
Successful Systems in Production
Graduate Teaching

Ali Shoker
HASLab, INESC TEC & Minho University

Braga, Portugal
ali.shoker@inesctec.pt

Abstract—This paper presents our experience in coordinating
and teaching a novel graduate systems and computing course
named “Successful Systems in Production” (SSP). The course
targets graduate students of different research interests in Com-
puter Science. The course aims at giving a breadth knowledge on
cutting-edge well-known systems in production, and exploring the
potential synergies across different areas of research. Having its
roots in Distributed Computing, SSP addresses those systems that
overlap with other research areas like Computational Systems,
Parallel Computing, Databases, Cloud Computing, Artificial
Intelligence, Security, etc. SSP exhibits an agile topic selection
model that fits several students’ backgrounds in each academic
year. The topics focus on the practical aspects of each selected
system that is considered “successful”, i.e., based on its worldwide
impact and technical significance. This is important for graduate
students to acquire best practices in industry and academia,
necessary to build practical computing systems. In the same vein,
the assessment method includes a project that is based on one
of the presented systems and also intersects with the student’s
own research plan. Based on our teaching experience and the
excellent feedback of the students, we strongly recommend this
graduate course to be taught at other universities.

Index Terms—Teaching; distributed systems; graduate; PhD;
computing;

I. INTRODUCTION

Graduate courses in the areas of computing and systems
aim at giving an in-depth knowledge in a specific area of
expertise inline with the student’s ongoing research, or breadth
knowledge to understand and establish the synergies with other
areas. While in-depth courses are often suitable for graduate
students whose research topics are inline with the selected
course, they are usually selected from undergraduate or grad-
uate programmes that focus on fundamentals. Consequently,
they give little focus on the practical aspects, highly desired in
modern computing systems. On the other hand, courses that
are not inline with the student’s research plan or thesis are of
less interest, especially being not explicitly prepared to address
different backgrounds. This suggests the introduction of novel
courses that target the graduate student, in particular, covering
the two breadth and depth aspects with enough flexibility to
address the largest branch possible of PhD subjects.

Targeting the case of graduate and PhD programmes that
include students of diverse research backgrounds and interests,

The research leading to these results has received funding from the Euro-
pean Union’s Horizon 2020 - The EU Framework Programme for Research
and Innovation 2014-2020, under LightKone grant agreement No. 732505.

an interesting model is to propose PhD-tailored courses in
different CS areas, as those at the Carnegie Mellon University
(CMU) [3]. Although one can argue that such PhD-tailored
courses are more convenient than specialized undergraduate
or Masters level courses that are offered per student as
“Breadth” options in other PhD programmes, e.g., at Stanford
university [13] and MIT [11], the dilemma is how to choose
the set of courses that largely fits the greatest majority of
students’ backgrounds. On the other hand, courses that belong
to the category of “Special Topics” or “Advanced Topics”
as those taught at ETH [14], EPFL [6], and Northeastern
university [12], target several topics that may better intersect
with many students’ interests; however, this diversity remains
limited to a specific area of research. In addition, these courses
do not give significant emphasis to the best practices of
building computing systems for production—arguably crucial
to modern scientists.

In this paper, we present our experience in coordinating and
teaching a novel graduate course entitled “Successful Systems
in Production” (SSP) at the MAPI PhD programme1 [9].
Given that diverse techniques in different CS areas take part
in building a modern system, SSP aims at giving a breadth
knowledge of a set of well-known systems in production as
those presented in Table II. The purpose is to educate future
researchers and scientists in different areas how comprehen-
sive systems in production work, and importantly help them
understand the interplay and impact of the different parts
of a monolithic system in production. To narrow down the
gap between theoretical research and practical systems for
production use, SSP gives emphasis to the practical part of
a chosen system to convey best practices that are necessary
and complementary to the theoretical knowledge base in the
computing systems area.

SSP follows an agile selection method for topics (i.e.,
“successful systems”) that adapts to the research areas of the
enrolled students in the course. Therefore, from a curated list
of in-production systems (as in Table II) that are arguably
considered “successful”, based on their global impact and
technical significance, six systems are chosen to be taught each
year, thus maximizing the intersection with most students’

1MAP-I is a PhD programme in Computer Science (CS) that follows the
CMU teaching model [3]. It is organized among three northern Portuguese
universities (Minho, Aveiro, and Porto).

