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Abstract— This paper is dedicated to correct synthe-
sis. By correct synthesis we mean, that there is a math-
ematical proof telling us, that the output circuit de-
scription fulfills the input circuit description. There are
several ways to achieve correct synthesis. In this paper,
we present a novel approach which integrates conven-
tional synthesis algorithms thus guaranteeing the same
quality of designs. Our approach is fully automatic, al-
though it is based on rule applications within a theorem
prover. We compare our results in the area of retiming
to other approaches.

I. INTRODUCTION

Performing synthesis steps by hand is critical as
far as correctness is concerned. Nowadays most syn-
thesis steps are fully automated and the synthesis re-
sults have become much more reliable than hand de-
signs. However, the correctness of synthesis now de-
pends on the correctness of the synthesis programs.
One could think of verifying synthesis programs and
thereby guarantee the correctness of all synthesis re-
sults. But in general, synthesis programs are far too
complex to apply formal software verification tech-
niques.

There are several reasons why automated synthesis
may be error prone:

o Synthesis tools have become more and more com-
plex with an increasing number of people being
involved in the design of the synthesis tool.

o Synthesis tools employ complex data types and
procedures for representing and transforming cir-
cuits.

o Synthesis tools are frequently combined. As inter-
mediate formats, HDLs are used. Very often the
semantics of HDLs are not defined as precisely as
they should be, and hence the circuit descriptions
are interpreted differently by different tools.

There are several methods for increasing the reliability
of synthesis results [1], [2], [3], [4]. See [5], [6] for a
survey on related work. In this paper, we present our
formal synthesis approach HASH (Higher order logic
Applied to Synthesis of Hardware), and compare our
approach to other approaches.

The paper is structured as follows: We first give an
overview of techniques for verifying synthesis results.
Then we will describe our formal synthesis approach
(HASH) as a general method for achieving correct syn-
thesis. Afterwards we apply this concept to retim-
ing. Finally some experimental results achieved with
HASH are compared with other approaches.

*This work has been partly financed by the Deutsche For-
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II. POST-SYNTHESIS-VERIFICATION APPROACHES

Since it is practically impossible to verify the cor-
rectness of conventional synthesis programs, designers
normally validate synthesis results by simulating both
input and output circuit descriptions, thus increas-
ing reliability. If one is lucky, one might find errors
quickly. However, the absence of errors can only be
guaranteed by exhaustive simulation, which is applica-
ble only to very small sized circuits.

Tautology Checkers, Model Checkers

Formal verification techniques are an advanced ap-
proach towards guaranteeing correctness. There are
fully automated verification techniques, as well as
verification techniques that require user interaction.
Within the circuit designer community, verification
techniques will only be accepted if they are fully auto-
matic! However, full automation can only be achieved
at lower levels of abstraction. There are two automatic
verification techniques, that are frequently used: tau-
tology checkers and model checkers.

Boolean tautology checkers [4] can only be applied
to pure combinatorial circuits and to sequential cir-
cuits with same state representation. The timing com-
plexity increases exponentially with the size of the cir-
cuits. In order to also verify general synchronous cir-
cuits, model checkers [3] are applied. Model checkers
perform a breadth first state traversal on the prod-
uct circuit. The set of states that have been reached
so far are represented by BDDs. Step by step, the
set of states is increased by states that can directly
be reached, starting from one of the states, in the
current set. Each traversal step is performed by a
BDD-transformation. The algorithm terminates, if no
further states are found, i.e. the BDD remains un-
changed. There are two aspects that have a major
impact on the duration of model checking: the size of
the BDDs and the number of traversal steps. Both
the number of traversal steps and the size of the BDD
grow exponentially with the number of state variables.

Specialized Verification Techniques

A major handicap for general verification tech-
niques is, that they just get the input and the result
of the synthesis process, but they cannot exploit the
knowledge of how the result was derived. Verification
can be performed much more efficiently if one knows,
that only specific steps have been performed.

