
VLSI Architecture for Motion Estimation using
 the Block-Matching Algorithm

César Sanz+, Matías J. Garrido+, Juan M. Meneses*

+Dpto. de Sistemas Electrónicos y de Control. E.U.I.T. Telecomunicación
*Dpto. de Ingeniería Electrónica. E.T.S.I. Telecomunicación

Technical University of Madrid.
{cesar,matias}@sec.upm.es, meneses@die.upm.es

Abstract

In this paper an architecture is described that implements
motion estimation in image coding, using a block-matching
algorithm and an exhaustive search method. The architecture,
EST256, consists of 256 processor elements, deals with a search
area of -8/+7 and performs 11 GOPS (subtraction, absolute
value determination, accumulation and comparison). It is
implemented with ES2 0.7 µm double-metal-layer CMOS
technology. This ASIC is cascadable to deal with bigger search
areas.

1. Introduction.

Nowadays, Moving Images Coding has a very
promising application field: Videoconferencing,
Videophoning, Digital video storage, High-Definition
Television (HDTV), Digital Television and Multimedia
Systems are some of the keywords in this area. In Image
Coding Systems, data compression is needed for efficient
management of the large amount of information. For
example, a colour image with resolution of 1000 by 1000
pels (picture elements) will occupy 3 megabytes of storage
in an uncompressed form. Data compression is especially
useful for the transmission of such data through
transmission channels. For instance, bit-rate ranges from
10 Mb/s for broadcast-quality video to more than 100
Mb/s for HDTV signals.

To facilitate industrial application of this technology
some standards have been proposed: the Joint
Photographic Experts Group (JPEG) standard for still
picture compression [1]; the Consultative Committee on
International Telephony and Telegraphy (CCITT)
Recommendation H.261 (px64) for videoconferencing [2]
and the Moving Pictures Experts Group (MPEG) [3] for
full-motion image compression.

For moving images compression hybrid coding is used.
This compression method is based on both redundancies
in the data and the nonlinearities of human vision; and

combines transform coding with predictive coding. It
exploits the usually high spatial correlation of the images
and the low sensitivity of the human eye to high spatial
frequencies. For this, Transformation to the frequency-
domain is applied, using the Discrete Cosine Transform
(DCT) [4]; then high-frequency DCT coefficients are
coded with fewer bits than the low ones. This technique
achieves compression ratios from 10:1 to 50:1. On the
other hand, hybrid coding also exploits the temporal
redundancy of the image sequence and reduces
information using prediction techniques based on motion
estimation. This scheme increases the compression ratio
to 200:1.

Motion Estimation is the most demanding part in the
coding algorithm. For example, in an image
coding/decoding system according to Rec. H.261 [5], the
computational power required is approximately 1.2 GOPS
[6]; and around 50% of this effort is devoted to the motion
estimation. At the decoder, motion estimation is not
necessary, therefore lower computational power is
required.

Making a brief historical review, up to the late
eighties, programmable architectures for image
processing were proposed. These processors were oriented
not only to image coding but to general image processing.
They were improved designs of the classical DSP
architecture with one or several processors working in
parallel to provide bigger computational power as
required for these applications. This kind of processors is
reviewed in [7].

Due to the excessive size of the previous systems, some
specific architectures for image coding were proposed in
the early nineties. These dedicated solutions were based
on a chip-set of ASICs [8-10]. However, research activity
in this direction has decreased because there are two
drawbacks: a long design time is required and the systems
are not flexible to adaptation to changes in the standards.

Recently, there has been a trend to programmability
again in image coders/decoders, but with an architectural
conception very far from DSP style [11-12]. These new

ED&TC ’96
0-89791-821/96 $5.00  1996 IEEE

architectures are based on a very optimised RISC core
processor (with an instruction set oriented to the
application) and a set of specialised processing units
(coprocessors) for those tasks that require a higher
computational power. The RISC core executes the
functions related to the system control including
management of the coprocessor activities as well as some
simpler pieces of the coding algorithm. One of these
coprocessors is dedicated to Motion Estimation.

