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Abstract�This paper is dedicated to correct synthe�
sis� By correct synthesis we mean� that there is a math�
ematical proof telling us� that the output circuit de�
scription ful�lls the input circuit description� There are
several ways to achieve correct synthesis� In this paper�
we present a novel approach which integrates conven�
tional synthesis algorithms thus guaranteeing the same
quality of designs� Our approach is fully automatic� al�
though it is based on rule applications within a theorem
prover� We compare our results in the area of retiming
to other approaches�

I� Introduction

Performing synthesis steps by hand is critical as
far as correctness is concerned� Nowadays most syn�
thesis steps are fully automated and the synthesis re�
sults have become much more reliable than hand de�
signs� However� the correctness of synthesis now de�
pends on the correctness of the synthesis programs�
One could think of verifying synthesis programs and
thereby guarantee the correctness of all synthesis re�
sults� But in general� synthesis programs are far too
complex to apply formal software veri
cation tech�
niques�

There are several reasons why automated synthesis
may be error prone�

� Synthesis tools have become more and more com�
plex with an increasing number of people being
involved in the design of the synthesis tool�

� Synthesis tools employ complex data types and
procedures for representing and transforming cir�
cuits�

� Synthesis tools are frequently combined� As inter�
mediate formats� HDLs are used� Very often the
semantics of HDLs are not de
ned as precisely as
they should be� and hence the circuit descriptions
are interpreted di�erently by di�erent tools�

There are several methods for increasing the reliability
of synthesis results ��� ���� ���� ���� See ���� ��� for a
survey on related work� In this paper� we present our
formal synthesis approach HASH �Higher order logic
Applied to Synthesis of Hardware�� and compare our
approach to other approaches�

The paper is structured as follows� We 
rst give an
overview of techniques for verifying synthesis results�
Then we will describe our formal synthesis approach
�HASH� as a general method for achieving correct syn�
thesis� Afterwards we apply this concept to retim�
ing� Finally some experimental results achieved with
HASH are compared with other approaches�

�This work has been partly �nanced by the Deutsche For�
schungsgemeinschaft� Project SCHM ������	


II� Post�Synthesis�Verification Approaches

Since it is practically impossible to verify the cor�
rectness of conventional synthesis programs� designers
normally validate synthesis results by simulating both
input and output circuit descriptions� thus increas�
ing reliability� If one is lucky� one might 
nd errors
quickly� However� the absence of errors can only be
guaranteed by exhaustive simulation� which is applica�
ble only to very small sized circuits�

Tautology Checkers� Model Checkers

Formal veri
cation techniques are an advanced ap�
proach towards guaranteeing correctness� There are
fully automated veri
cation techniques� as well as
veri
cation techniques that require user interaction�
Within the circuit designer community� veri
cation
techniques will only be accepted if they are fully auto�
matic� However� full automation can only be achieved
at lower levels of abstraction� There are two automatic
veri
cation techniques� that are frequently used� tau�
tology checkers and model checkers�

Boolean tautology checkers ��� can only be applied
to pure combinatorial circuits and to sequential cir�
cuits with same state representation� The timing com�
plexity increases exponentially with the size of the cir�
cuits� In order to also verify general synchronous cir�
cuits� model checkers ��� are applied� Model checkers
perform a breadth 
rst state traversal on the prod�
uct circuit� The set of states that have been reached
so far are represented by BDDs� Step by step� the
set of states is increased by states that can directly
be reached� starting from one of the states� in the
current set� Each traversal step is performed by a
BDD�transformation� The algorithm terminates� if no
further states are found� i�e� the BDD remains un�
changed� There are two aspects that have a major
impact on the duration of model checking� the size of
the BDDs and the number of traversal steps� Both
the number of traversal steps and the size of the BDD
grow exponentially with the number of state variables�

Specialized Veri�cation Techniques

A major handicap for general veri
cation tech�
niques is� that they just get the input and the result
of the synthesis process� but they cannot exploit the
knowledge of how the result was derived� Veri
cation
can be performed much more e�ciently if one knows�
that only speci
c steps have been performed�

The approach presented in ��� is based on a model
checker and increases performance by exploiting func�



tional dependencies� For speci
c synthesis domains
�retiming� state minimization������ this technique can
reduce the veri
cation time signi
cantly� as compared
to conventional model checking�

Another specialized veri
cation technique that is
designed for retiming synthesis steps only is described
in ���� During retiming the overall shape of the struc�
ture is not changed entirely� It is only the registers�
that have been shifted� The program tries to �match�
the former and the retimed circuit description� This
can be performed pretty fast� In contrast to ���� this
approach is limited to pure retiming�

