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Abstract

In this paper we present a new approach to the
design of multilevel fault-tolerant circuits. The ap-
proach is based on introducing a minimal amount of
fault-masking redundancy during a multilevel logic op-
timization process. This is done by taking into ac-
count the degrees of freedom associated with internal
don't care conditions. Experimental results obtained
on several benchmark circuits compare very favourably
with fault-tolerant implementations based on tradi-
tional gate-level strategies.

1 Introduction.

Digital systems are increasingly used in applica-
tions that require extremely high reliability. Some
such applications include aerospace, transportation,
control in harsh environments, etc...

Over the years, several techniques have been devel-
oped for improving the reliability of digital systems at
all levels. An excellent survey of the subject is [1].

System-level techniques (such as N-tuple Modular
Redundancy [2]) are essentially based on the addi-
tion of spare duplicate units. These units may con-
tribute to the system's functioning at all times (static
redundancy), or be used as replacements in case a
failure is detected (dynamic redundancy). In particu-
lar, with static redundancy techniques, each functional
part (module) of a given digital circuit is replicated N
times so as to obtain N independent copies of each out-
put signal. Each vector of N equivalent signals is then
connected to a restoring organ (i.e., a majority voting
element). Failure of a single component is thus over-
run by the other components, and the voter's output
is thus a more reliable primary output.
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These techniques can be employed at gate level as
well. At this level, however, it is possible to take
advantage of the intrinsic error masking capabilities
of logic gates in order to avoid the explicit introduc-
tion of voting elements. With typical gate-level ap-
proaches to fault-tolerance (such as quadded-logic [3]
and interwoven-redundancy [4]) logic gates (or subcir-
cuits) are replicated and interconnected in a way that
prevents the propagation of logic errors caused by in-
ternal faults [3, 4, 5, 6, 7].

System- and gate-level techniques preserve the
topology of the original system. So they do not take
into account the degrees of freedom avalaible to fur-
ther optimize the fault-tolerant network. Instead,
if fault-tolerance requirements are considered during
logic synthesis, all the degrees of freedom available for
logic optimization could ideally be used to reduce the
amount of fault-masking redundancy. An alogrithm
for the two-level synthesis of fault-tolerant digital cir-
cuits was proposed by Pradhan and Reddy [8], but no
methods have been developed so far for the synthesis
of multilevel fault-tolerant networks.

In this paper we take a step in this direction,
and present a new approach to the design of fault-
tolerant circuits, based on a multilevel logic synthesis
paradigm. Each gate of an original arbitrary com-
binational network is re-synthesized so as to achieve
fault tolerance with a minimum addition of hardware.
This is accomplished by taking advantage of the error-
masking properties of individual gates and of the func-
tional redundancies already present in the network. In
particular, in this paper we target networks that are
multilevel fault-tolerant, i.e. that can con�ne the
errors introduced by a fault in a small region. Quadded
networks are an example of such networks.

We tested our algorithms against several bench-
mark combinational circuits. Substantial hardware
savings (sometimes in excess of 40 %) have been ob-
tained with respect to quadding.



2 Terminology.

Let B denote the Boolean set f0; 1g. A k-
dimensional Boolean vector x = (x1; � � � ; xk) is an ele-
ment of the set Bk (bold-facing is used to denote vector
quantities). A ni-input, no-output Boolean function
f is a mapping f: Bni ! Bno . A scalar function f1
covers f2 (f2 implies f1, denoted by f1 � f2 ) if
f1 = 1 whenever f2 = 1. An input vector x such
that f(x) = 1 is termed a minterm of f . Boolean
functions can be represented symbolically by means
of Reduced Ordered Binary Decision Diagrams

(BDDs) [9, 10].

A logic network (N ) is a directed, acyclic graph
(V;E). Vertices of the graph represent primary in-
puts/outputs or logic gates, while edges denote in-
terconnections: an edge from a gate g1 to a gate g2
indicates that g1 is used as input to g2. We denote
by FI(g) and FO(g) the sets of immediate fanin and
fanout gates of a gate g, respectively. Each gate g of a
logic network realizes a function of the primary inputs,
denoted by g(x).