42

2019 IEEE/ACM Workshop on Education for High-Performance Computing (EduHPC)

978-1-7281-5975-1/19/$31.00 ©2019 IEEE
DOI 10.1109/EduHPC49559.2019.00011

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on June 16,2020 at 08:55:44 UTC from IEEE Xplore. Restrictions apply.

backgrounds. The assessment method is also tailored to diverse
graduate research areas as each student shall propose and
deliver a project that is related to one of the presented topics
and intersects with his own research plan. In our experience,
this keeps the student more engaged in the course and reduces
the “distraction” off her research plan—that many students
consider a waste of time, especially if her research interests
do not exactly lie in the computing or systems areas.

Our experience over the past two years of teaching SSP
shows that the course achieves its goals being engaging
to students of different backgrounds and shows that SSP
contributed to the progress of the students’ research plan
or thesis. The students’ anonymous feedback presented in
Section IV also supports this observation where more than
90% of the students (where less than one third are familiar
with computing systems) recommended this course over other
courses in the PhD programme. Based on this experience,
we highly recommend SSP to be taught in similar graduate
programmes elsewhere.

In the rest of this paper, we overview in Section II MAPI’s
programme rules and conditions, together with the reasons
behind the idea of the course. In Section III, we present
the course structure, methodology, sample topics, and the
assessment method. Then, we present some success indicators
in Section IV before concluding in Section V.

II. PHD PROGRAMME AND MOTIVATIONS

A. Programme Description and Rules

MAPI’s PhD programme [9] follows the same model at
CMU Electrical and Computer Engineering [3] by requiring a
set of technical depth and breadth courses and seminars—in
addition to the thesis. Technical courses are mostly Bachelor
or Masters courses in a specialized area or selected from
a list of PhD-courses in breadth areas. While CMU (and
most American universities) allow Bachelor degree holders to
immediately enroll in a PhD programme provided that the can-
didate takes the necessary in-depth as well as breadth courses,
MAPI students are Masters degree holders, and thus they are
expected to have the required knowledge to pursue the PhD.
Given this, the proposed PhD courses in the programme focus
on breadth areas in three options: Theory and Foundations,
Computing Paradigms, and Technology.

Courses in all CS areas are proposed in each category and
should pass the scientific committee’s approval and then get
selected by at least five students to be taught in an academic
year. To make this selection, a symposium is organized at
the beginning of the academic year to present the programme
rules, potential courses, and follow up the progress of ongoing
PhDs. In principle, a PhD student must take five courses (at
least one from each category) during his PhD, and she has to
pass half of them (usually during the first year) to be able to
enroll in the thesis option in the following year if a pre-thesis
(i.e., thesis proposal) is submitted.

TABLE I
SOME OF THE RESEARCH TOPICS AT MAPI PHD PROGRAMME.

Area Acronym
Systems Sys
Software Engineering SE
Databases DB
Communications & Networking Com
Cloud Computing CC
Artificial Intelligence AI
High Performance Computing HPC
Security Sec
Blockchains BC
Energy Consumption EC
Internet of Things IoT

B. Motivations

The idea of Successful Systems in Production is motivated
by several challenges at MAPI, among which many are
common in other PhD programmes in other universities. These
challenges contributed to shaping the course structure, method-
ology, and evaluation. The main challenges are summarized as
follows:

a) Diversity: The PhD programme covers a wide range
of research areas to attract PhD candidates with various
research focuses in Computer Science. In an academic year,
up to ten different research areas could be of interest. Among
these areas are those presented in Table I together with their
acronym—that will be used in the rest of the paper. This
diversity of topics suggests proposing teaching topics that fit a
majority of them considering the course topics and deepness.