There are two major drawbacks of these spezial�
ized veri
cation techniques� complexity and combin�
ability� As regards the complexity� the general prob�
lem of proving the equivalence of two circuits is NP�
complete� For some synthesis steps� there do exist
some powerful veri
cation techniques ���� In ���� it has
been exploited� that the implementation was derived
by retiming the original circuit� Nevertheless� the in�
formation about how the retiming was performed has
to be extracted by �matching� the two descriptions�
The overall scenario �synthesis�veri
cation� could be
signi
cantly speeded up� if one fed the information�
on how the retiming was performed� directly from the
synthesis step to the veri
cation step� However� ex�
ploiting the information about how synthesis was per�
formed eases veri
cation but is impossible for complex
synthesis procedures consisting of various single steps�
This motivates us to tightly bind synthesis and ver�
i
cation for obtaining an integrated formal synthesis
step�

With respect to the combinability� a specialized ver�
i
cation technique can only be applied to its corre�
sponding synthesis step� For example� there are spe�
cialized veri
cation techniques for logic minimization
�tautology checkers� as well as retiming ���� ���� but
there is no e�cient technique for a compound �retim�
ing�logic minimization� step� and one would have to
resort to a general veri
cation technique� It shows�
that splitting synthesis into very basic synthesis steps
and combining them with specially adapted veri
ca�
tion techniques increases veri
cation performance �
divide and conquer�

III� The Formal Synthesis Approach �

HASH

A� Concept

HASH �Higher order Logic Applied to Synthesis
of Hardware� is a toolbox for implementing formal
synthesis programs� HASH provides a set of ba�
sic hardware transformations implemented as logical
derivation steps within the theorem prover HOL ����
HASH provides means for embedding existing synthe�
sis heuristics� logical transformations that are para�
metrized by control information describing how the
synthesis step is to be performed� This leads us to
formal synthesis programs where the transformational
aspect �inside HOL� is clearly separated from the de�
sign space explorational aspects �conventional synthe�

sis heuristics� outside HOL��
With respect to the complexity problem mentioned

in the previous section� HASH circumvents it by pro�
viding forward derivational steps� instead of post�
synthesis veri
cation� Searching for the proof of equiv�
alence for two circuits is NP�complete � formally
transforming one to the other is not�

In HASH � as well as in specialized veri
cation
techniques � synthesis is split into a series of basic
transformation steps whose correctness aspects can be
handled e�ciently� HASH also furnishes the means for
combining these basic transformation steps towards
complex synthesis programs� If for example� one for�
mal synthesis step leads to the theorem � a � b and
the succeeding synthesis step leads to � b � c� the
compound synthesis step � a � c can e�ciently be
derived by means of a simple transitivity rule in HOL�
The 
rst step could be e�g� a retiming step and the
second a logic minimization step� Since the complexity
of the transitivity step in HOL is constant �pointers �
no copying�� the overall complexity of the compound
synthesis step is the sum of its two parts�

B� Security Aspects

Theorem provers such as HOL provide a set of func�
tions for constructing� destructing and manipulating
terms� formulae and theorems� Terms� formulae and
theorems have speci
c data types� These types are
encapsulated� There is a �xed set of basic functions
for producing values having these types� There is no
other way to produce terms� formulae and theorems�

Theorem provers guarantee safety� The only way
to derive a theorem is by deriving it from axioms
and rules� i�e� applying basic functions� So theo�
rem provers are as safe as the implementation of their
core of basic functions� Usually these cores are pretty
small� The HOL calculus ���� for example� consists of �
rules and � axioms� This makes theorem provers very
reliable�

Tautology checkers and model checkers on the other
hand do not have such a core� They are nothing but
programs that somehow decide whether or not some
formula holds� In general� the implementation of such
programs result in large source codes� and each pro�
gramming error may lead to false veri
cation results�

C� Conventional vs� Formal Synthesis

The formal synthesis approach HASH derives the
output circuit description within a theorem prover�
rather than just computing it as in conventional syn�
thesis� The major di�erence is the result� Conven�
tional synthesis programs only map the input circuit
description to the output circuit description� Formal
synthesis programs map the input circuit description
to a theorem stating that some implementation� which
has been derived during formal synthesis� ful
lls the
input circuit description� Formal synthesis however
presumes� that all circuit descriptions are represented
within logic�

The advantage of a formal synthesis program is



its implicit correctness� Whenever it produces a re�
sult� this result is also correct� Formal synthesis pro�
grams are as reliable as the core of the theorem prover
that they are based on� This makes them much more
reliable than conventional synthesis programs� where
there is no such core� and one would have to verify
the entire program in order to ensure correctness� We
will use the simple retiming synthesis step in order to
describe the bene
ts of formal synthesis as compared
to other approaches towards synthesis correctness�

