
A. Dargelas is supported by ANRT grant n° 625/94

MOSAIC : a Multiple–strategy Oriented Sequential ATPG for
Integrated Circuits

A. Dargelas♦♣ , C. Gauthron ♣ and Y. Bertrand ♦
dargel_a@compass.fr, chrisg@compass.fr, bertrand@lirmm.fr

♦ LIRMM (Laboratoire d’Informatique, Robotique et Micro-électronique de Montpellier),
UMR 9928, Univ. Montpellier II / CNRS, 161, rue Ada, 34392 Montpellier Cedex 5 FRANCE
♣ COMPASS Design Automation 505 Route des Lucioles 06560 Sophia–Antipolis FRANCE

Abstract

The paper proposes a novel approach in an attempt to solve
the test problem for sequential circuits. Up until now, most
of the classical test pattern techniques use a number of
algorithms in several passes to detect faults. Our so–called
Multiple Strategy Approach takes into account the existing
techniques and algorithms, (improvements are proposed
for some of them) and at each step selects the strategy that
is best adapted to catch the targeted faults. This work has
been done with a focus on designing a real industrial
ATPG, able to handle real circuits consisting of several
hundreds of thousands of gates.

I / Introduction

During the past decade much academic work has been
done in an attempt to solve the problem of Automatic Test
Pattern Generation (ATPG) for sequential circuits [Mar86,
Che88a, Che88b, MaD88, Gou91, Lee91, Nie91, Ono91,
Kel93]. More recently several industrial tools (HITEC,
GENTEST, ...) have been developed for inclusion in CAD
suites. Two main techniques are classically used to
generate test vectors for circuits, namely, the deterministic
approach and the simulation–based approach. The
simulation–based approach may use either random or
genetic [Saa94, Pri94, Rud95] generation. In some cases
both techniques are found to be combined in the same tool,
in others they are separated.

It seems that no single technique gives the best results for
all the test cases. Taking this fact into account, we decided
to develop a new Sequential–ATPG, the so–called
MOSAIC tool, which aims at being able to cope with
industrial circuits. The designs targeted are real designs,
which may or may not be provided with partial scan. This
means that some sequential elements are not included in
scan chains. In addition to this, depending on the circuit

under consideration, the sequential elements (FFs) may or
may not be provided with reset facilities. Normally, an
initialization sequence is given by the designer to set the
circuit into its reset state, but there are some exceptions that
we have to deal with. As a consequence we do not assume
a reset state for these sequential elements.

The fundamental concepts on which our approach is
based originates mainly from the basic works of Fujiwara
and Shimono [Fuj83] on the FAN algorithm and Gouder
and Kaibel [Gou91] on the CONSEQUENT model.
Different strategies we have used are derived from various
papers : [Che88a, Sch88, Sch89, Nie91, Lee91, Ono91,
Kel93]. Section II describes the techniques commonly
used in test generation and explains the way we have
modified these techniques in MOSAIC. Section III
exposes our implementation of the Multiple Strategy
technique derived from [Min89], and Section IV describes
our approach for sequential circuits. Section V discusses
Strategy choices, then, Section VI presents the MOSAIC
results obtained on ISCAS89 benchmark circuits. Lastly,
Section VII gives conclusions and proposes some future
extensions.

II / Basic Techniques
The various techniques presented in this section are not

limited to combinational circuits. They are used with the
iterative array representation of sequ. circuits [Abr90].

II.1 / Value system
Since [Rot66] and the famous 5–Valued D–algorithm a

large number of value systems have been introduced in an
attempt to design a complete algorithm, in particular the
9–Valued algorithm [Mut76] and the Split Model
[Che88b]. More recently Gouders and Kaibel [Gou91]
have introduced the so–called ”bit–oriented coding for the
CONSEQUENT circuit model” that allows decision
inversion in sequential circuits without violating the

ED&TC ’97 on CD-ROM
Permission to make digital/hard copy of part or all of this work for personal or classroom use if granted without fee provided that copies are not made of distributed for fee or
commercial advantage, the copyright notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.1997 ACM/0-89791-849-5/97/0003/$3.50

completeness of the search process, as HITEC [Nie91]
does.

