
Abstract

This paper describes the evolution of a design and verifi-
cation methodology successfully used to develop
advanced ASICs as components of multiple new commer-
cial products. The ASICs are typically large, high speed,
algorithmically complex and implement novel functional-
ity. The ASIC development process is driven by the com-
mercial pressures of low cost and short schedules of
multiple projects. It is carried out using a team of design-
ers of varying experience including new staff. The dual
emphasis of our methodology is maintaining fine control
over the design and verification process, together with
full independent cross verification as an integral part of
the entire ASIC and system development process.

1 Introduction

A successful design methodology can be defined as one
that best delivers the final product with least cost. Typi-
cally, in our environment a dominating constraint is meet-
ing the delivery date. This implies two key issues that
become paramount in formulating a system design meth-
odology: design correctness and control over the design
process.

We are generally operating under the premise that there
is no time for ASIC re-fabrications, or any significant
design iteration at any phase of a project. In the event that
an ASIC or other key component has a fatal flaw or func-
tional shortcoming we have in effect completely failed at
our task. Unexpected delays can also prove fatal to the
goal of on-time delivery. Any tool, technique or process
can only be incorporated into our design flow if sufficient
control over it can be maintained.

This paper describes the methods and procedures that
we have used to rapidly develop novel complex systems,
taking designs from conceptualisation through to proto-
typing and pre-production in a relatively short time. The
emphasis is on how a formalised ASIC design and verifi-

cation flow forms the basis for a complete concurrent sys-
tem design and verification process.

2 The Design Environment

Canon Information Systems Research Australia
(CISRA) develops a range of digital image processing
and management products. Systems range from pure soft-
ware packages such as image libraries, through to embed-
ded systems such as high speed colour printers and video
animation systems. Typically, all constituent sub-systems,
from user interfaces, application and system level soft-
ware, through to digital imaging output devices and their
controllers, are implemented for the first time concur-
rently.

The electronic sub-systems of such systems tend to
have tight real time constraints, implement complex and
novel algorithms and are heavily reliant on semi-custom
components - typically ASICs. In turn these ASICs tend
to be complex, utilise the latest commercially available
semi-custom semi-conductor technology, and are almost
always implementing algorithms in hardware for the first
time. The ASIC design group, currently consisting of
approximately 20 people, has designed about a dozen
such ASICs over the last five years. These ASICs form
the basis of six different product families.

The latest ASIC developed using this methodology is
X-17. X-17 is an embedded graphics co-processor for a
range of high resolution colour applications. X-17 is an
80Mhz device implemented using a 0.5µ gate length,
standard cell technology of approximately 1 million tran-
sistors.

X-17 is a central component of multiple new products,
some of which were developed in parallel with the ASIC
development. These products ranged from a low cost PC
plug-in board to provide publication quality colour docu-
ment composition capability based on an advanced page
description language, through to a multi-board system
driving a high quality scanning and printing system.
Other digital image systems will be developed based on

Practical Concurrent ASIC and System Design and Verification

Ian Gibson and Chris Amies

Canon Information Systems Research Australia

PO Box 313, North Ryde, NSW 2113, AUSTRALIA

gibbo@research.canon.com.au and chrisa@research.canon.com.au

ED&TC ’97 on CD-ROM
Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for fee or
commercial advantage, the copyright notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.  1997 ACM/0-89791-849-5/97/0003/$3.50

X-17. These systems are characterised as having high
resolution, high output quality, high speed, and are cost
sensitive.

X-17 is designed to fit a wide range of price-perform-
ance targets, and to form the core of multiple systems. It
typically operates as a loosely coupled graphical co-proc-
essor interfacing to a host, primarily via a PCILocal Bus,
although it can stand alone independent of any host. It
directly interfaces to a range of colour I/O devices such
as scanners and printers via a configurable on-chip
peripheral interface. X-17 implements a novel co-proces-
sor architecture allowing very efficient interfacing to a
wide range of hosts. It is a SIMD (Single Instruction
Multiple Data) processor, optimised for a core set of
graphical operations that form the bulk of the computa-
tional load for high resolution digital colour systems. X-
17 is also a real-time device, providing guaranteed worst
case performance for its operations, thereby facilitating
its use in a range of embedded systems.