IV� Retiming by Means of Logical

Transformations

The implementation of our retiming procedure is
based on the theory �Automata� ���� which we im�
plemented in the HOL theorem prover� Automata was
designed for synthesis purposes� Automata provides
means for representing synchronous circuits and is also
the base for synthesis speci
c transformations such as
state minimization� state encoding� logic optimization
and retiming�

A� The Procedure

The retiming procedure in HOL is based on a uni�
versal retiming theorem� This theorem represents a
general pattern� which can be instantiated for various
retiming transformations� It can be applied in both di�
rections� forward�backward retiming� Figure  infor�
mally sketches the meaning of this theorem� Hereby�
s denotes the initial state� x the auxiliary variables
within the combinatorial part and s� the successor
state�
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 General Pattern for Rewriting

For forward retiming� the combinatorial part is split
into two� one part f over which the registers are
shifted and the other part g which is not a�ected�
There is one compound register named D with q as an
initial value� In the retimed circuit� the initial state of
the new compound register becomes f�q�� The theo�
rem �RETIMING�THM� states� that the original and the
retimed circuit are equivalent�

�RETIMING THM�

	
�
�
�
�
�

�
�

� automaton�
���i� s�� let x � f�s� in let �o� s�� � g�i�x� in �o� s��� �
q

�
�
automaton�
���i� s�� let �o�x� � g�i� s� in let s� � f�x� in �o� s��� �
f�q�

�

Backward retiming is more complex since one has to

nd the q s corresponding to some expression repre�
senting f�q�� We will not discuss this issue in this
paper�

In the Automata theory� circuits are unambigu�
ously represented by pairs consisting of a compound
function and an initial state� This compound func�
tion describes the output and the next�state behavior�
The registers are formalized implicitly� The constant
automaton maps such pairs to functions that map time
dependent input signals to time dependent output sig�
nals�

The output and state transition functions in lines
� and � of the theorem correspond to the structures
of the combinatorial parts of the circuits �
gure ��
These functions map the pair consisting of input i and
the current state s onto the pair consisting of output
o and next state s�� Lines � and � correspond to the
initial states of the two circuits�

Using an automaton as a formal representation� the
overall retiming procedure consists of four steps�

� First the combinatorial part is split into f and g�
Assigning combinatorial components to f or g can
either be performed by hand or some arbitrary
external program�

�� Then the general retiming theorem is applied�
The current circuit description is matched with
the left hand side of the equation and one pro�
ceeds with the right hand side�

�� Then f and g are joined to a single combinatorial
part�

�� Finally the new initial values of the shifted reg�
isters f�q� are determined via evaluation�

Figure � shows a retiming example and 
gure � de�
scribes� how it is matched to our retiming theorem�
In our example� there are three combinatorial parts�
�� � and MUX� When applying our synthesis proce�
dure� f consists of the ��component only and g con�
sists of � and MUX�
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 Retiming Example

B� Where are Logical Skills Needed�

To answer this question� one has to distinguish be�
tween the designer of the formal synthesis tool and the
circuit designer� who uses this tool� Proving the cor�
rectness of theorems such as �RETIMING�THM� and im�
plementing corresponding transformations �four steps
of the retiming procedure� requires a thorough under�
standing of logic� hardware and underlying theorem
prover �HOL�� The formula in �RETIMING�THM� is true
higher order logic �universal quanti
cation over func�
tions f and g� polymorphism�� Its proof is tedious
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 �
 Example for Applying the Retiming Scheme

and cannot be automated �induction over time� etc���
However it has only to be proved once and for all�

The above mentioned procedure for retiming has
a clean interface for integrating heuristics that pro�
duce the control information� i�e� the cut between f
and g� This demonstrates the clear division between
the design space exploration and transformation in our
concept� The heuristic has nothing to do with logic�
and as a consequence� switching from one heuristic to
another requires no change in the theorem or in the
retiming procedure�

From the circuit designer s point of view� synthe�
sis tools based on HASH are the same as conventional
synthesis tools� During synthesis� everything is per�
formed automatically� the transformational procedure
adapts the theorem to the current task� Logic related
user interaction �proof search� is not required from the
circuit designer s part�

C� Faulty Heuristics

The determination of the cut in step  may be per�
formed arbitrarily� It is possible to do it by hand�
and it is also possible to invoke some program� This
allows us to reuse existing techniques ��� ���� The
decision on how to cut does not violate correctness�
If a cut was given� that does not match our pattern�
then our transformation would fail� since the general
retiming theorem could not be matched and an excep�
tion will be raised� implicitly� An �incorrect� theorem
however cannot be derived due to the principle of the�
orem provers�

To illustrate this point� let us choose f to consist of
the comparator and the multiplexer and g to consist
of the incrementer �
g� ��� During the 
rst step of the
retiming procedure the output and transition function
is transformed into an equivalent output and transi�
tion function consisting of two subfunctions f and g�
It is not possible to 
nd such a split and therefore
trying to derive such circuit will fail at some point
in HOL� In our implementation� the algorithm tries
to cut the combinatorial block as described in 
gure
�� As can be seen� the original function has a triple
representing the state variables and the falsely split
function has � state variables� The equality of the old
and the new combinatorial block cannot be derived �

it is even impossible to express the equality due to the
fact that the left and the right hand side would have
di�erent types� In HOL� this results in an exception
when trying to build the equality expression�
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V� Experimental Results

We applied the formal retiming step to the example
given in 
gure � and to the sequential circuits from
the IWLS � benchmarks set� The results are listed
in table I and table II� respectively�

n ��ip�ops �gates SIS SMV HASH
	 � � �
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	 �
�
� � � �
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�
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TABLE I

Example from Figure �

name ��ip�ops �gates Eijk�	 Eijk�� SIS HASH
s���
	 � 	�� �
� �
 	
� �
�
s��� 	� 		� ��
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�
s���
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� ��
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	 �� ��� � � � ��
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s		�� 	� ��� � � �
	 �	
	
s	��� � �� � � � 	��
�
s	��� � ��� 	
� �
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 	��
	
s	��� � �� � � 	
� 	��


TABLE II

IWLS��� Benchmarks

The example in 
gure � is scalable with the
bitwidth n of the data signals� We compared our re�
sults to the veri
cation results achieved with di�erent
post�synthesis�veri
cation approaches� The synthesis
environment SIS provides a 
nite state machine com�
parison technique ���� SMV is a multi�purpose model



checker ���� Van Eijk presented a model checker �in�
dicated with Eijk�� and an advanced version that ex�
ploits functional dependencies �indicated with Eijk���
����

All times are given in seconds� The benchmarks
have been run on an Ultra Sparc with ��� Mb ex�
cept for the results in the columns Eijk� and Eijk���
which have been taken from the paper ��� and were
run on an HP ����� The dash ��� indicates� that the
benchmark could not be processed in reasonable time
and the question mark indicates that no results were
reported in ����

We found out� that in our approach� the time con�
sumption depends on the size of the circuit but is quite
independent from the cut� Due to step � �see section
IV�A�� it becomes a little slower for large sized func�
tions f � In table I and table II� we performed a retim�
ing with f covering a maximum number of retimable
gates� i�e� the worst case for our approach�

The complexity of model checking depends on the
size of the combinatorial part and on the maximum
number of steps needed to reach all states� In general
the size of the BDDs for representing the currently
covered states and transforming this set increases ex�
ponentially with the size of the combinatorial part �see

gures I and II��

It turns out� that our approach can be applied to
circuits with sizes that are beyond what can be han�
dled using model checking or related techniques� Our
approach �indicated with HASH�� requires a higher
basic time consumption� This makes HASH slower
for small sized circuits� For larger sized circuits� how�
ever� the time consumption increases in a moderate
manner� One comes to the same result when deal�
ing with the IWLS � benchmarks� Circuits s�����
s���� and s���� are all fractional multipliers with
di�erent bitwidths� �� �� and ��� respectively� None
of the model checkers where able to verify the ���Bit
version� From the ��Bit version towards the ��Bit
version� the time consumption increased rapidly� fac�
tor ��� for SIS and Eijk� and factor �� for Eijk���
The corresponding factor for our approach is �� and
it is even possible to handle the ���Bit version in a
reasonable time�

The results achieved with HASH for the example
from 
gure � are much better than those achieved for
the IWLS � benchmarks� This is due to the fact�
that we chose to perform the retiming on an RT�level
representation� which consists of n�bit circuits whereas
the model checking techniques are based on simple
temporal logic and can therefore only handle !at� bit�
level descriptions at the gate level� In our approach�
operating at the RT�level reduces the complexity of
steps ��� However the complexity of the initial state
evaluation step �step �� is not a�ected�

VI� Summary and Conclusions

We introduced a formal synthesis approach HASH�
where all basic transformation steps are performed by
rule applications within a theorem prover and applied

this approach to retiming� HASH also provides var�
ious other synthesis related transformations on syn�
chronous circuits such as state encoding� signal encod�
ing and the elimination of redundant parts encoding
�see also �����

This approach increases the reliability of the syn�
thesis program� since the correctness only depends on
the core of the theorem prover whereas in conventional
synthesis programs there is no such core and every er�
ror in the synthesis tool may a�ect the correctness of
synthesis results� We have shown� that it is possible
to write formal synthesis programs without really in�
venting new algorithms but by exploiting conventional
synthesis programs and giving them a formal basis�
This implies that the quality of designs produced us�
ing HASH is the same as that of a conventional syn�
thesis tool� Furthermore� since the interaction within
HASH is the same as that of a conventional synthesis
tool� its acceptance among designers is eased�
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