In section 2 motion estimation is reviewed. The
proposed architecture is explained in section 3, and
section 4 shows a comparison between this realisation and
some commercial chips for motion estimation. Finally,
section 5 concludes the results.

2. Motion estimation.

To implement motion estimation in coding image
applications, the most popular and widely used method,
due to its easy implementation, is the block-matching
algorithm (BMA).

The BMA divides the image in squared blocks and
compares each block in the current frame (reference
block) with those within a reduced area of the previous
frame (search area) looking for the most similar one, as
shown in figure 1. This matching procedure is made by
determining the optimum of the selected cost function.
We can describe the problem at three levels:

At the first level, the searching algorithm choice is set.
The most accurate one is the exhaustive (also called full-
search), consisting of the evaluation of the cost function
in all and every possible locations of the reference block
within the search area. The major drawback of this
method is its computational cost which strongly increases
as the search area does. In fact, (2p+1)2 evaluations of the
cost function are required, where p is the maximum
displacement of the reference block within the search area
in the four spatial directions.

In order to decrease the number of evaluations of the
cost function, several special search strategies have been
proposed. In this way reductions by, at least one order of

magnitude, are possible. However, they can lead to a local
rather than a global optimum. In [13] a comparative
summary of the most relevant of these strategies can be
found.

The choice of the cost function is at the second level of
the problem description. Two functions are the most
commonly used: the Mean Square Error (MSE) and the
Minimum Mean Absolute Error (MAE). In these kind of
applications, simulations show that MSE and MAE
perform very similarly [14]. For this reason MAE is the
most widely adopted because of its simpler computational
complexity (hardware multiplier is not required). This
function is presented in (1), where N is the block size, x
are the pels in the reference block; and xA are those within
the search area.

 D(i, j) =
1

N
| x(m,n) -x (m + i,n + j)|

2
m=1

N

n=1

N

A∑∑ (1)

Finally, in the third level are the hardware
architectures capable of supporting the two previous
levels. The computational power that these architectures
must provide is extremely high. For example, for 720x576
pels1 images, at a rate of 25 Hz, a search area of 16 pels
in each direction, full-search algorithm and using MAE
as the function cost, 34 GOPS are necessary; considering
as operations: subtraction, absolute value determination
and accumulation [15]. To undertake this intensive
computation, massively parallel and intensively pipelined
implementations are required. On the other hand, the
large amount of data managed, mainly in the search area,
demands highly efficient data-flow and memory
architecture, so the bandwidth required remains
attainable. For the previous example, the peak bit-rate
needed is larger than 800 Mb/s.

3. The proposed architecture.

3.1. Architecture description.

The proposed architecture, EST256, is a generalisation
of the one described in [16] but with a higher number of
processor elements (PE) as well as better performance.
There are also some additional new features: management
of the image boundaries is included in the device, as well
as additional hardware resources for an easier connection
of several devices working in parallel to increase the
search window size. Some differences in data-flow are
also introduced to facilitate this parallel connection
without increasing the bandwidth requirements in the
previous frame memory. These aspects are described
below.

1

Image resolution in MPEG-2 standard.

Search Area

Reference Block

Previous Frame

Current Frame

N

p

p

p p

N

Figure 1.

The implementation of the cost function expressed in
(1) can be decomposed as shown in figure 2. In EST256,
the i and j loops are performed in parallel and therefore it is
necessary to have (2p+1)2 PEs and the motion vector is
computed in N2operation cycles.

for (i= -p; i ≤ p; i++){
for (j= -p; j ≤ p; j++){

for (m= 1; m ≤ N; m++){
for (n= 1; n ≤ N; n++){

D(i,j) += | x(m,n) - xA(m+i, n+j) | ;
}

}
}

}
Figure 2. Algorithm decomposition.