3 Evolution of a Design and Verification
Methodology

CISRA’s design methodology has evolved over the
years as tools and technologies have evolved [4].

There has been much recent literature describing suc-
cessful and efficient verification strategies for large com-
plex circuits [3], [5], [8], [7] and [2]. The focus has been
on applications where the functional space is well under-
stood and the specification well defined (such as is the
case for microprocessors) and the problem is one of how
to cover the space more effectively.

Our problem is slightly different. Because we are
developing entire systems in parallel, we are characteris-
ing the problem space at the same time as formulating
methods for adequately covering that space. Specifica-
tions drift during the course of development due to vari-
ous factors. For example, while the ASIC design team is
verifying that the ASIC gives the correct answer as per
specification, the system designers and architects are try-
ing to verify that the specification is what they wanted
after all. The algorithms implemented in the ASIC are
verified concurrently and incrementally with the ASIC
development.

Many design methodologies targeted at verification of
semi-custom based systems tend to use rapid prototyping
in other programmable devices such as FPGAs [6]. Our
experience has shown that the time and effort involved
prototyping in this manner, coupled with the inability to
achieve complete functional and timing coverage renders
this style of verification of minimal use.

We have found that unless a given technique allows us
to maintain tight control over the process, and the process

is reliable, re-producible and independently cross-verifia-
ble then it doesn’t actually improve our ability to carry
out the design and verification process on time.

Possibly the single most important trend in the devel-
opment of our design flow is the increased adoption of
standards. In particular, the standardisation of HDLs
(Hardware Description Languages) has been the basis for
many of the improvements in the level of automation
possible in the design flow. This standardisation has been
a pre-condition for bringing many of the design automa-
tion advances into the commercial world - from logic
synthesis, simulation and specification through to auto-
mating such mundane but critical tasks such as carrying
out a design sign-off to a vendor.

4 A Practical Concurrent Design and
Verification Flow

Typical systems being developed consist of in-house
authored art, user interfaces, application software, driver
software, hardware subsystems (circuit boards) semi-cus-
tom components and input/output devices (printers and
scanners). Usually, all subsystems are developed in paral-
lel. We rarely have the luxury of sufficient time for a
sequential design process. Our focus here is on the verifi-
cation of the co-designed hardware and software subsys-
tems at the core of our target system. We follow a general
principle in verifying that entire systems will work cor-
rectly together, and that principle is independent cross
verification.

The development of each of the major adjacent compo-
nents in the system is performed by two separate means,
either by separate groups of designers, or designers and
an automated process. By the semi-associative nature of
cross verification, our design flow provides a means for
ensuring that the production hardware and software will
operate correctly, and will operate correctly together.

The Experimental Software Model is used to develop
and refine algorithms and techniques. By its nature, it can
be developed and adapted quickly and provides a solid
and tangible link from the researcher into the design flow.

The Hardware Emulation Software is the key element
that binds together the cross verification chain. It is typi-
cally written in C or C++ by a small group of program-
mers that do not participate in other aspects of the design.
This software emulates each of the necessary hardware
sub-components, providing a bitwise accurate (but not
timing accurate) model at various levels of hardware -
typically it provides a bit accurate model of any ASICs in
the system, as well as at the pins of any significant inter-
nal ASIC submodule boundaries. The hardware emula-
tion is the primary basis for verifying the work of the

ASIC developers and provides input functional test vec-
tors and reference output vectors.