b) Cost: The number of PhD candidates that enroll each
year is limited. At MAPI, it ranges between 15 and 30. Given
the diversity of research topics aforementioned, it is unaf-
fordable to open a course unless there is a sufficient number
of students selecting it. (Indeed, sometimes the number of
proposed courses is equivalent to the number of newly enrolled
students in the programme.) For instance, provided that the
average rate of candidates per research area at MAPI is two, at
least five candidates should show interest in a course proposal
to run.

c) Time: The highest majority of candidates have their
PhD research subject defined prior to enrolling in the pro-
gramme. In several cases, the subject is an extension to a
Masters thesis. Given this, our experience shows that most
PhD candidates consider some of these courses “distracting”
to their thesis and time consuming, especially when the
course is deep and highly demanding in terms of projects and
assignments.

d) Relevance: Although taking only courses inline with
a research topic may look optimal, the knowledge of a PhD
may remain narrow, which is undesired in a research career
due to the growing overlap between different research areas.
On the other hand, relevance also suggest designing computing
systems that are practical for real use. Consequently, it is wise
to study the success stories at leading industry and transmit
them to future scientists as learned lessons complementary to
their fundamental research.

43

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on June 16,2020 at 08:55:44 UTC from IEEE Xplore. Restrictions apply.

III. SUCCESSFUL SYSTEMS IN PRODUCTION (SSP)

Successful Systems in Production is a “systems” graduate
breath course that overlaps with different areas of Computer
Science research areas, among them those presented in Table I.
Targeting the challenges discussed in the previous section, the
course covers diverse well-known systems, flexible method-
ology, and relevant assessment method. In this section, we
present the proposed syllabus in general and the methodology
followed in each class. We then exemplify through delving into
two selected topics showing the fine-grained content details
and exemplify the teaching method of each. We then show
the assessment method used in the course.

A. Syllabus

As their name indicate, the taught topics in SSP are chosen
based on the following criteria: (1) they tackle “systems” not
only fundamental research; (2) they are already used in pro-
duction, which is important to teach the students best practices
in production; and (3) they are considered “successful” being
well-known impactful systems with technical significance. In
general, these are systems that most Computer Science or
Technology people may have heard of, or have a big impact on
the modern CS technology and services. The second column
in Table II conveys a sample of such systems.

Knowing that the course duration at MAPI is 28 hours, it is
obvious that a handful number of topics shall be taught each
year. Importantly, the topic selection process is defined in two
phases. The first phase proposes a curated list of topics based
on the criteria aforementioned and spanning diverse research
areas as those presented in Table I. The purpose of this phase
is to pass the Scientific Committee approval and attract the
needed threshold of students, i.e., often 5 students, to run
the course. If this phase was successful, the second phase
is needed to short-list the curated list of courses, this time
to explicitly fit the majority of the research interests of the
enrolled students in the course. This happens right after the
first phase through “screening” the profiles of the students after
communicating with them (via emails).

a) Curated list of successful systems: In the SSP course
proposal, a curated list of twelve topics, presented in Table II,
is proposed. This number is a tradeoff to keep the material
diverse without having an over-killing lengthy proposal. Topics
are chosen to fit the various PhD research areas, focusing
on the active areas at the three universities of MAPI [9],
roughly summarized in Table I. As shown in the third column
of Table II, the selected topics can intersect with multiple
research areas at once which increases the chance to have
different students converge on a smaller set of topics. The SSP
column in the table shows the name of the successful system
to focus on, whereas the first column shows the broader topic
of the system.

One may also observe that the chosen topics target different
parts of the system software stack covering databases, commu-
nication, and computations. This is important to give the PhD
candidate an overview of the entire stack and challenges in the
CS area. On the other hand, the SSP column shows that the

TABLE II
A SAMPLE CURATED LIST OF Successful Systems in Production. SEE

TABLE I FOR THE ACRONYMS USED IN THE “AREA” COLUMN.