The block size used is 16x16 pels according to H.261 and
MPEG-2 [17] standards and the affordable search area is
-8/+7. The number of PEs working concurrently is 256
and each single processor computes the cost function for
one of the 256 possible locations of the reference block
within the search area. The array outputs the motion
vector corresponding to each reference block, 256 cycles
after the last pel of the block has been entered into the
array. Figure 3 shows the block diagram of the PE. The
Sub block is a 8-bits subtractor (luminance pels have 8-bits
positive values, from 0 to 255) and Acc is a 16-bits
accumulator to avoid overflow.

Sub Abs Acc

Reference

Search area
Error

8

16

8

Figure 3. Basic diagram of the processor element.

Figure 4 shows the arrangement of the 256 processor
array. To reduce the required bandwidth, EST256 has
three 8-bits input ports. After initial latency, the
Comparator block inputs one error computation in each

cycle and compares it with the previous minimum, storing
the lowest. The Boundaries block disables the Comparator
when its input value is not valid, this condition arises for
some locations of the blocks located on the top, bottom,
left and right boundaries of the image. The architecture
provides the minimum error value, the coordinates of the
motion vector for this position and the error value for the
(0,0) motion vector (without movement).

3.2. Data flow.

The ordering of pels in the image is by horizontal bands,
each 16-pels high, as shown in figure 5. The pels within each
band are read by columns, from top to bottom, simultaneously
from the three input ports available in the motion estimator.
In Table 1, the sequence of operations in the PEs and the data
flow is shown: the pels within the search area are used by all
processors in the same cycle, while pels from the reference
block are delayed one cycle per PE.

Figure 5. Pels organisation.

The PE#1 and all of them on 1+16n positions (0≤n≤15) in
the array use pels only from Upper band and compute the
error in the locations whose upper left corner has (0,i)
coordinates, with 0≤i≤15. However, the rest of PEs use data
from both Upper and Lower bands and its architecture
slightly differs from figure 3 including a multiplexer for
appropriate band selection.

When the initial latency is elapsed (512 cycles), the circuit

PE#1

Reference

Search

Control

PE#2 PE#3 PE#256

Comparator

Error
Boundaries

Error(MV)

8

Area
8

8

MV
Error(0,0)

16

Upper
Lower

Control

Figure 4. EST256 architecture.

Reference block. Current frame

Upper

Lower

b(0,0) b(0,30)

b(31,0) b(31,31)

r(0,0) r(0,15)

r(15,0) r(15,15)

b(16,0)

Search area. Previous frame.

Ref

Table 1

T Ref Upper Lower PE#1 PE#2 PE#3

0 r(0,0) b(0,0) r(0,0)-b(0,0)
1 r(1,0) b(1,0) r(1,0)-b(1,0) r(0,0)-b(1,0)
2 r(2,0) b(2,0) r(2,0)-b(2,0) r(1,0)-b(2,0) r(0,0)-b(2,0)
3 r(3,0) b(3,0) r(3,0)-b(3,0) r(2,0)-b(3,0) r(1,0)-b(3,0)
4 r(4,0) b(4,0) r(4,0)-b(4,0) r(3,0)-b(4,0) r(2,0)-b(4,0)
...
15 r(15,0) b(15,0) r(15,0)-b(15,0) r(14,0)-b(15,0) r(13,0)-b(15,0)
16 r(0,1) b(0,1) b(16,0) r(0,1)-b(0,1) r(15,0)-b(16,0) r(14,0)-b(16,0)
17 r(1,1) b(1,1) b(17,0) r(1,1)-b(1,1) r(0,1)-b(1,1) r(15,0)-b(17,0)
...

provides new results every 256 cycles (this is the time
required for inputting a new reference block into the array).
This is possible because the error function computation for
block I is concurrent with the computation for block I+1, (the
next on the right or the first from the left of the following
slice or image frame) so pels within the search area that are
coincident to both I and I+1 blocks, are reused.