The 256–Valued system used in MOSAIC is derived from
that proposed by Gouders and Kaibel. The basic 16–Valued
alphabet is as follow: 0 , 1 , Z, x(01) ... x(01ZU) , U. In this
alphabet, 0 , 1 and Z represent the 3–state logic, x(...)
represents the unspecified value (which can be more or less
specified) and U represents the unknown and non
assignable value. For the bit–oriented coding we take 0 , 1
, Z , U as bit values. Value x(...) can take every 2 by 2, 3 by
3 or 4 by 4 combination inside the set of bit values. For
example, x(01) can be interpreted as follow: the value can
take the values 0 or 1 by specification. Table 1 shows the
coding of the value system:

values/coding Ubit Zbit 1bit 0bit
0 0 0 0 1
1 0 0 1 0
Z 0 1 0 0
U 1 0 0 0

x(01) 0 0 1 1
...

x(01ZU) 1 1 1 1
x(�) 0 0 0 0

Table 1: Value system encoding.
 The 256–Valued system is a Split–Model like system

[Che88b], having two machine representations within a
single byte, but without the relation component of the
original model. The combination of the two 16–Valued
systems (good circuit and faulty circuit value systems)
gives the final system. The advantages of this system are
multiple. First, the precision of the unspecified values is
increased by the fact that x(...) is never totally unspecified.
The value of x(...) is specified during the generation and
reaches a completely specified value at the end. This
makes it possible to detect conflicts earlier, and guides
heuristics such as Multiple Backtrace [Fuj83] more
powerfully. This value system makes it possible to deal
with the non resettable sequential circuit problem owing to
the U value which represents the value present on the
output of a flip–flop after power–up, when no reset is
available and no value can be justified for this flip–flop.
This value cannot be replaced by any other, thus preventing
the prospect of forbidden search–space branches.

II.2 / Multiple Backtrace

The FAN algorithm of Fujiwara and Shimono [Fuj83]
includes the Multiple–Backtrace concept. This procedure
allows the simultaneous satisfaction of a set of objectives
instead of a single one, as Single Backtrace does. The
Multiple–Backtrace process is used in MOSAIC with

modifications that allow it to fit our value system. Every
primitive has a Multiple–Backtrace inference method to
fill the 6 counters n0g, n1g, nZg, n0b, n1b, and nZb (g for
good machine, b for bad). This defines a new objective by
the 7–uplet (objective_gate, n0g, n1g, nZg, n0b, n1b, nZb).
Our Multiple Backtrace does not stop on a head line as in
the original version, since this concept has only a fringing
effect for huge looping circuits. Throughout this paper it
should be taken into consideration that the Multiple
Backtrace is made through all the allocated time frames
from objectives towards (i) primary inputs (PIs) in all time
frames and (ii) flip–flops (FFs) in the lowest allocated time
frame. These PIs and FFs constitute the set of decision
nodes. Our simplified implementation of Multiple
Backtrace preserves the advantage of the original Multiple
Backtrace against Single Backtrace, that is to say the
concurrent search of the best decision to take. In figure 1,
the efficiency of the 256–Valued system is illustrated. With
a 9–Valued system for example, all the x(...) values should
be replaced with a X value and no differences between
x(0Z) and x(1Z) should be seen. In this case an incorrect
choice for the decision to take can occur. In the same case,
with the 256–Valued system, the correct decisions will be
taken without any backtrack. In the figure, the circuit
values are given at the initial state, the decision values are
not implied.

1

1

x(01Z)
x(0Z)

x(1Z)

0

x(01)

1
x(01)

Objective
0

1

Decision

Bus

Figure 1: 256–Valued system and Multiple Backtrace.

