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Abstract

This paper presents a new methodology for RAM test-
ing based on the PS(n; k) q-ary fault model (q = 2w)
which includes most classical fault models for SRAMs
and DRAMs. According to this fault model, the contents
of any w-bit memory word of a memory with n words, or
ability to change this contents, is influenced by the contents
of any other k � 1 words of the memory. The proposed
methodology uses a pseudo-exhaustive technique based
on Reed-Solomon codes, which can be efficiently applied
to a word-oriented RAMs, assuming small values of k.
The methodology ensures the detection of any number of
disjoint (not linked) k-coupling faults, whereby the involved
k words may be located anywhere in the memory; i.e., no
assumptions have to be made on the physical topology of
the cells in the memory cell array. Because of the systematic
structure of the proposed tests, they are well suited for BIST
implementations.

Key words: Memory testing, pattern sensitive faults,
pseudo-exhaustive memory testing, random access mem-
ory.

1 Introduction

The increasing densities in memory technology has resulted
in a dramatically increasing test cost [1,2] caused by the in-
creased number of cells to be tested, as well as the more com-
plex fault models. The latter applies especially to DRAMs,
where in addition to the traditional faults for SRAM chips
[3,4], neighborhood pattern sensitive faults ’NPSFs’ [5-8]
have to be considered.

The well-known tests for NPSFs usually require that the
physical topology of the cells in the memory cell array is
known, while they assume that the memory words usually
consist of a single bit. In addition, tests for NPSFs do

not detect many of the classical faults which also apply to
SRAMs [3]; e.g., address decoder faults ’AFs’, data reten-
tion faults ’DRFs’ [9], stuck-open faults ’SOFs’ [9], and
coupling faults. Pseudo-random memory tests [10,11] do
not require knowledge of the physical topology of the mem-
ory cell array and can be applied to memories with w-bit
words (w � 2); however, they have the disadvantage that
their fault coverage is probabilistic. Tests for k-coupling
faults (for k = 4 and 5) have been proposed in [16,17,18];
however, those tests are restricted to memories with 1-bit
words and are based on combinational, rather than analyti-
cal, techniques. The capability of a test to cope with memo-
ries with w-bit words (w � 2) is of increasing importance;
whereas early memory chips have a n � 1 (where n is the
number of words) organization; currently, many chips have
a n � 4 organization while n � 8 chips are expected to reach
high volume production soon [13].

This paper proposes a new fault model which has the fol-
lowing properties:

1. It is modular in terms of k, the number of words in-
volved in the fault.

2. Words are w-bits (w � 1) wide.
3. No assumptions have to be made on the physical loca-

tion of the k words.
4. It includes many of the traditional SRAM and DRAM

faults.

The organization of this paper is as follows: Section 2
introduces the fault model, Section 3 describes the test ap-
proach which is based on pseudo-exhaustive testing, Section
4 gives the mathematical background for the proposed tests,
Section 5 describes the pseudo-exhaustive tests, and Section
6 concludes this paper.

2 Fault model

This section describes the new fault model for pseudo-
exhaustive testing of DRAMs. First, the fault models used



for testing SRAMs, together with an explanation concern-
ing their applicability to DRAMs, will be presented. Next,
the classical DRAM fault models are presented. And last,
the new PS(n; k) q-ary fault model will be introduced; it
will be shown which of the classical SRAM and DRAM fault
models it covers; for those faults, considered important for
DRAMs, which are not covered by the new fault model a
separate set of tests will be proposed.

2.1 Classical SRAM fault models

The classical SRAM faults which have been found to be im-
portant [4,9] are listed below; a motivation is given when
they do not appy to DRAMs.

� Stuck-at fault ’SAF’.
� Stuck-open fault ’SOF’ [9]

SRAMs need special test provisions to cope with SOFs
when the sense amplifiers are not transparent to SOFs.
In case of DRAMs this problem does not occur because
the differential sense amplifier has only one input from
the cell being read such that SOFs behave as SAFs.

� Transition faults ’TFs’
These faults cannot occur in the memory cell array of
the DRAM because the cells are not implemented as bi-
stable elements.

� Coupling faults ’CFs’
The CFs of interest are the idempotent CF ’CFid” and
the state CF ’CFst’ [9].