In principle, the Boolean operation realized at each
vertex is arbitrary. For the sake of simplicity, how-
ever, hereafter we assume that each vertex represents
a NOR gate. Hence, for a gate g, the output function
can be expressed as

g(x) = (
X

gi2FI(g)

gi(x))
0: (1)

2.1 Multilevel Optimization.

Multilevel logic optimization of a given Boolean
network consists on the application of a suitable set of
network tranformations that improve a target parame-
ter (area, delay, power consumption) while preserving
the network functionality [11, 12].

In this paper we consider an approach based on a
sequence of local optimizations of internal gates. The
optimization of a gate is carried out based on the fol-
lowing observations.

Eq. (1) indicates that the function g(x) realized by
a gate is the NOR of functions gi(x), each of which
must be contained in g0(x): gi(x) � g0(x): Any func-
tion f(x) such that f � g0 is an implicant of g0.

In general, a function g can be realized not only as
the NOR of given functions gi, but also as the NOR
of other functions, maybe already available in the net-
work. Local resynthesis attempts the optimization of
each gate precisely by trying to re-express each gate
function as a NOR of fewer and / or simpler functions.

3 Fault-Tolerance.

3.1 Faults and Fault-Tolerance.

As mentioned, we refer in this paper to NOR-only
networks, for the sake of convenience. The results of
the paper, however, can be extended to networks of
arbitrary elementary gates.

We consider in this paper single stuck-at type
faults, occurring either at a gate input or at a gate
output. The following terminology will be used exten-
sively afterwards to classify the impact of a fault in a
network:

De�nition 3.1 Let N and N � denote a fault-free and
a faulty network, respectively. Let also g�(x) denote
the function realized by gate g in the faulty network.
For a given input con�guration x, we say that an er-

ror is present at the output of g if g(x) 6= g�(x).

De�nition 3.2 An error at a gate input is critical
if it causes the input to take incorrectly the dominant
value. It is subcritical otherwise. A fault is likewise
named critical if it can cause at least a critical error
to be present at the inputs of some gate.

Fault-tolerance targets the design of networks that
preserve correct behavior even in presence of a fault.
Some faults, however, such as stuck-at's on primary in-
puts or outputs, are clearly inherently intolerable and
cannot be targeted by any approach to fault-tolerance.

De�nition 3.3 We call internal faults the faults
that can a�ect gate inputs and outputs, except those
on primary inputs, those on interconnections from pri-
mary inputs, those on the primary outputs and critical
faults at the inputs of the output-driving gates. For
our purposes, a network if termed fault-tolerant if
its functionality is not a�ected by any single internal
fault.

Hereafter, we refer implicitly only to internal
faults.

3.2 Multilevel Fault-Tolerant Networks.

All gate-level techniques for constructing fault-
tolerant logic networks take advantage of the masking
properties of logic gates to compensate, as soon as pos-
sible, the errors produced by internal faults. Standard
techniques, such as quadding, actually grant that the
e�ects of a single fault never propagate through

more than one logic level. This property motivates
our de�nition:
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Figure 1: Two fault-tolerant implementations of the same
Boolean function f(x), obtained a) by quadding and b) by a
minimum double-cover. The maps of the functions are shown
in Fig. (2).

De�nition 3.4 A Boolean network N is said to be
multilevel fault-tolerant if and only if no internal
fault can cause an error that propagates through more
than one level of logic.

Existing design rules for fault-tolerance, however,
are of an essentially topological nature. The fol-
lowing rules are employed, for instance, by quadding.
They are trivially su�cient (but not necessary) to
grant multilevel fault-tolerance:

Rule 1. Logic levels alternate in such a way that the
propagation of a critical error produces sub-critical er-
rors at the next logic level. This happens, for example,
in NOR-only or NAND-only representations.

Rule 2. Two distinct gates realizing the same internal
logic function are termed equivalent. The fanin of
each gate must contain only primary inputs or pairs
of equivalent gates. A sub-critical error on a gate input
can thus be compensated by an error-free equivalent
input.