The approach presented in [7] is based on a model
checker and increases performance by exploiting func-



tional dependencies. For specific synthesis domains
(retiming, state minimization,...), this technique can
reduce the verification time significantly, as compared
to conventional model checking.

Another specialized verification technique that is
designed for retiming synthesis steps only is described
in [8]. During retiming the overall shape of the struc-
ture is not changed entirely. It is only the registers,
that have been shifted. The program tries to “match”
the former and the retimed circuit description. This
can be performed pretty fast. In contrast to [7], this
approach is limited to pure retiming.

There are two major drawbacks of these spezial-
ized verification techniques: complexity and combin-
ability. As regards the complexity, the general prob-
lem of proving the equivalence of two circuits is NP-
complete. For some synthesis steps, there do exist
some powerful verification techniques [8]. In [8], it has
been exploited, that the implementation was derived
by retiming the original circuit. Nevertheless, the in-
formation about how the retiming was performed has
to be extracted by “matching” the two descriptions.
The overall scenario “synthesis+verification” could be
significantly speeded up, if one fed the information,
on how the retiming was performed, directly from the
synthesis step to the verification step. However, ex-
ploiting the information about how synthesis was per-
formed eases verification but is impossible for complex
synthesis procedures consisting of various single steps.
This motivates us to tightly bind synthesis and ver-
ification for obtaining an integrated formal synthesis
step.

With respect to the combinability, a specialized ver-
ification technique can only be applied to its corre-
sponding synthesis step. For example, there are spe-
cialized verification techniques for logic minimization
(tautology checkers) as well as retiming [8], [7], but
there is no efficient technique for a compound “retim-
ing+logic minimization” step, and one would have to
resort to a general verification technique. It shows,
that splitting synthesis into very basic synthesis steps
and combining them with specially adapted verifica-
tion techniques increases verification performance —
divide and conquer.

III. THE FORMAL SYNTHESIS APPROACH —
HASH

A. Concept

HASH (Higher order Logic Applied to Synthesis
of Hardware) is a toolbox for implementing formal
synthesis programs. HASH provides a set of ba-
sic hardware transformations implemented as logical
derivation steps within the theorem prover HOL [9].
HASH provides means for embedding existing synthe-
sis heuristics: logical transformations that are para-
metrized by control information describing how the
synthesis step is to be performed. This leads us to
formal synthesis programs where the transformational
aspect (inside HOL) is clearly separated from the de-
sign space explorational aspects (conventional synthe-

sis heuristics, outside HOL).

With respect to the complexity problem mentioned
in the previous section, HASH circumvents it by pro-
viding forward derivational steps, instead of post-
synthesis verification. Searching for the proof of equiv-

alence for two circuits is NP-complete — formally
transforming one to the other is not!
In HASH — as well as in specialized verification

techniques — synthesis is split into a series of basic
transformation steps whose correctness aspects can be
handled efficiently. HASH also furnishes the means for
combining these basic transformation steps towards
complex synthesis programs. If for example, one for-
mal synthesis step leads to the theorem F a = b and
the succeeding synthesis step leads to F b = ¢, the
compound synthesis step - a = ¢ can efficiently be
derived by means of a simple transitivity rule in HOL.
The first step could be e.g. a retiming step and the
second a logic minimization step. Since the complexity
of the transitivity step in HOL is constant (pointers —
no copying), the overall complexity of the compound
synthesis step is the sum of its two parts.

B. Security Aspects

Theorem provers such as HOL provide a set of func-
tions for constructing, destructing and manipulating
terms, formulae and theorems. Terms, formulae and
theorems have specific data types. These types are
encapsulated. There is a fized set of basic functions
for producing values having these types. There is no
other way to produce terms, formulae and theorems.

Theorem provers guarantee safety. The only way
to derive a theorem is by deriving it from axioms
and rules, i.e. applying basic functions. So theo-
rem provers are as safe as the implementation of their
core of basic functions. Usually these cores are pretty
small. The HOL calculus [9], for example, consists of 8
rules and 5 axioms. This makes theorem provers very
reliable.