II.3 / Basic Propagation technique

The propagation is based on a new method which takes
the maximum advantage of our 256–Valued system. Each
time the procedure wants to propagate a fault, it checks
where the fault has been propagated in the preceding step
(the fault site is the seed of this propagation). Then, from
amongst the candidates, i.e., the set of gates with a fault
effect on their inputs and an unspecified output, the
procedure selects the gate which is the most easily
observable with compatible x(...) values on other inputs
(enabling propagation). Following this a propagation
decision is taken and all the pending implications are
calculated. The alternatives are pushed into the stack in

case of backtracking. Figure 2 gives an example of the
basic technique:

0/1 [D]

0/x(0U)
PO

0/x(0U)

x(0U)/x(01U)
0/x(01U)

A

B

C

_

Figure 2: 256–Valued system and fault propagation.
The fault effect has reached A and B, and A is easier to

observe than B. With a classical value system, every x
value represents a ”don’t care” value and both paths are
interpreted as being equivalent by X–path check [Abr90].
Therefore, A is chosen to be the next gate to propagate the
fault. With our value system, we can see that A cannot
propagate the fault, so the only choice is B. The various
strategies for fault propagation are discussed later. This
technique can be seen as a kind of targeted D propagation.

II.4 / Basic Justification technique

a) Backtracking techniques
As previously presented, the Multiple Backtrace is the

main heuristic used in the decision tree process. The
justification is processed as long as there remains an
objective in the J–Frontier [Abr90]. The mechanism used
is similar to that described in [Fuj83].

 In the context of the bit–oriented coding of the value
system, the backtracking process (the testing of alternative
decisions), can be of two kinds: (i) inverting the previous
decision, (ii) unseting the corresponding failing bit
[Gou91]. The first technique consists of changing a 0
(respectively 1) to a 1 (0) when 0 (1) has failed to justify
objectives. The other technique in its original version
[Gou91] consists of unseting the bit 0 (1) at the decision
node (Pseudo–Primary Inputs) when previous implication
failed and implicating the changes. The first backtracking
technique (inverting the decision made) suffers from the
commonly known over specification problem [Gou91]. In
this paper we will call it the Binary Inversion Technique.
The second technique (unseting failing bits) solves this
problem because it does not force values that are not
needed to justify objectives. It just bounds the search space
by specifying the unspecified values and acts as a marker
for the backtrace. We will call it the Bit Inversion

Technique. One drawback of the method is the fact that
under some conditions the process does not rapidly
converge. For example, if the current conflicting state is
[0,0] and the only non conflicting state is [1,1], we have for
both techniques the worst cases for the backtracking
processes :
Notations:

. identification number of the decision pushed onto
 the decision tree : i

. Backtrace + Implication Operator : =Di>

. Conflict + Backtrack Operator : #Di>
1rst technique: [0,x(01U)] =D1> [0,0] #D1> [0,1] #D0>
[1,x(01U)] =D1> [1,0] #D1> [1,1]
2nd technique: [0,x(01U)] =D1> [0,0] #D1> [0,x(1U)]
=D2> [0,1] #D2> [0,x(0U)] #D2> #D1> #D0>
[x(1U),x(01U)] =D1> [x(1U),0] =D2> [1,0] #D2>
[x(0U),0] #D2> #D1> [x(1U),x(1U)] =D2> [1,x(1U)] =D3>
[1,1].

In the worst case, the first technique needs 3 backtracks
and 1 decision to be pushed onto the decision tree to
achieve the result. The second one needs 8 backtracks and
3 decisions.

b) Decision Ordering techniques

Our investigations detected another problem occurring
in Sequential State justification: this is the relative weight
that is given to the Decisions done on the Primary Inputs
and the State Decisions done on the Pseudo Primary Inputs.
This problem occurs because we use the Multiple
Backtrace instead of the Single Backtrace which gives a
single decision to take. The Multiple Backtrace gives us a
set of decisions, with some weights that do not take into
account the nature of the decision node: PI or PPI. The
testability measures are not sufficiently efficient to deal
with this problem. As a result, we made a preliminary study
on the ISCAS89 benchmarks and found out that the choice
of whether to push the PI Decisions or the PPI Decisions
first can drastically improve or degrade the performances.
Two efficient ordering–and–backtracking techniques have
been drawn from this study: PI first, short popping and PPI
first, long popping. Figure 3 illustrates these two
techniques used in reverse processing for state
justification.