� Data retention faults ’DRFs’ [9]
The SRAM type of DRFs cannot occur in DRAMs be-
cause of the absense of pull-updevices. However, leak-
age currents may cause loss of information. A refresh
test, using a checkerboard pattern, has to be used for
this [3].

� Address decoder faults ’AFs’.

Considering the above, the SRAM faults which also ap-
ply to DRAMs are the SAFs, the CFs and the AFs.

2.2 Classical DRAM faults

Pattern sensitive faults ’PSFs’ [5-8,3] are considered typical
for DRAMs. They involve a group of k cells whereby k� 1
cells influence a given target cell, called the base cell. In or-
der to keep the test time within acceptable limits for larger
chips, the assumption is made that the k� 1 cells, which in-
fluence the base cell, physically surround the base cell; this
simplifies the PSF model to a neighborhood PSF ’NPSF’
model; the k � 1 cells influencing the base cell are called
the deleted neighborhood cells. This is a realistic simplifi-
cation because of the underlying assumption that PSFs are
caused by leakage currents which can only occur between

cells in a physical neighborhood. The disadvantage of the
NPSF model is that the physical topology of the cells in the
memory cell array has to be known; this is not always so: the
use of spare rows and columns already violates this, even for
tests performed by the manufacturer; the user usually does
not have access to the physical topology which, in addition,
may differ between functionallyequivalent parts of different
manufacturers.

The classical NPSFs usually considered are [3]:

� Active NPSF ’ANPSF’ [8]
The base cell changes its contents due to a change in the
k � 1 deleted neighborhood patterns (i.e. the value of
the k � 1 cells).

� Passive NPSF ’PNPSF’ [12]
The content of the base cell cannot be changed due to a
certain deleted neighborhood pattern.

� Static NPSF ’SNPSF’ [8]
The base cell is forced to a certain state due to a certain
deleted neighborhood pattern.

2.3 The PS(n; k) q-ary fault model

Given a memory withnwords consisting ofw-bits per word,
whereby q is defined as q = 2w. Then the following fault
definitions can be given.

1. Stuck-at q-ary faults ’SAFq’
A permanent stuck-at q-ary fault reduces the number
of faulty memory word states. A faulty word i of the
memory may contain only one q-ary digit, or a subset S
of all possible q-ary digits 0; 1; 2; : : :; q� 1. This fault
model covers the classical SAFs.

2. Transition q-ary faults ’TFq’
A memory word i in the state Wi(t) fails to undergo a
Wi(t) toWi(t+1) transition whileWi(t) 6=Wi(t+1)
(Wi(t) andWi(t+1) 2 f0; 1; 2; : : :; q�1g) andWi(t+
1) is to be written in the i-th memory word; however,
both states are possible for the i-th memory word, for
instance at power-on time. This fault model covers the
classical TFs.

3. Coupling q-ary faults ’CFq’
A coupling q-ary fault is present from a memory word i
to a word j if, when the words contain a particular pair
of q-ary valuesWi(t) andWj(t), and Wi(t+1) is writ-
ten into word i, then word j, as well as word i, change
state. This fault model covers the classical CFids and
CFsts.

4. Pattern sensitive q-ary faults ’PSFq’
The base word changes its contents, or cannot be
changed, due to a pattern, or a change, in the k�1 other
words. This definition covers the classical NPSFs of
Section 2.2.



The above 4 fault models are covered by thePS(n; k) q-ary
fault model, which has the following properties:

1. k w-bit words, whereby each word can be in q (q = 2w)
states, are involved in the fault model.

2. the base word will take on all 2w states and each cell
in the base word will make an up and a down transition
for each of 2w�1 states of the w � 1 other cells in the
word.

3. each of the k � 1 non-base words will take on all 2w

states for each state or transition of the base word; and
for any one of the 2(k�1)w internal states of the k � 1
non-base cells, all 2w transitions in the base cell may
occur.

The above fault model will detect the 4 q-ary faults:

1. SAFq and TFq faults will be detected because of
property 1, for k � 1.

2. CFq faults will be detected because of property 1 and
2, for k � 2.

3. PSFq faults will be detected because of properties 1
through 3, and k = k.

3 Pseudo-exhaustive memory testing

Pseudo-exhaustive testing [14] of combinational devices has
several attractive features. In addition to the fact that test
patterns can be generated quite easily, the process and its
fault coverage are basically dependent neither on the fault
model assumed nor on its specific circuit under test.