After any specification work, developing theAbstract
Hardware Model is the first step in the design process for
the ASIC designers, and is implemented in the HDL
being used on the project. This model bootstraps the
design process by hiding complexity; provides a means
of insulating the design process from the final implemen-
tation technology issues and is written in a simulation
efficient manner and as such can be effectively used the
basis for simulation based hardware verification. The
Abstract Hardware Model is also bitwise accurate, and is
timing accurate on a cycle by cycle basis. This model is
maintained throughout the design process, and the bulk
of functional verification through simulation is per-
formed on this model.

Our experience has shown that the most time consum-
ing part of verification through functional simulation is in
generating the input vectors and checking the output vec-
tors. Simulator plus platform technology has improved at
a rate comparable to that of ASIC technology so that
although our systems become more complex they simu-
late just as quickly.

The use of a universal testbench environment allows
tests to be written at the top level, executed on the hard-
ware emulation software and extracted for any module or
sub-module. This makes functional test vector generation
easier.

There are often severalPhysical Hardware Models:
The “Logical” model is the source for logic synthesis

and is written in the same HDL as the Abstract Hardware
Model - these two can be interchangeable in system level
simulations. One of the major challenges that was ini-
tially faced with the introduction of logic synthesis was
in maintaining sufficient control over the process. Several
factors, including tool immaturity, quality control of
technology libraries and specific platform dependence all
conspired to make the logic synthesis process experimen-
tal yet not reproducible. The logic synthesis process is
almost entirely opaque to the user - they have very little
direct influence over the various optimization algorithms
that are applied. To solve this problem we use only a very
small subset of the synthesizable HDL language - the
Logical model is written from a small set of templates.
This set of templates includes various state machine vari-
eties, code to produce synchronous and non synchronous
circuits etc. The output from these templates can be char-
acterised against a new technology very quickly. The
Logical Model is verified against the Abstract model by
using the same test suite as was used on the Abstract
Model. This task typically only requires CPU time and
not significant design time.

“Gate level” models: the X-17 ASIC actually required
four different but equivalent gate level models to perform
the necessary design and verification tasks of floor-plan-
ning; static timing analysis; scan-insertion and test pat-
tern generation; functional verification through
simulation and vendor sign off. Functional simulation of
these models is very CPU intensive but fortunately very
little functional verification is necessary. The bulk of the
ASIC design functional verification is performed on the
Abstract Hardware Model and on the Logical Model.
Each of these models is produced via an automated
means and so sufficient functional simulation is only nec-
essary to verify that the translation process is correct.

4.1 Production Hardware and Software
The Production Software is verified using conventional

Software Engineering methods, and is also cross verified
by running it with the Hardware Emulation Software.

Once the production hardware (ASICs and circuit
boards) is constructed, it is cross verified with the Hard-
ware Emulation Software. This cross verification is car-
ried out at all levels down to ASIC sub-module
boundaries. All ASICs are built with internal bypass
paths or other test structures to enable full access to the
pins of each sub-module at full speed. All functional tests
(and more) that were carried out on each model of each
ASIC submodule are carried out on the actual submodule
in a separately constructed test board. In parallel with
this module level verification, the ASIC itself is verified
as one component of each concurrently developed Pro-
duction Hardware System.

4.2 Independent Cross Verification
By far the most effective means for verifying a particu-

lar step in the design process, is to verify it using some
independent means. Cross verification has several key
characteristics that are critically important to our design
flow. It not only provides a mechanism for verifying a
particular design process but it also verifies any assump-
tions that may have been made prior to the design flow.
This is an important issue as these initial assumptions are
often the most difficult to verify. Independent cross veri-
fication is also a visible and understandable process.

Within the context of the ASIC development, cross
verification is carried out both “vertically” and “horizon-
tally”. Vertical cross verification involves cross checking
the ASIC submodule functionality with the Hardware
Emulation Software. Horizontal cross verification is
ensuring that each of the submodules within the ASIC
operate correctly together - without the necessity of sim-
ulating them together.