Rule 3. Two gates g1; g2 with no common fanin
are termed independent. Equivalent gates feeding a
common gate must be independent. Otherwise a fault
on a common input could produce multiple sub-critical
errors at the inputs of another gate, which may go un-

compensated.

It is worth noting that, in order to satisfy the above
rules, quadding must actually quadruple all internal
gates. Rules (1-3) do not take into account the func-
tionality realized at the various gates. For instance,
Rule (2) is too resctrictive: A sub-critical error af-
fecting a gate input may also be masked by another,
non-equivalent input.

Example 3.1 Suppose the function f(x), mapped in
Fig. (2), is to be synthesized, using the implicant
functions g1(x); g2(x); g3(x), realized by gates already
present in the network. A minimal NOR realization of
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Figure 2: Maps of the completely speci�ed Boolean func-
tions f(x); g1(x); g2(x); g3(x) realized by the gates of Fig. (1).
g1(x); g2(x) and g3(x) are implicants of f 0(x).

function f(x) is, for instance, f(x) = (g1(x)+g2(x))
0.

In order to achieve fault-tolerance, Rule (2) would re-
quire the duplication of gates g1 and g2, as shown in
Fig. (1a). Rule (2') allows us, instead, to �nd a
double-cover with only one copy of g1; g2; g3: f(x) =
(g1(x) + g2(x) + g3(x))

0. With this solution, shown
in Fig. (1b), we achieve the same degree of fault-
tolerance without doubling any gate. 2

In the next paragraph we replace Rules (1-3) with
rules of functional nature, and we show that these
rules are necessary and su�cient for a network to
be multilevel fault-tolerant.

3.3 Functional Rules for Multilevel Fault-
Tolerance.

As we consider NOR-only networks, Rule (1) needs
not be modi�ed. The following Theorem provides a
functional criterion replacing Rule (2).

Theorem 3.1 A NOR-gate g tolerates all single sub-
critical errors a�ecting its inputs if and only if each
minterm x of g0(x) is covered at least twice, (i.e.there
are at least two input gates g1; g2 2 FI(g) such that
g1(x) = g2(x) = 1 ).

Proof 3.1 (If part): Consider a subcritical error af-
fecting an input signal g1 of g. This error turns a logic
1 on the input into a logic 0. Since each minterm x of
g0(x) covered by g1 is also covered by an error-free in-
put signal g2, the sub-critical error is masked for each
relevant input con�guration.

(Only if part): Suppose, by contradiction, that there
exists a minterm x of g0(x) covered only by g1. If a
s-a-0 fault occurs on g1 the gate output would take the
incorrect logic value 1 for input vector x. Hence the
fault would not be tolerated, a contradiction. 2

By Theorem (3.1) Rule (2) can then be replaced by
the following:

Rule 2'. Each minterm of each internal function
must be covered by a primary input or by at least two
implicants.



Rule (2') no longer requires the pairwise equiva-
lence of inputs. Hence, already existing, di�erent sig-
nals can be used to mask subcritical errors. This ac-
tually was already shown in Example (3.1).

Rule (3) was required to grant that no critical fault
could produce multiple subcritical errors at the inputs
of some other gate. We can replace this need with the
following functional rule:

Rule 3'. For each minterm x of a function f(x), at
least two of the functions covering x must correspond
to independent gates.

Theorem (3.2) below shows that Rules (2') and (3')
are indeed necessary and su�cient for a network
to be multilevel fault-tolerant:

Theorem 3.2 A NOR-only network N is multilevel
fault-tolerant if and only if for each gate g 2 N and
for each minterm x of g0(x), there exist at least two
independent gates gj; gk 2 FI(g) such that gj(x) and
gk(x) cover x.

Proof 3.2 (If part): We need to prove that no single
fault causes an error to propagate through more than
one logic level. To this regard, notice that:

1) Theorem (3.1) insures that, because of the double
covering of each internal function, all single subcritical
faults are masked inside the network.

