplicates is directly connected
to the last input of gate g4, the other directly feeds
the primary output. Removing the register from the
output and inserting two new registers at the inputs a
and b produces a valid retiming. But we can not easily
calculate the initial values for these new registers by
forward implication.
Touati [9] describes a method which �nds a sequence
of input values to be inserted at the inputs to �nd
the appropriate initial values of the registers in the
retimed circuit. Given a particular legal retiming one
can derive the number of forward moves through the
OIs to obtain this retiming. Let us call this number of
forward OI moves k. A sequence of k input values is
needed, which prescribes the values inserted in each OI
move. This sequence can be obtained by inspecting the
state machine extracted from the circuit. In this state
machine a sequence of k transitions must be found
which will bring the machine into the initial state. Any
state may be the starting point of such a sequence.
Each time the inputs are retimed (i.e. registers are
inserted in the input paths), they are initialized with
the values from this input sequence.
Let us apply this method to the example of �gure 2.
The state machine for this network has two states. As-
sume that we want to �nd an initial state for the re-
timing of gate g5 by one, L(g5) = +1, by repeated
forward moves. This requires one forward OI move.
Therefore, the length of the input sequence to initial-
ize the new registers at the inputs equals one, k = 1. In
the partial state diagram of �gure 2 we have to search
for a sequence of one transition that leads to state '0'.
The transition (a = 0; b = 0) brings us from state '1'
to state '0' and can be used. When the register is
removed from the output out, two new registers are
inserted at the inputs a and b (both initialized with a
0). These new registers can be moved forward through
gates g1; :::; g4 by simple forward moves to their �nal
positions at the inputs of g5.
To be able to execute this method to �nd an initializa-
tion, the state machine is required to have a sequence
of state transitions of length k leading to the initial
state. If this is not the case the circuit must be modi-
�ed to include such a sequence.
However, another retiming may exist which enables
one to �nd an initial state without modi�cations to
the network. The major contribution of this work is
that we explore the existence of such retimings. The

reverse retiming algorithm is introduced, which has the
same complexity as that of the best known retiming
algorithm [6]. The algorithm�nds a retiming such that
the number of registers that move backward through a
single combinational block is the minimal between all
possible retimings. Especially, whenever there exists a
simple forward retiming, the modi�ed algorithm will
�nd it. No published methods known to the authors
do explore the existence of such alternative retimings.
The rest of this paper is organized as follows. Section 2
describes our reverse retiming algorithm. Section 3 ex-
plains the implication and justi�cation procedure used
in BooleDozer to calculate the initial states. Section 4
presents the retiming method which preserves the ini-
tial state condition. Finally, section 5 shows that the
results of our experiments are in accordance with the
claims on the retiming algorithm.

2 Reverse Retiming
In a retiming, backward moves should be avoided as
much as possible. The basic di�culty with backward
moves is the existence of a mapping for the initial state.
Finding this mapping is known as an NP-hard prob-
lem, as it is similar to the phase of justi�cation in the
process of automatic test pattern generation [5]. So
whenever possible, a good criteria is to minimize the
number of registers that move backward through each
functional (combinational) block.
A circuit graph G = (V;E;w; d) consists of a directed
graph (V;E) with non-negative integer weights w(e)
on the edges and non-negative real delays d(v) on the
vertices. The weights on the edges model the number
of registers along the edge, the delays of the vertices
model the propagation delay of the nodes. Given a
path p = [v0; :::; vk], its weight is de�ned as w(p) =
P

k�1

i=0 w(ei), where ei is the edge from vi to vi+1. The

delay is de�ned as d(p) =
P

k

i=0 d(vi). The minimum
feasible clock period of G, �(G) is de�ned as: �(G) =
maxfd(p)jw(p) = 0g.
A circuit graph can be derived from an actual circuit
C(B;R;N ) by replacing the combinational blocks B
by nodes V , the nets N by edges E between the nodes
and the registers R by weights w on these edges [6]. In
the graph model a special node with zero delay called
the host and denoted by h is added. For every primary
output of the network an edge with zero weight is in-
serted from the output to the host. For every primary
input an edge is added from the host to the input.
Let L(v) be the lag function for all nodes v 2 V , e(u; v)
an edge from u to v, w(e) the weight of the edges
before retiming and wL(e) the weights of the edges
after retiming. wL can be determined from w and the
lags by: wL(e) = w(e) + L(v) � L(u).
The normalized lag L�(v) of a node v is de�ned as the
di�erence between the lag of the node and the lag of
the host, i.e. L�(v) = L(v) � L(h). Since the retimed
weight wL(e) is only dependent on the di�erence of
the lags between two nodes and not on the absolute
value of the lags itself, retiming with the normalized
lags will result in the same circuit as retiming with the
original lags.
For each node v a required time tr(v) is de�ned. For
the simplicity of the discussion, we assume all primary