1
0

0
1

0
X

X
X

001

PI
0

PI
0

PI
1

PPI
0

PPI
1

PPI
0

PI
0

PI
0

PI
1

PPI
0

PPI
1

PPI
0

PPI
PI

Time Frames

Decision Stack PI first,short popping

Decision Stack PPI first,long popping
PPI : pseudo primary inputsPI : primary inputs
PPO : pseudo primary outputsPO : primary outputs

PPO
PO

Figure 3 : Ordering and backtracking techniques

For PI first, short popping, the Multiple Backtrace
proposes a set of Decisions to take, with some weight, so
we take the PI decision with the highest weight as the
current decision. Following this, when no more PI
decisions are to be taken, we push the PPI decisions. When
the current time frame is completely justified, a check is
made on the prevention of state looping by state cover
comparison [Nie91] before stepping to a previous time
frame. If a backtrack occurs, the decisions are popped in
the reverse order they were pushed.

For PPI first, long popping, we take the PPI decision
with the highest weight as the current decision. Then, when
no more PPI decisions are to be taken, a check on the
prevention of state looping is done before we push the PI
decisions. When the current time frame is completely
justified, a step into the previous time frame can be made.
If a backtrack occurs, the PI decisions are popped without
considering their alternatives as long as we met a PPI
decision that will be considered for backtracking.

c) Illegal State Learning

Illegal state learning [Nie91] is done for each fault
during reverse time processing. It is available only during
the current fault test generation. Under the condition that
no backtrack has occurred due to the faulty state machine,
the illegal states learned are kept for all the faults.

These two Backtracking Techniques and Decision
Ordering Techniques constitute the first set of Multiple
Strategies. Next paragraph discuses more general
Strategies.

III / Multiple Strategy
Up to the present time the evidence suggestes that no

particular test generation strategy has been recognized to
be universally the best for all the faults in any circuit. One
of the challenges for present–day sequential ATPGs is to

have the ability to switch easily from one strategy to
another, depending on the testability degree of the targeted
fault in a given circuit. In particular, it has been pointed out
by Min [Min89] that during the backtrace process it may
be useful (in terms of number of backtracks) to use a
combination of various search strategies rather than a
single one. The advantage of this concept is that a
hard–to–detect fault can be detected by a particular
strategy well suited for this particular fault. A badly suited
strategy requires a large number of backtracks to converge
to a solution, a better strategy will result in more easy
convergence.

MOSAIC allows the use of various alternative strategies
and a counter of aborted faults provides information about
the historical efficiency of each strategy. From this
information, the best strategy at any time (i.e., the one with
the smallest counter) is used in the attempt to catch the
current fault. This approach is similar to that used by
[Min89] and [Wai90], with certain differences. In the
Multiple Strategy approach of Min, Single Backtrace was
performed, so that strategies were oriented by a
classification based on objective satisfaction ordering. In
MOSAIC we perform Multiple Backtrace where no
priority is given to objectives. Therefore we made a
classification of orthogonal strategies based on the
criterion of generation phase ordering, i.e. the ordering of
the propagation and justification phases. The choice of the
best strategy to apply at any time is an auto–adaptive
process. In practice, after an adaptative phase (during
which the strategy choice is arbitrarily done) the best suited
strategy is first applied to the current fault. For a small set
of faults, several strategies are tried before classifying
them as either redundant or aborted.

The set–up is defined in this paper as the sensitization of
a given stuck–at value. The main strategies are listed here:
a) Set–up / propagation first / justification last, b) Set–up
/ interlaced propagation and justification.

For example, circuit c6288 which is a multiplier, has a
huge number of paths. Attempting to sensitize an entire
path from the fault site to a PO and then justify it in one
shot, such as Set–up / propagation first / justification last
strategy will probably fail. Instead, by applying a small
propagation then immediately justifying it, the next
propagation step is constrained to be done correctly. This
is the reason why the Set–up / interlaced propagation and
justification is efficient in that case.

The Set–up / propagation first / justification last strategy
can be interpreted in terms of human reasoning as a

deductive process where a solution is first searched for
based on much hypothesis or assumption, and then when
found, a second phase of reasoning deals with the
verification of hypothesis. This was the high–level
mechanism of the D–Algorithm [Roth66].