3.3. Design Methodology.

The first step was the design of a VHDL low-level
model of the processor element and the array, as well as
the ancillary elements (FIFOs and multiplexers) to
connect the system appropriately to the frame memory.
After functional simulations had been validated and
before the system was physically implemented, we
observed that using automatic synthesis tools from VHDL
descriptions did not provide a good solution because the
high number of PEs would require the optimisation of
their area. In this way, full-custom design methodologies
become a better approach but the design time required is
too long. Therefore we consider a semi-custom solution
helped by the use of data-path compiler tools, as an
intermediate scheme that provides reasonable area and
speed features.

In Table 2, the features of the ASIC we have developed
are shown.

Figure 6 shows the layout of the ASIC. The 64 dotted
rectangular blocks are modules generated by the ES2

data-path compiler. The 256-to-1 16 bits wide multiplexer
necessary to connect PEs outputs to Comparator input is
distributed inside data-path blocks, as shown in figure 7.
Moreover, each four data-path blocks row multiplexes its
error outputs in the same way. This solution reduces
complexity with some speed penalty. The Boundaries
block, the Comparator and the final 16-to-1 multiplexer
are implemented using standard cells.

4. Comparison with commercial ICs.

 In this section, EST256 is compared to STI3220 (SGS-
Thomson) [18] and L64720 (LSI Logic) [19]. Both of
them can also implement full-search BMA with blocks of
16x16 pels and a -8/+7 search area, using MAE as the
cost function. In Table 3 some differences are shown.

Table 3

Feature L64720 STI3220 EST256
Frames per second 12 44 49
Frame mem acc. time - 98 ns 98 ns
Boundaries control external external integrated
Input ports (8 bits) 2+1 3+1 2+1

The number of frames per second has been calculated at
maximum clock frequency considering 720x576 pel
images.

The required access time to the previous frame memory
has been calculated in better-case, considering only one
access per clock cycle, therefore FIFO delay-lines must be
used: two FIFOs of 11.264 bytes each, for STI3220 which
has three input ports, and only one for EST256 (see figure
8, for a block diagram of system connection). This time
has not been considered in L64720 because this device
can not afford the 25 frames/s required.

PE#i

M
U

X

16

Error

PE#i+1

M
U

X

16

Error

PE#i+2

M
U

X

16

Error

PE#i+3

M
U

X

16

Er ror

Figure 7. Multiplexing logic in data-path block.

Table 2

Technology ES2 dml CMOS 0,7 µm
Chip size 10,6 mm x 12,6 mm
Data-path block size (4 PEs) 2.617 µm x 424 µm
Clock frequency 20 MHz
equiv. transistors 604.566
signal pads 67

Figure 6. Layout Upper Memory

Frame

FIFO
EST256

Lower

Figure 8 . Previous frame memory connection diagram.

In STI3220 and L64720 the boundaries management
must be controlled by external logic. However, our
architecture includes the boundaries control that can be
adapted to different frame size.

Finally, as the minimum search area compliant with
MPEG-2 standard is -16/+15, it is necessary to use several
devices, working in parallel, to keep real-time video
requirements. With the three devices that we are
comparing, it is possible to build systems connecting four
chips to deal with this search area, but in EST256 some
specific facilities has been included to simplify this task:
the architecture outputs the Reference block with a
256-cycles delay by means of a dedicated output port,
moreover, the output results (the minimum error, the
motion vector and the error in the origin) can be
randomly accessed any time during 256 cycles. In figure 9
a system block diagram is shown. As it can be seen only
two external FIFOs are needed and the frame memory
bandwidth remains the same.

5. Conclusions.

In this paper we describe a specific architecture that
implements motion estimation in image coding, using a
full search block-matching algorithm. The proposed
architecture performs 11 GOPS for the operations:
subtraction, absolute value determination, accumulation
and comparison. The allowable pel-rate in the ASIC is
faster than the one required in the MPEG-2 standard and
cascaded chips can be used to deal with bigger search
areas. For example, using four devices, a -16/+15 search
area (minimum search area in MPEG-2) can be afforded.