Horizontal Verification is carried out at two levels: tim-
ing and functionality. Consistent timing is guaranteed
through the simple method of maintaining a central
repository of all module boundary-level timing and load
information, and this repository is parsed to automati-
cally set up any synthesis constraints. By leaving
suffi.cient margin on inter-module signals we can guaran-
tee that timing is correct by construction. Horizontal ver-
ification of functionality involves cross checking that
interconnect protocols are met. This is achieved by
restricting inter-module connectivity to using a small
number of standard bus architectures, and then writing
simple bus models for these. Each module can then be
validated in a standard testbench environment, with func-
tional verification vectors and bus protocol verification
models provided by third parties

4.3 Common, Understandable and Reproducible
Methods

All design and verification flows are automated. Sev-
eral formalisms for specifying design flows have been
published recently [11], [12]. Most major EDA compa-
nies offer some sort of workflow management tool. We
find that any reliable mature dependency tracking utility
is adequate - we use the old Unix favouritemake. Every
aspect of the design can be (re)produced via a make tar-
get. As a side effect of this, we tend not to make heavy
use of the Graphical User Interfaces (GUIs) provided
with most tools. GUIs are used as a last resort when
attempting to diagnose some problem (as in functional
debugging) or to intervene in some automated process
(such as logic synthesis). Another side effect of this is

that each invocation of a design tool is for a shorter
period leading to a reduced need for multiple licences.
Considering the substantial cost of EDA tool licences,
this leads to significant cost savings.

All aspects of the design flow from documentation
through to HDL coding, constraint specification and test
generation are template driven. This makes it easier for
inexperienced designers to come up to speed and for
designers to help out in other parts of the design as
becomes necessary.

Design flow automation is essential for many reasons.
Specification drift often means that incremental design
changes occur late in the day. We can accommodate these
changes relatively painlessly. Tools and technologies
drift over the course of a design. Over the course of the
X-17 project, the technology libraries changed versions
twice, each time requiring reiteration of part of the
design process. These changes had minimal impact on
the design time. Most EDA tools (logic synthesis, timing
analysis, ATPG tools etc.) can be very complex to use
and take a substantial time to master. It is a better use of
resources to have one or two team members thoroughly
knowledgeable on a particular method or tool and to
encapsulate this knowledge for the use of others. New
and inexperienced team members can be bootstrapped up
to delivering productive contributions very quickly. One
of the factors in the design process that we cannot gain
control over is the quality control of suppliers - tool and
technology vendors. A common, automated design flow
provides the best infrastructure to build in checks into the
design flow as soon as any external issues such as library
faults or tool bug workarounds are uncovered.

HDL Testbench for Module A

Universal Sequencer

HDL Model
of Module A

H
D

L
m

od
el

H
D

L
m

od
el

Hardware Emulation Model of System

Module A Module B

X
bu

s

Y
bu

s

Z
bu

s

Input vectors

Cross Verification Path
Cross Verification
with production
and experimental
software

of
 X

bu
s

of
 Y

bu
s

Universal Sequencer

HDL Model
of Module A

H
D

L
m

od
el

H
D

L
m

od
el

of
 X

bu
s

of
 Y

bu
s

HDL Testbench for Module B

Figure 1 Cross verification environment

5 Formal Verification Methods versus
Simulation Based Verification

Formal verification methods have been used to verify
complex systems at least experimentally [1], and are also
starting to be applied to real commercial developments
[10]. While formal methods have made it into the com-
mercial world via tools, they have tended to be used for
simple constrained tasks such as comparing two different
circuit representations. We have not adopted any tradi-
tional formal methods in our methodology for several
reasons. We are rarely in a position to formally describe
our design space - we are typically verifying the underly-
ing design assumptions in parallel with the design proc-
ess. The development of a distinct abstract hardware
model gives us the ability to carry out full simulations. A
full set of functional tests of X-17 can be carried out over
a period of about two weeks using our network of Sparc-
10 and Sparc-20 workstations.