The Set–up / interlaced propagation and justification
can be interpreted as a small step–by–step deductive
search, where a part of the solution is found and
corresponding hypothesis immediately verified.

We now examine these two strategies in detail. Figure 4
illustrates the Multiple–Strategy Switching in a single time
frame.

POPI
Fault site

Sensitisation path

Fault site

Propagation First Justification Last

Fault site

Propagation / Justification

Fault site

Switching

Justifications

Figure 4 : Switching Strategies

III.1 / Set–up / propagation first / justification last
strategy

– The Set–up is done by implying the stuck–at value. This
fills the J–frontier.

– A fault cone flag is set, in time frame 0, from fault site
to primary outputs and sequential elements inputs. The
propagation engine is used until fault effect reaches
either a primary output or a sequential element input.
In the second case, an additional positive time frame is
allocated, fault cone is updated and propagation is
launched again in this new time frame. At the end of
this phase we obtain the set of all the time frames
allocated by propagation, i.e. from t0 (the set–up time
frame) to tn (the first time frame for which the fault
appears on a PO). During the propagation, the breaking
of state looping is ensured by state cover comparison
whenever a new time frame is allocated.

– The justification engine tries to justify all objectives
present in all time frames allocated by propagation, by
assigning the PIs of all these time frames (t0...tn) and
the PPIs of the first time frame (t0). When the J–frontier
contains only sequential elements in the first time
frame, with identical values on good and bad machines

(no fault effect on PPIs at time frame 0), then a good
machine state justification is tried. A negative time
frame is allocated and the good machine values of the
sequential elements are implied in the negative time
frame. The basic justification technique and negative
time frame allocation are applied until no more gates
remain in J–frontier. At this step we have n positive
time frames (t0...tn) for fault propagation and m
negative time frames (t–m...t–1) for good machine state
justification. For negative time frames we copy the
good PI values on the bad PI values and simulate. From
this, two conclusions are possible:

. Good and Bad values at PPOs in time frame –1 are
identical. A valid justification sequence has been
found.

. Fault effect has reached PPOs in time frame –1 [Nie91].
We did not find a justification sequence for the
corresponding propagation sequence but a self
initialization sequence. As a result, we re–propagate
with this new knowledge (we keep the previous
propagation sequence in case of backtracking).Illegal
state learning [Nie91] is done in forward reverse time
generation, for each fault. It is available only during the
current fault test generation.

III.2 / Set–up / interlaced propagation and justifi-
cation
– This Strategy applies the same techniques as the previous

one, but the basic propagation technique is performed
one time in the first time frame. After this, the
justification technique is performed and if needed, the
good state justification is also performed in reverse
time processing.

– Then the basic propagation technique is launched again
toward Primary outputs or State elements inputs. In the
second case a new time frame is allocated for
propagation.

– This mechanism loops until the fault reaches output and
all the time frames are justified.

IV / Sequential Technique
Since the sequential test generation problem was

introduced, three time strategies (based on the iterative
array model) have been proposed in this paper to make the
combinational technique applicable for sequential
circuits: Forward Only time processing, Backward Only
time processing, Forward Reverse time processing. Each
strategy has advantages and drawbacks, and are separately
discussed in [Kel93]. In MOSAIC, we choose to switch

between two of them: Forward Reverse time processing
and Forward Only time processing. The first one is
necessary in order to have a complete algorithm and starts
from an unknown state. The second uses the fault

simulation knowledge and starts from a known state (both
fault free and faulty state are used). It helps to detect faults
which should be aborted by the Forward Reverse time
processing by starting at an unknown state.

FRTP : forward reverse time processing
FOTP : forward only time processing

FS : fault simulationTG : test generation

TG FS TG
FRTP FOTP

t0t–1 t1 t–1 t0 t1

FS

: Previous state information (good and faulty circuit)

t0 t1 t0 t1
f1–>D f2,f3–>P f2–>D f3–>D

f1
f2

f3

D : detected / P : propagated to PPOs

Phases

Time frames

Events

PPI PPO

PO

PI

Faults locations : f1, f2, f3
Fault statutes :

Figure 5: Sequential test generation overview.