6. Acknowledgements.

This work is being supported by a grant TIC95-0791
from the Comisión Interministerial de Ciencia y
Tecnología (CICYT) of the Spanish Government.

7. Bibliography.

[1] G.K. Wallace. "The JPEG Still Picture Compression
Standard". Communications of the ACM. Vol. 34, nº4.
April 1991.

[2] M. Liu. "Overview of the px64 Kbits/s Video Coding
Standard". Communications of the ACM. Vol. 34,nº 4,
April 1991.

[3] D. Le Gall. "MPEG: A video Compression Standard for
Multimedia Applications". Communications of the ACM.
Vol 34, nº 4, April 1991.

[4] K.R. Rao & P. Yip. "Discrete Cosine Transform.
Algorithms, Advantages, Applications". Academic Press
Inc. 1990.

[5] CCITT. Recommendation H.261. Dec. 1990. "Line
transmission on non-telephone signals. Video codec for
audiovisual services at p x 64 kbit/s".

[6] K. Guttag et al. "A single-Chip Multiprocessor For
Multimedia: The MVP". IEEE Computer Graphics and
Applications. Nov, 1992. pp 53-64.

[7] Konstantinides, V. Bhaskaran. “Monolithic Architectures
for Image Processing and Compression” IEEE Computer
Graphics & Applications. Nov 1992.

[8] H. Fujiwara et al. " An All-ASIC Implementation of Low
Bit-Rate Video Decoder". IEEE Trans. on Circuits and
Systems. Jun 1992.

[9] P.A. Ruetz et al. "A High-Performance Full-Motion
Compression Chip Set". IEEE Trans. on Circuits and
Systems. Jun, 1992.

[10] I. Tamitani et al. "An Encoder/Decoder Chip Set for the
MPEG Video Standard". IEEE ICASSP-92, CS Press, Los
Alamitos, Calif., 1992.

[11] D. Bursky. "Improved DSP ICs Eye New Horizons".
Electronics Design. Nov 11, 1993.

[12] P. Pirsch, N. Demassieux, W. Gehrke. "VLSI
Architectures for Video Compression-A Survey".
Proceedings of the IEEE. Vol. 83 No 2. Feb 1995.

[13] M. Ghanbari. "The Cross-Search Algorithm for Motion
Estimation". IEEE Trans. on Communications. Vol. 38 No
7. Jul 1990.

[14] R. Srinivasan, K.R. Rao. "Predictive coding based on
efficient motion estimation". IEEE Trans. on
Communications. Vol COM-33, Aug 1985.

[15] T. Komarek, P. Pirsch. "Array Architectures for Block
Matching Algorithms". IEEE Trans. on Circuits and
Systems. Vol 36, No 10, Oct 1989.

[16] K.M. Yang, M.T. Sun, L. Wu. "A Family of VLSI Designs
for the Motion Compensation Block-Matching Algorithm".
IEEE Trans. on Circuits and Systems. Vol 36, No 10, Oct
1989.

[17] ISO/IEC JTC1/SC29. Recommendation H.262. Nov. 1993.
"Generic Coding of Moving Pictures and Associated
Audio".

[18] “STI3220 Motion Estimation Processor”. Advance data.
July 1992. SGS-Thomson.

[19] “L64720 Video Motion Estimation Processor (MEP)”.
May 1994. LSI Logic.

Upper1

Memory

Frame

FIFO
EST256Lower1

Ref

Upper2

Lower2

Ref_Del

EST256
Ref_Del

EST256

EST256

Upper2

Upper1

Lower1

Lower2

Output

FIFO

Figure 9. System block diagram for -16/+15 search area.

06d_1
Figure 6. Layout

	CDROM Home Page
	1996 Home Page
	EDTC 96
	Front Matter
	Table of Contents
	Session Index
	Author Index