Tautology checkers and model checkers on the other
hand do not have such a core. They are nothing but
programs that somehow decide whether or not some
formula holds. In general, the implementation of such
programs result in large source codes, and each pro-
gramming error may lead to false verification results.

C. Conventional vs. Formal Synthesis

The formal synthesis approach HASH derives the
output circuit description within a theorem prover,
rather than just computing it as in conventional syn-
thesis. The major difference is the result: Conven-
tional synthesis programs only map the input circuit
description to the output circuit description. Formal
synthesis programs map the input circuit description
to a theorem stating that some implementation, which
has been derived during formal synthesis, fulfills the
input circuit description. Formal synthesis however
presumes, that all circuit descriptions are represented
within logic.

The advantage of a formal synthesis program is



its implicit correctness. Whenever it produces a re-
sult, this result is also correct. Formal synthesis pro-
grams are as reliable as the core of the theorem prover
that they are based on. This makes them much more
reliable than conventional synthesis programs, where
there is no such core, and one would have to verify
the entire program in order to ensure correctness. We
will use the simple retiming synthesis step in order to
describe the benefits of formal synthesis as compared
to other approaches towards synthesis correctness.

IV. RETIMING BY MEANS OF LOGICAL
TRANSFORMATIONS

The implementation of our retiming procedure is
based on the theory “Automata” [10], which we im-
plemented in the HOL theorem prover. Automata was
designed for synthesis purposes. Automata provides
means for representing synchronous circuits and is also
the base for synthesis specific transformations such as
state minimization, state encoding, logic optimization
and retiming.

A. The Procedure

The retiming procedure in HOL is based on a uni-
versal retiming theorem. This theorem represents a
general pattern, which can be instantiated for various
retiming transformations. It can be applied in both di-
rections: forward/backward retiming. Figure 1 infor-
mally sketches the meaning of this theorem. Hereby,
s denotes the initial state, x the auxiliary variables
within the combinatorial part and s’ the successor
state.

Clock j
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Fig. 1. General Pattern for Rewriting

For forward retiming, the combinatorial part is split
into two: one part f over which the registers are
shifted and the other part g which is not affected.
There is one compound register named D with ¢ as an
initial value. In the retimed circuit, the initial state of
the new compound register becomes f(¢). The theo-
rem [RETIMING_THM] states, that the original and the
retimed circuit are equivalent.

[RETIMING_THM]
1 F automaton(

g (A(i,s). let x = f{s) in let (0, s") = g(i,x) in (0,8")) ,
4 ) d

5 =

6 automaton(

7 (A, s). let (0,x) = g(i,s) in let s’ = f{x) in (0,5")) ,
N (C)

Backward retiming is more complex since one has to
find the ¢’s corresponding to some expression repre-
senting f(g). We will not discuss this issue in this
paper.

In the Automata theory, circuits are unambigu-
ously represented by pairs consisting of a compound
function and an initial state. This compound func-
tion describes the output and the next-state behavior.
The registers are formalized implicitly. The constant
automaton maps such pairs to functions that map time
dependent input signals to time dependent output sig-
nals.

The output and state transition functions in lines
2 and 7 of the theorem correspond to the structures
of the combinatorial parts of the circuits (figure 1).
These functions map the pair consisting of input i and
the current state s onto the pair consisting of output
o and next state s’. Lines 3 and 8 correspond to the
initial states of the two circuits.

Using an automaton as a formal representation, the
overall retiming procedure consists of four steps:

1. First the combinatorial part is split into f and g.
Assigning combinatorial components to f or g can
either be performed by hand or some arbitrary
external program.

2. Then the general retiming theorem is applied:
The current circuit description is matched with
the left hand side of the equation and one pro-
ceeds with the right hand side.

3. Then f and g are joined to a single combinatorial
part.

4. Finally the new initial values of the shifted reg-
isters f(q) are determined via evaluation.

Figure 2 shows a retiming example and figure 3 de-
scribes, how it is matched to our retiming theorem.
In our example, there are three combinatorial parts:
>, +1 and MUX. When applying our synthesis proce-
dure, f consists of the >-component only and g con-
sists of +1 and MUX.