The rule to choose between the two time strategies is
simple, if there is a previous state information available for
a fault [Ono91] [Kel93], choose Forward Only time
processing for this fault, choose Forward Reverse time
processing elsewhere. A general overview of the test
generation process is given in figure 5. The previous state
information problem is solved by keeping in memory (after
every fault simulation) the list of the FFs reached by each
fault effect, with the associated bad value and the
fault–free circuit state. In figure 5, we can see that fault f1
is detected using 3 time frames, time frame t0 is the set–up
time frame (where fault is activated), time frame t1 is the
time frame where the observation of the fault effect is
allowed, and time frame t–1 is the time frame where all the
states are justified (values on PPI in time frame t–1 are x(...)
or U). Then during the fault simulation phase applied on
f1 test sequence, some previous state information is
learned for faults f2 and f3. Fault f2 is chosen to be tried by
Forward Only time strategy. For fault f3, previous state
information is kept and used for the next fault simulation
phase. In this example, an explicit initialization sequence
is needed for fault f1. On the other hand, the initialization
sequences for faults f2 and f3 are implicitly contained in
previous initialization and propagation sub–sequences.

In practice a large number of faults will have a previous
state information after fault simulation, so we choose to try
the faults which have the greatest activity (the greatest
number of FFs reached) first. This is done until one is
detected. We can limit the maximum number of tries
before switching again in Forward Reverse Time
Processing. This heuristic reduces the global number of
vectors generated.

V / Strategy Choice

Backtracking
Technique

Decision Search Time

Forward–

Forward–

Prop. First,

Interlaced

PPI first,

PI first,

Binary

Bit Invertion

Technique Strategy
Ordering

Strategy

Inversion long pop

short pop

Just Last

ReverseProp–Just

Only

Table 2: Summary of the different strategies

Table 2 summaries the various strategies available in
MOSAIC. In practice, the two Search Strategies and Time
Strategies are always used for all the faults with the
switching mechanisms explained in previous sections. We
started a study on the influence of the Backtracking
Technique and the Decision Ordering Technique. The first
results show that the couples (Binary Inversion ; PPI
first,long popping) and (Bit Inversion ; PI first, short
popping) are the most useful on the ISCAS89 benchmarks.

Back. Tech Deci. Ord. Search Str. Time Strat. # Detected # Vector CPU time

Bin Inv PPI first Both Both 367 1842 9.7min

Bin Inv PPI first Both Forw–Rev 367 2474 11.2min

Bit Inv PI first Both Both 285 809 17.6min

Bin Inv PPI first Prop. First Both 364 1693 4.7min

Bin Inv PPI first Interlaced Both 347 1312 8.2min

Table 3: s400 experiments with different strategies

For example, s382, s400, s420, s444, s820, s834, s1488,
s1494 are treated powerfully with the first one, while s208,
s298, s344, s526, s1196, s1238, s13207, s1423, s15850 are
treated powerfully by the second one. Some further
investigations need to be done. Table 3 gives an experiment
conduced on s400 using an UltraSparc 175 Mhz to
illustrate the effectiveness of the different strategies. The
conditions are identical for each experiment: 1000
backtracks max. per fault, 500 time frames max. for
forward or reverse processing, 1 pass on the fault list. The
best configuration of strategy is the first one for this
particular circuit. The second one generates more vectors
because it does not benefit from the previous state
knowledge and the Forward–Only strategy. The other
combinations achieve less fault coverage in that particular
case so they are not interesting.

VI / Results

The efficiency of MOSAIC has been experimented by
generating tests for several classical benchmark circuits.
Test generation results are given in table 4. For
comparison, a compilation of the results for HITEC
[Nie91, Rud95] are also reported on these tables. MOSAIC
achieves a better fault coverage with less vectors than
HITEC does. The Bold rows mark the benchmarks for
which we achieve a better fault coverage than HITEC, or
at equal fault coverage we generate less vectors.