2) A critical fault a�ecting the output of a gate
f can only produce subcritical errors at the output
of the gates in FO(f). Consider a gate g with an
input gj 2 FO(f). Each minterm x of g0(x) cov-
ered by gj(x) is also covered by an independent signal
gk(x). Hence, gates gj and gk share no inputs and
gk 62 FO(f), i.e., it is not a�ected by the fault of f .
Gate gk thus masks the error on gj for the input con-
�guration x. Since such an error-free signal exists for
each minterm covered by each gate gj 2 FO(f), the
e�ects of the critical fault are always masked at the
next logic level.

3) The case of a critical fault on a gate input can
be handled just as the previous case.

(Only if part): Suppose, by contradiction, that there
exists a minterm x of some internal signal g0(x) cov-
ered only by a set S of dependent gates, i.e.sharing
at least an input f . A critical fault at the output
of f would cause all the signals of S to take the in-
correct logic value 0. This multiple subcritical error
would then propagates through gate g, for input vec-
tor x. Therefore, the critical fault of the internal sig-
nal f would cause an error that propagate through two
logic levels. Hence, the network is not multilevel fault-
tolerant, a contradiction. 2
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Figure 3: There are three main cases in wich the resynthesis
of a gate f possibly needs the duplication of some portion of the
network. Light shading denotes the gate f under optimization,
while dark shading denote the duplicated gates.

4 Synthesis of Multilevel

Fault-Tolerant Networks.

In this section we illustrate the basic algorithms
involved in the construction of a minimal multilevel
fault-tolerant network. This construction entails two-
level re-synthesis of portions of the network. The next
paragraph describes how the classical two-level synthe-
sis paradigm must be modi�ed to account for Rules
(2') and (3').

4.1 Two-Level Synthesis

The two-level synthesis engine takes as input a
single-output, two-level NOR-NOR network, realizing
a function f . The 
ow of two-level synthesis follows
the two-step paradigm of implicant extraction and
minimum-cost covering [13]. Since we are working in
a multiple-level synthesis environment, implicants of
f are selected among other, already existing internal
functions and their logic NORs [11].

The output is a two-level, NOR-NOR network that
satis�es Rules (2') and (3'). In particular, it �nds a
cover of a function f 0(x) such that:

1) each minterm x is covered at least twice;

2) for each minterm x, at least two of the implicants
covering x must be generated by independent gates.

Requirements (1) and (2) do not add to the com-
plexity of implicant extraction. Instead, they make
the construction of a minimum-cost cover more com-
plex. The classical covering step is thus modi�ed as
follows:

1) Whenever an implicant is included in a partial
cover, it is not removed from the list of candidate im-
plicants. This means that it is still available for inclu-
sion a second time.

2) Whenever an implicant is included in a partial
cover, its cost is dynamically evaluated as: i) the cost
of its implementation, plus ii) the cost possibly in-
duced by the necessity of duplicating portions of hard-
ware in order to achieve independence.
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Figure 4: A simple realization of a Boolean function f and
its fault-tolerant version. In the maps of the functions 1's are
shaded. Notice that the double covering requirements causes
some minterms of f 0(x) to be covered three times. These
minterm can be regarded as observability don't cares for im-
plicant g1.

There are three cases that require duplication. They
are reported in Fig. (3).

Case 1. This case is illustrated in Fig. (3a). Gate
f , under optimization, must be independent from an-
other gate (in this case, gate e). Hence, any implicants
of f 0 that are also inputs to e must be duplicated if
they are to be included in a cover of f 0.

Case 2. To grant satisfaction of Rule (3'), impli-
cants covering a common minterm of a function f 0

must be made independent by duplicating common
fanin, as shown in Fig. (3b).

Case 3. If an implicant g1 is essential to f
0 (i.e., it is

the unique implicant that can cover some minterm of
f 0), then it must necessarily be selected twice. Hence,
gate g1 has to be duplicated as well as its fanin, as
shown in Fig. (3c).