Clock

Fig. 2. Retiming Example

B. Where are Logical Skills Needed?

To answer this question, one has to distinguish be-
tween the designer of the formal synthesis tool and the
circuit designer, who uses this tool. Proving the cor-
rectness of theorems such as [RETIMING_THM] and im-
plementing corresponding transformations (four steps
of the retiming procedure) requires a thorough under-
standing of logic, hardware and underlying theorem
prover (HOL). The formula in [RETIMING_THM] is true
higher order logic (universal quantification over func-
tions f and g, polymorphism). Its proof is tedious
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Fig. 3. Example for Applying the Retiming Scheme

and cannot be automated (induction over time, etc.).
However it has only to be proved once and for all!

The above mentioned procedure for retiming has
a clean interface for integrating heuristics that pro-
duce the control information, i.e. the cut between f
and g. This demonstrates the clear division between
the design space exploration and transformation in our
concept. The heuristic has nothing to do with logic,
and as a consequence, switching from one heuristic to
another requires no change in the theorem or in the
retiming procedure.

From the circuit designer’s point of view, synthe-
sis tools based on HASH are the same as conventional
synthesis tools. During synthesis, everything is per-
formed automatically: the transformational procedure
adapts the theorem to the current task. Logic related
user interaction (proof search) is not required from the
circuit designer’s part.

C. Fuaulty Heuristics

The determination of the cut in step 1 may be per-
formed arbitrarily. It is possible to do it by hand,
and it is also possible to invoke some program. This
allows us to reuse existing techniques [11], [12]. The
decision on how to cut does not violate correctness.
If a cut was given, that does not match our pattern,
then our transformation would fail, since the general
retiming theorem could not be matched and an excep-
tion will be raised, implicitly. An “incorrect” theorem
however cannot be derived due to the principle of the-
orem pProvers.

To illustrate this point, let us choose f to consist of
the comparator and the multiplexer and g to consist
of the incrementer (fig. 4). During the first step of the
retiming procedure the output and transition function
is transformed into an equivalent output and transi-
tion function consisting of two subfunctions f and g.
It is not possible to find such a split and therefore
trying to derive such circuit will fail at some point
in HOL. In our implementation, the algorithm tries
to cut the combinatorial block as described in figure
4. As can be seen, the original function has a triple
representing the state variables and the falsely split
function has 4 state variables. The equality of the old
and the new combinatorial block cannot be derived —

it is even impossible to express the equality due to the
fact that the left and the right hand side would have
different types. In HOL, this results in an exception
when trying to build the equality expression.

MUX
0
1

oo

Yy

Fig. 4. False Cut of the Combinatorial Part

V. EXPERIMENTAL RESULTS

We applied the formal retiming step to the example
given in figure 2 and to the sequential circuits from
the IWLS’91 benchmarks set. The results are listed
in table I and table II, respectively.

n Fiipflops #gates SIS SMV HASH

1 3 4 0.4 0.1 0.2

2 6 8 0.4 0.1 0.2

3 9 12 0.4 0.1 0.3

4 12 16 0.8 0.1 0.3

5 15 20 1.2 0.1 0.3

6 18 24 2.4 0.3 0.4

7 21 28 8.4 2.0 0.4

8 24 32 55.3 18.7 0.4

9 27 36 | 284.0 213.3 0.4
10 30 40 | 1487.5 - 0.5
40 120 160 - - 1.5
80 240 320 - - 2.7
120 360 480 - - 4.3
160 480 640 - - 5.8
200 600 800 - - 7.9
240 720 960 - - 9.9

TABLE I

EXAMPLE FROM FIGURE 2

name F#flipflops #gates [ Eijk/1 Eijk/2 SIS HASH
5208.1 8 104 0.5 0.7 1.2 4.4
5298 14 119 29.6 15.7 1.6 14.3
5420.1 16 218 [ 598.4 94.8 1007.6 17.7
5510 6 211 3.2 42.7 7.3 28.7
5526 21 193] 178.2 115.8 49.3 37.6
5838.1 32 288 - - - 83.0
51196 18 529 7 7 3.1 61.1
51423 74 657 7 7 - 149.5
51488 6 653 1.6 3.3 1.7 155.1
51494 6 647 7 7 1.6 153.7
TABLE I1