Circuits s382, s400, s444, s526, s1423, s5378, s35932
are the illustration of the ability of MOSAIC to reach a
higher fault coverage than HITEC with less CPU effort.
Many circuits illustrate the fact that MOSAIC generates
more compact test sequences than HITEC.

MOSAIC (SPARC20–70MHz) HITEC [Rud95] (SPARC 20)
Circuit Faults Time Untest. Vectors Detect. Detect. Vectors Untest. Time
s208 215 15s 53 133 137 137 184 78 29s
s298 308 48.7s 40 343 265 265 281 26 32.3m
s344 342 9.4s 5 138 327 324 139 11 17.6m
s349 350 3.1m 9 97 334 334 111 13 11.5m
s382 399 39m 11 3462 358 301 1665 10 3.05h
s386 384 6.05m 44 308 314 314 275 70 11.2s
s400 424 15m 16 1842 367 342 1669 17 2.31h
s420 430 9.2m 212 147 179 179 218 251 45.3m
s444 474 17.1m 25 1165 400 378 2060 25 2.84h
s526n 553 11.4m 19 679 379 – – – –
s526 555 10.1m 18 861 407 346 680 22 10.7h
s641 467 49s 36 225 404 404 184 63 6.44s
s713 581 71s 76 225 476 476 190 105 9.95s
s820 850 6.8m 30 1029 814 814 1113 36 1.01m
s832 870 19.1m 33 1077 817 817 1181 53 8.72m
s838 857 29.7m 460 177 244 – – – –
s953 1079 36.2s 976 24 89 89 41 990 15.6m
s1196 1242 11.4s 3 323 1239 1239 460 3 6.34s
s1238 1355 17.6s 72 343 1283 1283 469 72 9.97s
s1423 1515 18.2m 9 301 1049 776 177 14 27.5h
s1488 1486 33.1m 42 979 1429 1444 1138 41 31.0m
s1494 1506 33.8m 42 1087 1452 1453 1178 52 18.3m
s5378 4603 1.2h 156 628 3337 3238 941 225 36.3h
s9234 6927 0.1s 6909 4 18 18 24 3916 2.08m
s13207 9815 1.3h 8960 218 626 – – – –
s15850 11727 4.1m 11631 9 86 86 32 11403 28.4m
s35932 39094 5.28h 3984 632 35002 34898 439 3984 8.07h

HITEC results on circuits s208, s420, s510, s953, s9234, s15850 are obtained on a SPARC 2.

Table 4: Iscas 89 benchmark results

VII / Conclusions
In this paper we describe a new test generator (MOSAIC)

that was developed to cope with the test of real industrial
circuits. The circuits targeted may (i) be very large, (ii)
contain more or less sequentiality (iii) use 3–state

components and (iv) use unresettable flip–flops. A
multiple strategy approach has been chosen to profit from
the various existing techniques by switching from one to
another according to the targeted fault in a given context.
Several strategies may be employed to deal with sequential
circuits in the framework of time array model. Results are

presented on the complete set of ISCAS89 benchmarks.
Without using any learning techniques [Sch89], which are
known to be inefficient on huge circuits (due to memory
need), we achieve a high fault coverage in a compact test
length. These good results are due to the following
concepts used in MOSAIC. First, we introduce a new value
system, the 256–Valued model, that gives increased
accuracy for defining unspecified values. Second, we
choose to use two different backtracking mechanisms and
two decision orderings. Finally, we give MOSAIC the
ability to switch between various Search Strategies and
Time Strategies, which is the best way to detect the greatest
number of different fault types. Multiple Backtrace
technique have been extended to the sequential domain
largely thanks to the different decision orderings.
Impressive results are obtained compared to HITEC in
terms of fault coverage increase, test length and CPU time
reduction. Future extensions of this work will concern the
improvement of choice between the large set of strategies
we have and preprocessing for untestable faults
identification.

References:

[Abr90] M. Abramovici, M.A. Breuer, and A.D.
Friedman, ”Digital Systems testing and
Testable Design”, Computer Science Press,
1990.