Algorithm 1. reverse retiming(G;c)

foreach v 2 V do

L(v) = 0;
k = 1;
do

Compute retimed circuit GL;
Compute tr for each vertex v 2 V ;
M = fvjtr < 0g
foreach v 2M do

L(v) = L(v)� 1;
k = k + 1;

while k � jV j and M 6= ;;

outputs and registers to be synchronized to the clock
and their required time is equal to the required cycle
time c. For any other node v the required time is
de�ned as the di�erence between the smallest required
time for its successors and the propagation delay of the
node itself: tr(v) = min(v;u)2E(tr(u)) � d(v). Notice,
the generality of our reverse retiming algorithm holds
also under other delay models and di�erent required
times for the outputs and registers.
The reverse retiming algorithm, described in algorithm
1, �rst sets the lags of all nodes to zero. In the outer
loop it retimes the circuit according to the lags L and
recomputes the set M of nodes whose outputs are not
in time to meet a required time. The lags of these
nodes are decreased by one. If none of the nodes vio-
lates a constraint the iteration can be stopped. If jV j
iterations have been tried no solution which meets the
requirements is possible for G..
All claims for the retiming algorithms (FEAS in [6]
and retime in [8]) hold. In addition reverse retiming
�nds the retiming with the minimal normalized lag, as
expressed in the following theorem:

Theorem 1 Let G = (V;E;w; d) be a circuit and c a
required clock cycle. Let L(v); v 2 V denote the retim-
ing computed by the algorithm reverse retiming(G; c).
Then:

1. The algorithm reverse retiming(G; c) �nds a re-
timing L such that �(GL) � c, if such a retiming
exists,

2. if the graph G is strongly connected, and if
�(GL) � c, then for every retiming L0 for which
�(G0

L
) � c holds:

max
v2V

L(v) � L(h) � max
v2V

L0(v) � L0(h)

A complete proof for this theorem is described in [4].
This proof relies heavily on the proof of the FEAS
algorithm [6] and a variant of the Bellman-Ford algo-
rithm. Result 1 from the above theorem, shows that a
retiming, for a given cycle time, will be found if one ex-
ists, similar to the FEAS algorithm. Result 2 expresses
that the retiming which is found is the one with the
smallest maximum normalized lag value.
Consider the example given in �gure 3.a). The delay
of the circuit is three (through the gates g7, g8 and
g9). The goal for retiming is to obtain a circuit with
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Figure 3: a) Circuit b) Circuit after FEAS c) Circuit
after reversed retiming

cycle time one. If the original retiming [6] is applied
to this circuit the lag values displayed above the gates
are calculated. Retiming using these values results in
the circuit in �gure 3.b). Assume that the initial state
of the circuit requires all registers to be initialized to
zero. No initial value can be calculated for the registers
resulting from the merge of r6 and r8 (r6=80). Touati's
method can be used to modify the network such that
these registers can be initialized.
No simple forward retiming exists for this example.
However, there exists another retiming which requires
no modi�cation of the circuit and enables one to �nd
an initial state. This is the retiming as found by our
reverse retiming algorithm. The lags for the reverse
retiming are displayed below the gates. Retiming with
these lags gives the circuit in 3.c). The initial state has
a one in r30 and r60 and a zero in all other registers.
This example shows that there is a whole class of
circuits which does not adhere to the reachable ini-
tial state condition, but for which a retiming with an
equivalent initial state exists. For this class of circuits



Algorithm 2. Update Registers(C(B;R;N);L())

do

I = J = ;;
foreach r 2 R do

foreach b 2 fbj9(r; b) 2 Ng do

if (L(b) < 0) then
Build the forward cone FC from r;
Stop and insert a register when you

reach a node u such that L(u) � 0
or reach a register pr;