Let us give some basic definitions of pseudo-exhaustive
memory testing.

Definition 3.1 A background for a (w � n) mem-
ory (w-bits per word, n words) is a vector B =
(B(0)

; B
(1)
; : : : ; B

(n�1)), where B
(j) 2 GF (2w),

j 2 f0; 1; 2; : : : ; n � 1g and GF (2w) is the field of
w-dimensional binary vectors.2

Definition 3.2 A set of k-pseudo-exhaustive backgrounds is
a matrix B(n; k; w), where rows are backgrounds Bi =

(B(0)

i ; B
(1)

i ; : : : ; B
(n�1)

i ), where B
(j)

i 2 GF (2w), i =
0; 1; : : : ; Tk � 1, and j = 0; 1; : : : ; n � 1, such that in the
matrix B(n; k; w) all qk k-digit q-ary (q = 2w) vectors
(y0; y1; : : : ; yk�1) (where yl 2 GF (2w), and l = 0; 1; : : :;
k � 1) appear at least once in any k columns.2

By the definition of k-pseudo-exhaustive backgrounds
B(n; k; w) we have the lower bound on the number Tk =
Tk(n) of backgrounds Tk(n) � q

k = 2wk.

Techniques for the construction of k-pseudo-exhaustive
data backgrounds B(n; k; w) and estimations on minimal
numbers of pseudo-exhaustive patterns can be found for the
binary case (w = 1) in [14]. Techniques for the construc-
tion of k-pseudo-exhaustive data backgrounds B(n; k; w)
and estimations on their minimal sizes for the q-ary case
(w > 1) are not known. We will present in this paper opti-
mal solutions, satisfying to the lower bound, of this problem
for small k.

As a systematic approach for generating k-pseudo-
exhaustive data backgrounds we propose to use Reed-
Solomon ’RS’ codes over GF (2w) [15].

The extended (q + 1; q + 1 � k; k + 1) RS code over
GF (2w) is defined by the check matrix [15]:

H =

�
�
�
�
�
�
�
�
�
�

1 0 1 1 1 : : : 1
0 0 1 � �

2
: : : �

q�2

0 0 1 �
2

�
4

: : : �
2(q�2)

: : : : : : : : : : : : : : : : : : : : :

0 1 1 �
k�1

�
2(k�1)

: : : �
(k�1)(q�2)

�
�
�
�
�
�
�
�
�
�

(1)
where � is primitive in GF (2w) (�i 6= �

j for i 6= j 2

f0; 1; : : : ; q � 2g). Since any k columns of H are lin-
early independent overGF (q), the linear span of rows of H
will be an optimal k-pseudo-exhaustive backgroundB(2w+
1; k; w) with Tk = q

k = 2wk.

Example 3.1 Let q = 2w = 4 and GF (22) = f0; 1; �; �2g,
where� is a root of polynomial'(x) = x

2+x+1 (�3 = 1),
then the operations of addition and multiplication in the field
GF (22) are described by the following tables for which 0 =
00; 1 = 10; � = 01, �2 = 11, �3 = 1 = 10, �4 = � = 01.

Addition (+)
+ 0 1 � �

2

0 0 1 � �
2

1 1 0 �
2

�

� � �
2 0 1

�
2

�
2

� 1 0

Multiplication (�)
� 0 1 � �

2

0 0 0 0 0
1 0 1 � �

2

� 0 � �
2 1

�
2 0 �

2 1 �

For the construction of the optimal 2-pseudo-exhaustive
backgrounds over GF (22) we use the check matrix H.
Then, any background B = (B(0)

; B
(1)
; B

(2)
; B

(3)
; B

(4))
can be generated as

(v0; v1) �

�
�
�
�

1 0 1 1 1
0 1 1 � �

2

�
�
�
�
=

(v0; v1; v0 + v1; v0 + �v1; v0 + �
2
v1);

(2)

where v0; v1 2 GF (22).