[Che88a] W.T. Cheng, ”The BACK algorithm for
sequential test generation,” Proc. Int. Conf.
Computer Design , pp. 66–69, 1988.

[Che88b] W.T. Cheng, ”Split circuit model for test
generation,” Proc. 25–th Design Automation
Conf., pp. 96–101, 1988.

[Fuj83] H. Fujiwara and T. Shimono, ”On the acceleration
of test generation algorithms”, IEEE Trans. on
Computers, Vol. C–32, n° 12, pp. 1137–1144,
December 1983.

[Gou91] N. Gouders and R. Kaibel ”Test generation
techniques for sequential circuits” Proc. IEEE
VLSI Test Symposium, pp. 221–226, 1991.

[Kel93] T.P. Kelsey, K.K. Saluja, and S.Y. Lee, ”An
efficient algorithm for sequential circuit test
generation” IEEE Trans. on Computers, Vol.
42, n° 11, pp. 1361–1371, November 1993.

[Lee91] D.H. Lee and S.M. Reddy, ”A New Test
Generation Method for Sequential Circuits”
Proc. Int. Conf. on Computer–Aided Design,
pp. 446–449, 1991.

[MaD88] H.–K.T. Ma, S. Devadas, A.R. Newton, and A.
Sangiovanni–Vincentelli, ”Test generation for

sequential circuits”, IEEE Trans.
Computer–Aided Design, Vol. 7, N°10, pp.
1081–1093, October 1988.

[Mar86] R. Marlett, ”An effective test generation system
for sequential circuits”, ” Proc. 23–th Design
Automation Conf., pp. 250–256, 1986.

[Min89] H. B. Min and W. A. Rogers, ”Search Strategy
Switching : An Alternative to Increased
Backtracking”, Proc. Int. Test Conf., pp.
803–811, 1989.

[Mut76] P. Muth, ”A nine–valued circuits model for test
generation”, IEEE Trans. on Computers, Vol.
C–25, n° 6, pp. 630–636, June 1976.

[Nie91] T. Niermann and J.H. Patel, ”HITEC: A test
generation package for sequential circuits”,
Proc. European Conf. on Design Automation,
Amsterdam, The Netherlands, pp. 214–218,
February 1991.

[Ono91] T. Ono and M. Yoshida, ”A Test Generation
Method For Sequential Circuits Based on
Maximum Utilisation of Internal States” Proc.
Int. Test Conf., pp. 75–82, 1991.

[Pri94] P. Prinetto, M. Rebaudengo, and M. Sonza Reorda,
”An automatic test pattern generator for large
sequential circuits based on genetic algorithms
” Proc. Int. Test Conf., pp. 240–249, 1994.

[Rot66] J.P. Roth, ”Diagnosis of automata failures: A
calculus and a method”, IBM Journal Research
and Development, Vol. 10, July 1966.

[Rud95] E.M. Rudnick and J.H. Patel, ”Combining
deterministic and Genetic Approaches for
sequential circuit test generation”, Proc. 32–th
Design Automation Conf., pp. 183–188, 1995.

[Saa94] D.G. Saab, Y.G. Saab and J.A. Abraham,
”Iterative [simulation–based
genetics+deterministic techniques] complete
ATPG”, Proc. Int. Conf. on Computer–Aided
Design, pp. 40–43, 1994.

[Sch88] M.H. Schulz, E. Trischler, and T.M. Sarfet,
”SOCRATES: A Highly Efficient Automatic
Test pattern Generation System”, IEEE
Transactions on Computer–Aided Design,
Vol.7, n°1, January 1988.

[Sch89] M.H. Schulz and E. Auth, ”ESSENTIAL: an
efficient self–learning test pattern generation
algorithm for sequential circuits”, Int. Test
Conf. , pp. 28–37, 1989.

[Wai90] J.A. Waicukauski, P. A. Shupe, D.J. Giramma, A.
Matin, ”ATPG for Ultra–Large Structured
Designs”, Proc. Int. Test Conf., pp. 44–51,
1990.

	CD-ROM Home Page
	EDTC97
	Front Matter
	Table of Contents
	Session Index
	Author Index