Insert new register nr with value
don't care, before u or pr;

I = I + r;
foreach u 2 FC do

L(u) = L(u) + 1;
endforeach

endif

endforeach

foreach b 2 fbj9(b; r) 2 N do

if (L(b) > 0) then
Build the backward cone BC from r;
Stop and insert a register when you

reach a node u such that L(u) � 0
or reach a register pr;

Insert new register nr with value
don't care, after u or pr;

J = J + r;
foreach u 2 BC do

L(u) = L(u)� 1;
endforeach

endif

endforeach

endforeach

if (I [ J = ;) then return (success);
Forward implication for all values of registers in I

and justi�cation of all values in J using justify [5];
if (justify fails) then

return (failure);
else

Remove all registers reg 2 I [ J from C;
endif

while TRUE;

no additional logic has to be added if the proper re-
timing can be found. The reverse retiming algorithm
is likely to �nd such a retiming and thus requires no
logic to be added.

3 Initial State Calculation
Given a retiming for a circuit graph G(V;E;w; d),
a retiming function can be de�ned for the circuit
C(B;R;N ). By construction there is a one-to-one cor-
respondence between a node v 2 V and a combina-
tional block b 2 B. The lag of a block b is de�ned
equal to the lag of the corresponding node v. A re-
timed circuit C 0 for a lag function L() is constructed
using the Update Registers algorithm described in al-
gorithm 2. This algorithm simultaneously calculates
the new positions and the initial values for the regis-
ters, such that the initial state of the retimed circuit
is equivalent to the initial state of the original circuit.
All registers in the original circuit C have contents
zero, one or don't care, as the initial state. The outer
loop of the Update Registers algorithm checks all reg-
isters in the design. For each register r we check

whether the lag of one of its outputs is negative. If
true, insert this register r in the implication list I. In
�gure 4 register r1 is inserted in list I. Also, traverse
the design forward (towards the primary outputs). If
you reach a node u which was not been visited in this
iteration, and its lag value is negative then increment
its lag by one, and keep traversing the design in the
forward direction. Whenever you reach node u with
lag L(u) >= 0 or you reach a register pr, introduce
a new register nr before u or pr and stop traversing
the design in this direction. In �gure 4, g1 its lag is
incremented. The forward cone stops at gate g2, so a
new register nr1 is inserted in front of g2.
In a similar way, for each register in the design it is
checked if one of its inputs has a positive lag. If so,
traverse the design backward, decrement the lags of the
appropriate nodes, insert new registers and update the
justi�cation list J . In our example (�gure 4), J will
contain register r2 and two new registers nr2 and nr3
are inserted before gate g2. All new registers inserted
in the circuit have a don't care initial value.
Only if I and/or J are non-empty, retimingmoves have
been done. For all values of registers in I a forward
implication procedure is called. For all values of reg-
isters in J , a backward justi�cation is used. Both of
these procedures are described in [5]. If justi�cation
fails then there is no possible equivalent retimed initial
state. If it succeeds, the appropriate register values are
updated. All registers in the lists I and J (they have
been replaced, by new registers) can be deleted, and
the Update Registers algorithm proceeds to the next
iteration. The number of iterations required for a suc-
cessful computation of the retimed equivalent initial
state is the maximum absolute value of the normal-
ized lags.
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Figure 4: Register update procedure

4 Retiming preserving initial states.
Suppose that during the update of all registers, one
fails in the justi�cation process, e.g. the backtracing
computation for a block b causes a con
ict. In such
a case, it may be helpful to bound the lag of node b,
such that the backtracing computation that causes the
justi�cation to fail will not be necessary.
For every node b, that could not be backtraced during
the i-th iteration of the Update Registers algorithm,
the lag is bounded by i, L(b) < i. To accomplish
this, the circuit graph G must be modi�ed. An edge
with weight i � 1 is added between the node v (the
counterpart of b in G) and the host h. Let us call this
circuit graph Gm.
In [4] we prove that modifying the graph G to the
graph Gm by a construction as sketched above does