For example, (�; �2)

�
�
�
�

1 0 1 1 1
0 1 1 � �

2

�
�
�
�

=

(�; �2; � + �
2
; � + �

3
; � + �

4) = (�; �2; 1; �2; 0)
or in the binary notation:



Table 1: 2-Pseudo-exhaustive backgroundsB(5; 2; 2)

i �i�1 v0(i) v1(i) B
(0)

i B
(1)

i B
(2)

i B
(3)

i B
(4)

i

� � 0 0 0 0 0 0 0
1 �0 1 0 1 0 1 1 1
2 �1 0 1 0 1 1 � �2

3 �2 � 1 � 1 �2 0 1
4 �3 � �2 � �2 1 �2 0
5 �4 1 1 1 1 0 �2 �

6 �5 � 0 � 0 � � �

7 �6 0 � 0 � � �2 1
8 �7 �2 � �2 � 1 0 �

9 �8 �2 1 �2 1 � 1 0
10 �9 � � � � 0 1 �2

11 �10 �2 0 �2 0 �2 �2 �2

12 �11 0 �2 0 �2 �2 1 �

13 �12 1 �2 1 �2 � 0 �2

14 �13 1 � 1 � �2 � 0
15 �14 �2 �2 �2 �2 0 � 1
16 �1 1 0 1 0 1 1 1

(01; 11)

�
�
�
�

10 00 10 10 10
00 10 10 01 11

�
�
�
�
= (01; 11; 10; 11;00)

(3)
As a result of multiplication of all vectors V =

(v0; v1) by H we have 2-pseudo-exhaustive data back-
groundsB(5; 2; 2) (see Table 1).

As we can see from Table 1 for any k = 2 q = 22-ary
words we have all q2 = (22)2 = 16 combinations of data in
these words.2

In the following sections we will describe test pro-
cedures based on k-pseudo-exhaustive data backgrounds
B0; B1; : : : ; Bqk�1, combined with the standard MATS+
test (to cover AFs) [4] for k = 1; 2 and 3.

4 Mathematical background

The following theorem can be used for construction of k-
pseudo-exhaustive backgrounds for any k and n � q � 1.

Theorem 4.1 Let q = 2w; � is primitive in GF (q) (�l 6=
�
j; l 6= j; l; j = 0; 1; 2; : : : ; q�2); � is primitive inGF (qk)

(�l 6= �
j ; l 6= j; l; j = 0; 1; 2; : : :; qk � 2); and

H =

�
�
�
�
�
�
�
�
�
�

1 1 1 : : : 1
1 � �

2
: : : �

q�2

1 �
2

�
4

: : : �
2(q�2)

: : : : : : : : : : : : : : :

1 �
k�1

�
2(k�1)

: : : �
(k�1)(q�2)

�
�
�
�
�
�
�
�
�
�

(4)

Given that

�
i�1 = (�i0 ; �

i1; : : : ; �
ik�1) 2 GF (qk); (5)

and B0 = (0; 0; : : : ; 0); Bi = (B
(0)

i ; B
(1)

i ; : : : ; B
(q�1)

i ) =

(�i0 ; �
i1; : : : ; �

ik�1)H (B
(j)

i 2 GF (q); i = 1; 2; : : :; qk);
then

1. For any j0 � j1 � : : : � jk�1 and any
Aj0 ; Aj1 ; : : : ; Ajk�1

2 GF (q) there exists i 2

f0; 1; : : : ; qk � 1g such that

B
(j0)

i = Aj0 ; B
(j1)

i = Aj1 ; : : : ; B
(jk�1)

i = Ajk�1
:

2. For any s 2 f0; 1; : : : ; q � 2g, j0 � j1 �

: : : � jk�3 (s 62 fj0; j1; : : : ; jk�3g) and any
Aj0 ; Aj1 ; : : :Ajk�3

; As; A
0

s 2 GF (q), except Aj0 =

Aj1 = : : : = Ajk�3
= As = A

0

s = 0, there exists
i 2 f1; 2; : : : ; qkg such that

B
(j0)

i = Aj0 ; B
(j1)

i = Aj1 ; : : : ; B
(jk�3)

i

= Ajk�3
; B

(s)

i = As and B
(js)

i+1 = A
0

s:(6)

2

Remark 4.1 Theorem 4.1 is valid for more general case
when for any subset J of fj0; j1; : : : ; jk�3g in (6) B(j)

i is

replaced by B(j)

i+1, j 2 J .2

Remark 4.2 Theorem 4.1 and Remark 4.1 are valid for k =
2 and n = q+1 when we use the check matrix H, below, of
the [q+1; q+1�k; k] MDS code [15] instead ofH defined
by( 4).2