6 Evaluating the design and verification flow

Although the principles of the design and verification
flow are stable, actual details are dominated by what
tools are available and the implementation technology of
the day. We also find that the project design cycle is of
the same order as the semiconductor and EDA tool tech-
nology cycle - each new project must adapt the method-
ologies quite radically to encompass these new
technologies. It thus becomes very difficult to experi-
ment, and to learn by mistakes. How then do we charac-
terise how well we have done? One measure of course is
how many of our ASICs have met the primary objective:
being correct first time and on time. Of the eleven ASICs
developed over the last five years, one required a re-fabri-
cation and three overran their delivery date.

7 Summary and Conclusion

The key to the successful commercial development of
complex and sophisticated ASIC based products is in
delivering product on time and within budget. We have
developed an evolving design and verification methodol-
ogy to enable us to adopt new techniques as they mature
and enter the commercial arena, and to deliver new com-
plex systems efficiently using a relatively inexperienced
team.

Our methodology, which enables us to design and ver-
ify most system sub-components concurrently is based
on few key principles: as tight a control as possible is
maintained over the development process; each step is
made as simple and transparent as possible; common,
automated methods are imposed throughout the design
team; each step must be independently cross validated;

successful management of complexity and quality forms
the basis of carrying out the design efficiently. These
principles must be satisfied before any new design auto-
mation tool, technique, method or process can be adopted
into our development flow.

8 References

[1] Derek, L Beatty and Ranald E Bryant, “Formally Verifying
a Microprocessor using a Simulation Methodology”,Pro-
ceedings of the 31st Design Automation Conference, San
Diego, June 1994.

[2] Francoise Casaubieilh, et al, “Functional Verification Meth-
odology of Chameleon Processor”,Proceedings of the 33rd
Design Automation Conference, Las Vegas, June 1996.

[3] J Freeman et al, “The 68060 Microprocessor Functional
Design and Verification Methodology”,Proceedings of the
Design SuperCon ‘95 On-Chip Design Conference, Santa
Clara, March 1995.

[4] Ian Gibson et al, “Practical Industrial Use of HDLs for the
Development of Large High Speed ASICs”Proceedings of
the Asia Pacific Conference on Hardware Description Lan-
guages, Standards and Applications, Brisbane, December
1993.

[5] Michael Kantrowitz and Lisa M. Noack, “I’m Done Simu-
lating; Now What? Verification Coverage Analysis and
Correctness Checking of the Decchip 21164 Alpha Micro-
processor”,Proceedings of the 33rd Design Automation
Conference, Las Vegas, June 1996.

[6] P.H. Kelly et al, “Rapid prototyping of ASIC Based Sys-
tem”, Proceedings of the 31st Design Automation Confer-
ence, San Diego, June 1994.

[7] Val Popescu and Bill McNamara, “Innovative Verification
Strategy reduces design cycle time for high end sparc pro-
cessor”,Proceedings of the 33rd Design Automation Con-
ference, Las Vegas, June 1996.

[8] C. Roth et al, “The PowerPC 604 Microprocessor Design
Methodology”, International Conference on Computer
Design, 1994.

[9] Alberto L. Sangiovanni-Vincentelli et al, “Verification of
Electronic Systems”,Proceedings of the 33rd Design Auto-
mation Conference, Las Vegas, June 1996.

[10] Mandayam Srivas and Steven P. Millar, “Applying Formal
Verification to a Commercial Microprocessor”,Proceedings
of the 1995 IFIP International Conference on Computer
Hardware Description Languages, Japan, August 1995

[11] Peter R Sutton and Stephen W Director, “A description
language for Design Process Management”,Proceedings of
the 33rd Design Automation Conference, Las Vegas, June
1996.

[12] Marina Zanella, “Principles of Design Methodology Man-
agement for Electronic CAD Frameworks”,Proceedings of
The European Conference on Design Automation”, Brussels
March 1992.

	CD-ROM Home Page
	EDTC97
	Front Matter
	Table of Contents
	Session Index
	Author Index