IWLS’91 BENCHMARKS

The example in figure 2 is scalable with the
bitwidth n of the data signals. We compared our re-
sults to the verification results achieved with different
post-synthesis-verification approaches. The synthesis
environment SIS provides a finite state machine com-
parison technique [13]. SMV is a multi-purpose model



checker [14]. Van Eijk presented a model checker (in-
dicated with Eijk/1) and an advanced version that ex-
ploits functional dependencies (indicated with Eijk/2)
[7].

All times are given in seconds. The benchmarks
have been run on an Ultra Sparc with 200 Mb ex-
cept for the results in the columns Eijk/1 and Eijk/2,
which have been taken from the paper [7] and were
run on an HP 9000. The dash (-) indicates, that the
benchmark could not be processed in reasonable time
and the question mark indicates that no results were
reported in [7].

We found out, that in our approach, the time con-
sumption depends on the size of the circuit but is quite
independent from the cut. Due to step 4 (see section
IV-A), it becomes a little slower for large sized func-
tions f. In table I and table II, we performed a retim-
ing with f covering a maximum number of retimable
gates, i.e. the worst case for our approach.

The complexity of model checking depends on the
size of the combinatorial part and on the maximum
number of steps needed to reach all states. In general
the size of the BDDs for representing the currently
covered states and transforming this set increases ex-
ponentially with the size of the combinatorial part (see
figures I and II).

It turns out, that our approach can be applied to
circuits with sizes that are beyond what can be han-
dled using model checking or related techniques. Our
approach (indicated with HASH), requires a higher
basic time consumption. This makes HASH slower
for small sized circuits. For larger sized circuits, how-
ever, the time consumption increases in a moderate
manner. One comes to the same result when deal-
ing with the IWLS’91 benchmarks. Circuits s208.1,
$420.1 and s838.1 are all fractional multipliers with
different bitwidths: 8, 16, and 32, respectively. None
of the model checkers where able to verify the 32-Bit
version. From the 8-Bit version towards the 16-Bit
version, the time consumption increased rapidly: fac-
tor 1000 for SIS and Eijk/1 and factor 100 for Eijk/2.
The corresponding factor for our approach is 4, and
it is even possible to handle the 32-Bit version in a
reasonable time.

The results achieved with HASH for the example
from figure 2 are much better than those achieved for
the IWLS’91 benchmarks. This is due to the fact,
that we chose to perform the retiming on an RT-level
representation, which consists of n-bit circuits whereas
the model checking techniques are based on simple
temporal logic and can therefore only handle flat, bit-
level descriptions at the gate level. In our approach,
operating at the RT-level reduces the complexity of
steps 1-3. However the complexity of the initial state
evaluation step (step 4) is not affected.

VI. SUMMARY AND CONCLUSIONS

We introduced a formal synthesis approach HASH,
where all basic transformation steps are performed by
rule applications within a theorem prover and applied

this approach to retiming. HASH also provides var-
ious other synthesis related transformations on syn-
chronous circuits such as state encoding, signal encod-
ing and the elimination of redundant parts encoding
(see also [10]).

This approach increases the reliability of the syn-
thesis program, since the correctness only depends on
the core of the theorem prover whereas in conventional
synthesis programs there is no such core and every er-
ror in the synthesis tool may affect the correctness of
synthesis results. We have shown, that it is possible
to write formal synthesis programs without really in-
venting new algorithms but by exploiting conventional
synthesis programs and giving them a formal basis.
This implies that the quality of designs produced us-
ing HASH is the same as that of a conventional syn-
thesis tool. Furthermore, since the interaction within
HASH is the same as that of a conventional synthesis
tool, its acceptance among designers is eased.
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