H =

�
�
�
�
�
�
�
�
�
�

1 0 1 1 1 : : : 1
0 0 1 � �

2
: : : �

q�2

0 0 1 �
2

�
4

: : : �
2(q�2)

: : : : : : : : : : : : : : : : : : : : :

0 1 1 �
k�1

�
2(k�1)

: : : �
(k�1)(q�2)

�
�
�
�
�
�
�
�
�
�

(7)

Remark 4.3 Theorem 4.1 is valid for any k and n = q when
check matrix H, below, represents the [q; q � k; k] MDS
code.2

H =

�
�
�
�
�
�
�
�
�
�

1 1 1 1 : : : 1
0 1 � �

2
: : : �

q�2

0 1 �
2

�
4

: : : �
2(q�2)

: : : : : : : : : : : : : : : : : :

0 1 �
k�1

�
2(k�1)

: : : �
(k�1)(q�2)

�
�
�
�
�
�
�
�
�
�

(8)



By the Theorem 4.1 and Remarks 4.1, 4.2 and 4.3 k-
pseudo-exhaustive backgrounds, defined by (4), (5), com-
bined with MATS+ procedure generate optimal tests with
q
k = 2wk backgrounds and with complexity 2wk+1

n de-
tecting static SPS(n; k) faults and dynamicDPS(n; k�1)
faults for any k > 2 for n < 2w; for k = 2 and n = 2w + 1;
and detecting SPS(n; k) for any k and n = 2w. In the
next sections we will expand these procedures for the cases
n > 2w and k = 1; 2; 3.

5 Pseudo-exhaustive memory tests

5.1 k-Pseudo-exhaustive backgrounds

For the case k = 1 the procedure for generation of 1-
pseudo-exhaustive backgrounds consists of multiplication in
GF (2w) of all q-ary vectors V = (v0), v0 2 f0; 1; �;
�
2, : : : ; �q�2g by the first row of the RS check matrix (1).

The row dimension is determined by the memory size n.
As a result we will have the B(n; 1; w) optimal 1-pseudo-
exhaustive backgrounds with T1(n) = q for any n.

For example, for a 2-bit wide memory with 6 cells (w =
2, q = 4, n = 6) we have the following backgrounds
B(6; 1; 2):

B0 B1 B2 B3 B4 B5

0 0 0 0 0 0
1 1 1 1 1 1
� � � � � �

�
2

�
2

�
2

�
2

�
2

�
2

=

B0 B1 B2 B3 B4 B5

00 00 00 00 00 00
10 10 10 10 10 10
01 01 01 01 01 01
11 11 11 11 11 11

For the complexity of the test procedure
based on B(n; 1; w) and MATS+ we have
L[MATS+; B(n; 1; w)] = 2w+1n.

More complex is a procedure of the background gen-
eration for k = 2. Let '(x) = x

2 + c1x + c0

(c0; c1 2 GF (2w)) be a primitive polynomial of degree 2
overGF (2w) and � is a root of'(x) ('(�) = 0). Then [15],
there exists a one-to-one mapping i$ (v0(i); v1(i)), where
v0(i); v1(i) 2 f1; �; �2; : : : ; �q�2g (v0(i); v1(i)) 6= (0; 0);
i 2 f1; 2; : : : ; q2g; and q = 2w, such that

v0(i) + v1(i)� = �
i�1

; (9)

where �q
2
�1 = �

0 = 1. This mapping for w = 2 and
'(x) = x

2 + x+ � is given in Table 1.

According to the procedure forn = q+1 described by the
Remark 4.2 for generation of optimal 2-pseudo-exhaustive
backgrounds we haveB(q+1; 2; w), where T2(q) = q

2+1;
(B(j)

i 2 GF (2w); q = 2w), B(j)
0 = 0; (j = 0; 1; : : : ; q),

B
(j)

i = B(q + 1; 2; w) = jv0(i); v1(i)j�

�
�
�
�

1 0 1 1 1 : : : 1 1
0 1 1 � �

2
: : : �

q�4
�
q�2

�
�
�
�

(10)

Thus, B0 = (0; 0; : : : ; 0) B(0)

i = v0(i), B
(1)

i =

v1(i), B
(j)

i = v0(i) + v1(i)�j�2
; (i = 1; 2; : : : ; q2; j =

2; 3; : : : ; q). For w = 2, q + 1 = 22 + 1 = 5 2-pseudo-
exhaustive backgrounds B(5; 2; 2) are shown in Table 1.