It is worth noting that quadding can be regarded
as a systematic use of the duplications of Case (3),
while Cases (1) and (2) are not acknowledged. Hence,
quadding represents a worst-case bound to our
method.

4.2 Multiple-Level Synthesis.

The input of the synthesis algorithm is an arbi-

trary NOR-only network. The network may or may

not have redundancies or fault-tolerance properties.
Gates are topologically sorted and then visited in or-
der, starting from primary outputs. Each gate is re-
garded as the output of a two-level network, which
is re-synthesized using the algorithms of Section (4.1).
In this way, we are sure that at every time the already-
synthesized portion of the network is multilevel fault-
tolerant. The program terminates when all gates have
been visited.

4.3 Observability don't cares.

The notion of observability don't cares has been
pro�cuos in the development of accurate multiple-level

logic optimization algorithms [11, 12].
It is possible to port this notion also in the syn-

thesis of fault-tolerant networks. Consider, to this re-
gard, the situation of Fig. (4b). Function f 0(x) is
double-covered by functions g1(x); ~g1(x); g2(x); g3(x).
Inspection of the covering shows that some minterms
of f 0 are actually covered three times. Correspond-
ing to these minterms, the value of an implicant func-
tion (say, g1) can be changed without a�ecting the
double-covering of f . Hence, the value of g1, is irrel-
evant (don't care) for these minterms. These don't
carescan be spent for the optimization of g1.

It could be shown that these observability don't
care conditions can be computed and propagated es-
sentially by the traditional means [14]. The formal
proof, however, is out of the scope of this paper.

5 Implementation and Experimental

Results.

We have implemented in C the algorithms described
in this paper. We have used a standard BDD pack-
age to implement the basic manipulation routines
for Boolean functions. The algorithms were tested
against a set of well-known logic synthesis benchmarks
[15, 16]. The circuits were initially optimized by run-
ning the optimization program SIS [17].

Table (1) reports the initial circuit statistics, in
terms of input, output, NOR gate and interconnec-
tion counts. The data refer to the optimized circuits.
The second column refers to the gate and interconnec-
tion counts of the quadded versions of the networks.
The last column reports the gate and interconnec-
tion counts of the circuits obtained by our algorithm
(named FT SYN), as well as the CPU time required.
Time was taken on a SUN SPARCstation IPX.

The average improvement with respect to quadding
is of 18%.

6 Conclusions and Future Work.

Traditional means of designing fault-tolerant logic
networks used topology-based replication techniques,
that are ine�cient in terms of area and may add ex-
cessive redundancies.

In this paper we took a more global synthesis ap-
proach. We showed that it is possible to take into ac-
count internal don't care conditions and synthesize a
fault-tolerant network by locally adding just the min-
imal amount of extra hardware needed. The experi-
mental results in this sense are extremely encouraging.



Circuit Original Network Quadding FT SYN

Ins Outs Gates Conns Gates Conns Gates Conns CPU

cm42a 4 10 20 41 38 101 29 91 1

cm163a 16 5 56 103 175 490 131 372 3
decod 5 16 41 67 100 264 68 218 1

x2 10 7 30 72 95 313 82 270 2

cc 21 13 61 102 269 410 150 397 7
f51m 8 7 72 165 275 1112 252 1056 33

apex7 49 37 198 393 576 1823 534 1805 101

alu2 10 6 232 570 850 3720 794 3613 358
alu4 14 8 488 1128 1820 7662 1730 7643 5301

s208 19 10 37 81 119 382 95 319 6
s444 24 27 108 226 368 1280 304 1117 14

s526 24 27 121 239 365 1141 284 940 21

s953 45 52 266 644 795 2883 704 2783 579
s1196 32 32 383 956 1232 5068 1128 4851 1116

Table 1: Experimental results on several benchmark circuits. Data refer to the combinational portion of the sequential circuits.

In this paper, we targeted the synthesis of multi-
level fault-tolerant networks, having in addition strong
fault-con�nement properties. In the future we plan
to generalize the ideas and algorithms to tackle more
general classes of fault-tolerant networks.
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