Table 1: Improvement from R-FEAS over FEAS
Original FEAS Reverse Retiming

Circuit CT Reg RCT L� Reg L� Reg Runtime

s344 28 15 19 1 21 0 27 1
s349 28 15 19 1 21 0 28 1
s382 17 21 12 1 39 0 33 1
s400 17 21 12 1 41 0 34 1
s444 20 21 13 1 44 0 35 1
s526 14 21 11 1 33 0 42 1
s526n 14 21 11 1 28 0 33 1
s953 27 29 23 1 39 0 33 2
s38417 65 1465 49 1 1477 0 1504 71

CT: cycle time, Reg: number of registers
RCT : retimed cycle time, L�: maximum normalized lag

Runtime : runtime in seconds

not in
uence the optimality of the result of the reverse
retiming algorithm. In other words, if a retiming is
found for the circuit graph Gm for a cycle time c, this
is also a valid retiming for the original circuit G with
a cycle time c. In addition, the normalized lags of all
those unjusti�able nodes are less then their bounds.
Our method does not require the implicit enumera-
tion of all reachable states, a process which in itself
may be very expensive. The most expensive part in
our method is the justi�cation step. These steps are
applied locally to a small subset of the network.

5 Some experiments

The retiming method as described in the previous sec-
tions is implemented within the BooleDozer [1] logic
synthesis system. We applied the reverse retiming
algorithm to 33 sequential multi-level circuits in the
MCNC (EDIF) benchmark set [2]. A unit delay model
is assumed. Each gate has a propagation delay of one,
no delays on the registers and no delays due to fan-in or
fan-out were used. For 14 of those circuits (s27, s208,
s298, s386, s420, s510, s641, s713, s820, s832, s1196,
s1488,s1494, s35932) retiming could not improve their
cycle time. For the remaining 19 designs, retiming re-
duced their cycle time up to 40%.
Our main interest in these experiments is the compari-
son between the retimed circuit obtained by the FEAS
algorithm [6] vs. the one obtained by the reverse retim-
ing algorithm. Notice that the minimal feasible cycle
time achieved by both algorithms is the same, and the
di�erence is the retiming function which re
ects the
feasibility to �nd an equivalent initial state for the re-
timed design. For ten designs (s208.1, s420.1, s838,
s838.1, s1238, s1423, s5378, s9234.1, s15850, s38584.1)
the maximal value of the normalized lag produced by
both algorithms was the same being 0 or +1. In four
circuits reverse retiming was not able to �nd a solution
with L�=0, because it simply does not exist. In most
cases this is due to a path from a primary input to a
register which is too long to meet the optimal cycle
time. The only way to solve this is moving registers
forward through the OIs or moving registers backward.
For the remaining nine circuits a di�erence is found
between reverse retiming and FEAS. For these nine
examples, listed in table 1, the retiming function gen-
erated by FEAS has maximumnormalized lag value of
+1. Using the technique of [9], �nding an initial state
requires state enumeration and may require the addi-

tion of logic. The better retiming function achieved
by reverse retiming has a maximum normalized lag of
0. Only forward implication moves are necessary to
�nd the equivalent initial state. No expensive state
enumeration nor the addition of logic is required.
For all examples, both FEAS and RFEAS (since they
have the same complexity and a similar implementa-
tion) run in under 71 seconds on an IBM RS6000,
model 350.

6 Conclusions
The main contributions of this paper can be summa-
rized as follows. The new reverse retiming algorithm
will �nd a retiming under a cycle time constraint which
requires only forward moves if such a retiming exists.
If no such retiming exists it will produce a retiming
which requires a minimal number of justi�cation steps
to �nd an equivalent initial state. Reverse retiming
has the same complexity as the best-known retiming
algorithms. In 9 of the MCNC benchmarks reverse re-
timing produced circuits with a maximum normalized
lag of 0 while FEAS produced a maximumnormalized
lag of 1.
Furthermore, a new procedure to update the network
and �nd the equivalent initial state is described. This
procedure does not require the implicit enumeration of
the state machine to �nd a sequence of initial values.
If the procedure fails, an iterative method is provided
to produce alternative retimings. Earlier methods [9]
required the addition of logic to initialize retimed cir-
cuits for which the initial state is unreachable. This
paper shows that a class of circuits exists for which
reverse retiming will �nd a retiming without any mod-
i�cation of the logic.
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