Any set B(q + 1; 2; w) of 2-pseudo-exhaustive back-
grounds consists of the T2(q + 1) = 22w + 1 backgrounds.

For the complexity of the test procedure based on 2-
pseudo-exhaustive backgroundsB(n; 2; w) and MATS+ we
haveL(MATS+B(n; 2; 3)) = 2(q2+1)n = 22w+1n+2n.

For any k the procedure for generating k-pseudo-
exhaustive backgrounds will be described the fol-
lowing way. Let '(x) be a primitive polynomial
of degree k over GF (2w) and � is a root of '(x)
('(�) = 0). Then [15], there exists an one-to-one
mapping i $ (v0(i); v1(i); : : : ; vk�1(i)), where
v0(i); v1(i); : : : ; vk�1(i) 2 f1; �; �2; : : : ; �q�2g

(v0(i); v1(i); : : : ; vk�1(i)) 6= (0; 0; : : : ; 0); i 2

f1; 2; : : : ; qkg; and q = 2w, such that

v0(i) + v1(i)� + : : :+ vk�1(i)�
k�1 = �

i�1 (11)

where �q
2
�1 = �

0 = 1.
According to the procedure for n = q � 1 described

by the Theorem 4.1 for the generation of optimal k-pseudo-
exhaustive backgrounds we have B(q � 1; k; w), where
Tk(q) = q

k+1; (B(j)

i 2 GF (2w); q = 2w),B(j)
0 = 0; (j =

0; 1; : : : ; q),

B
(j)

i = jv0(i); v1(i); : : : ; vk�1(i)j�

�
�
�
�
�
�
�
�
�
�

1 1 1 : : : 1 1
1 � �

2
: : : �

q�4
�
q�2

1 �
2

�
4

: : : �
2(q�4)

�
2(q�2)

: : : : : : : : : : : : : : : : : :

1 �
k�1

�
2(k�1)

: : : �
(k�1)(q�4)

�
(k�1)(q�2)

�
�
�
�
�
�
�
�
�
�

(12)
Any set B(q � 1; k; w) of k-pseudo-exhaustive back-

grounds consists of the Tk(q � 1) = 2kw + 1 backgrounds.

5.2 Restricted pseudo-exhaustive tests
RPSTk;k�1

Generalization of the tests for detection of crosstalks be-
tween three or more words will require high complexity and



considerable overheads for BIST implementations. In view
of this we describe in this section a class of restricted (local)
pseudo-exhaustive tests RPXTk;k�1; (k = 2; 3; 4; :::) for
word-oriented memories detecting staticSPS(q�1; k) and
dynamicDPS(q�1; k�1) faults due to crosstalks between
k or k � 1 words within any block of q � 1 neighbouring
words.

To construct these tests we use k-pseudo-exhaustive
backgrounds B(q � 1; k; w) described in Theorem 4.1. In
this case B(q � 1; k; w) is (q � 1; k; q � k) q-ary RS
code and jB(q � 1; k; w)j = q

k + 1. At the first step
of RPXTk;k�1 we run pseudo-exhaustive tests PXTk;k�1
based on B(q � 1; k; w) and MATS+ for words with ad-
dresses 0; 1; : : : ; q � 2: At the second step we repeat the
same procedure for the block consisting of words with ad-
dresses 2w�1; 2w�1+1; : : : ; 2w�1+2w�2. At the third step
we repeat the procedure for words with addresses 2w; 2w +
1; : : : ; 2w+2w�2, etc. This approach is illustrated in Fig. 1.

Step1

2 w-1 2 w-1

Step2

2 w

Step3

q-1
n

Step

2 w+2w-1
w-2n +12 w-12 w-1 +0 n

Figure 1: Test Organization for RPXTk;k�1

Test RPXT2;1 for w = 2 (q = 4), n = 5 consisting
of two steps is represented by Table 2 (a0; a1; a2; a3; a4;)
is an initial state of the RAM; first block consists of words
W0;W1;W2 and second block consists of W2;W3;W4).

We have for complexity L(RPXTk;k�1) of these tests

L(RPXTk;k�1) = 2(q�1)(qk)d
n

q � 1
e+2n � 2wk+1

n+2n:

(13)
Test complexities (in sec.) of RPXTk;k�1 tests for dif-

ferent k and w = 4 are presented in Table 3 (assuming
a cycle time of 50 ns). For example, for a 4-bit memory
with N = nw = 216 bits detection of Static SPS(n; 4)
faults and DynamicDPS(n; 3) faults byRPXT4;3 requires
107:37sec.

To summarise this section we note that as it follows from
Table 3 tests RPXT2;1, RPXT3;2 and RPXT4;3 may be
efficient for 4-bit memories (w = 4).

Table 2: RPXT2;1 test for n = 5, w = 2 based on 2-

pseudo-exhaustive backgrounds B(2)

i ; B
(3)

i and B(4)

i , com-
bined with MATS+

t r(Wj); w(Wj) W0 W1 W2 W3 W4 Bi

0 a0 a1 a2 a3 a4
1 w(W0) 0 a0 a1 a2 a3

2 w(W1) 0 0 a1 a2 a3

3 w(W2) 0 0 0 a2 a3
4 w(W3) 0 0 0 0 a3

5 w(W4) 0 0 0 0 0 B0

6 r(W2); w(W2) 0 0 1 0 0
7 r(W1); w(W1) 0 1 1 0 0
8 r(W0); w(W0) 1 1 1 0 0 B1

9 r(W0); w(W0) 1 1 1 0 0
10 r(W1); w(W1) 1 � 1 0 0
11 r(W2); w(W2) 1 � �2 0 0 B2

: : : : : : : : : : : : : : : : : : : : : : : :

48 r(W2); w(W2) �2 � 1 0 0
49 r(W1); w(W1) �2 � 1 0 0
50 r(W0); w(W0) 0 � 1 0 0 B15

51 r(W0); w(W0) 1 � 1 0 0
52 r(W1); w(W1) 1 1 1 0 0
53 r(W2); w(W2) 1 1 1 0 0 B1

54 r(W4); w(W4) 1 1 1 0 1
87 r(W3); w(W3) 1 1 1 1 1
88 r(W2); w(W2) 1 1 1 1 1
89 r(W1) 1 1 1 1 1
90 r(W0) 1 1 1 1 1 B1

90 r(W2); w(W2) 1 1 1 1 1
91 r(W3); w(W3) 1 1 1 � 1
92 r(W4); w(W4) 1 1 1 � �2 B2

: : : : : : : : : : : : : : : : : : : : : : : :

132 r(W4); w(W4) 1 1 0 � 1
133 r(W3); w(W3) 1 1 0 1 1
134 r(W2); w(W2) 1 1 1 1 1 B1

135 r(W2) 1 1 1 1 1
136 r(W3) 1 1 1 1 1
137 r(W4) 1 1 1 1 1 B1

Table 3: Time complexities (in seconds) for RPXTk;k�1
tests for (w = 4), k = 2; 3; 4; 5 and different N = wn

N 28 212 214 216 220

k = 2 0:00 0:02 0:10 0:41 6:71
k = 3 0:02 0:41 1:67 6:71 107:37
k = 4 0:41 6:71 26:84 107:37 1717:98
k = 5 6:71 107:37 429:49 1717:98



6 Conclusions

In this paper we have presented a unified approach for test-
ing of word-orientedmemories based on the singlePS(n; k)
fault model which covers SAFs, TFs, CFids, CFins, APSFs,
PPSFs and SPSFs. A systematic approach for generating
data backgrounds B(n; k; w) has been proposed, based on
Reed�Solomon codes overGF (2w), wherew is the num-
ber bits per word. Combining k-pseudo-exhaustive back-
grounds B(n; k; w) with the MATS+ test algorithm we
presented a range of optimal pseudo-exhaustive tests.

For the case when faults are restricted to a neighbour-
hood consisting of at most 2w�1 � 1 words we propose
the test RPXTk;k�1. Test RPXTk;k�1, with complexity
2kw+1n + 2n, verifies for any k words all 2kw states of the
words and all 22w transitions within one word for any fixed
state of any other k � 2 words for the memory-under-test
block with the size d(q � 1)=2e � 1.

The deterministic 100% fault coverage, also for the com-
plex PSFs involving a large number of words, causes it to be
preferred above pseudo-random tests in many applications,
while due to its systematic nature it renders itself well for
BIST applications.
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