Topic SSP Area
Databases Amazon DynamoDB All
In-Memory Cache Redis Sys,DB,BC,CC,SE
Coordination systems Apache Zookeeper Sys,BC,SE,CC,Com,Sec
Publish/Subscribe Twitter Sys,SE,BC,Com,Sec
Message brokers Kafka Sys,AI,CC,Com,SE,Sec
Blockchains Bitcoin All
Cloud Computing OpenStack Sys,CC,DB,Com,SE,Sec
Containers Docker All
Big Data Hadoop All
Stream Processing Spark Sys,AI,IoT,Sec,SE,Com
Deep Learning TensorFlow AI,Sys,Sec,IoT,SE

chosen systems are arguably well-known successful systems.
Although some of them may not be considered “successful” as
Bitcoin/Blockchains, the topic is recently the most disrupting
technology to different areas of CS business and services,
which, we argue, is well worth considering. Note that the
selected systems do not mean they are the best in their class,
but they are convenient to the course due to other factors, e.g.,
generality, code availability, ease of use and demonstrate, etc.

b) Short list of taught topics: The second phase of short
listing the topics starts right after enough students have chosen
the course. The coordinator gets in touch with the students via
email to ask for their background and prospective PhD thesis
if it is already defined. In principle, six topics (of four hours
each) should be chosen within two weeks to start arranging
for corresponding invited lecturers and prepare the material.
At MAPI, the course runs in two months after selection, which
is enough to secure few interested lecturers within the same
research areas of the topics selected. However, it is strictly
desired to reduce the risks through securing half of the topics.
This is done through preselecting three topics that are likely
to overlap with several areas of research, and whose lecturer
is available. In the past two years, these three topics have
been within the area of expertise of the course proponent and
coordinator—the author. Indeed, this was easy at MAPI since
most students over the two years have recommended most
of the topics for the following year through an anonymous
questionnaire as depicted in Fig. 1.

It is also desired to allocate the first lectures to these prese-
lected topics to give more time for invited lecturers to prepare
their material. Over the three years of SSP teaching at MAPI,
the three preselected topics have been: (Topic 1) Coordination
in Distributed Systems (Apache Zookeeper), (Topic 2) NoSQL
Databases (Amazon DynamoDB), and (Topic 3) Containers
(Docker). Topic 1 is chosen as the first topic to overview
the fundamentals of Distributed Systems with emphasis on
coordination and consensus—being primary challenges. This
choice comes from the observation that most of the “successful
systems” are distributed in nature, and this topic is necessary
to understand several following topics. Topic 2 focuses on
Databases being a necessary part of most of systems and
likely has an impact on performance, security, availability,

44

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on June 16,2020 at 08:55:44 UTC from IEEE Xplore. Restrictions apply.

Topics

N
um

be
r o

f S
tu

de
nt

s

0

2

4

6

8

7

Fig. 1. The figure demonstrates the relevance of the topics’ selection method.
It shows that the majority of students recommended all topics to be taught in
the following year. The figure does not plot the labels of the courses being
different over years.

computation, etc. This topic focuses on NoSQL databases
being recently widely used either at a large scale as in
datacenters or as tiny databases as in web browsers or Internet
of Things devices. Topic 3, i.e., Containers, is recently a
very hot topic that intersects with most CS topics standing
as an easy and portable tool for testing, deployment, and
distribution. The practical part of the course, i.e., a demo on
Docker containers, has been attracting all the enrolled students
over the past (two) years of the course.

The remaining three topics are then selected based on the
background and focus of students’ research. This is not an
exhaustive process, but rather a flexible one that also considers
the diversity of overall selected topics, the preference of
lecturers, and also addressing several layers of the software
stack.

After the selection of the six topics and corresponding
lecturers is settled, the coordinator meets the invited lectures to
present the goals of the course and the teaching methodology
as discussed next.

B. Topic Structure and Teaching Methodology

SSP suggests a common structure and teaching methodol-
ogy for the taught topics to achieve its goals. This is crucial to
maintain some consistency given the diversity of topics and the
expertise and teaching style of the invited lecturers. In general,
each topic is composed of the three typical stages: Motivation,
Theory, and Practice. The latter is of particular importance
for SSP. In addition to the widening the knowledge of the
student, the focus on the practical side has two benefits. The
first is to give the student an overview of how real successful
systems are built and used in practice. This shows the big
picture of the system explaining how its modules interplay
together, and the factors to be considered if his/her research
targets a particular part of it. For instance, the overhead of

message exchange patterns in a communication protocol, e.g.,
consensus, can be masked if the operations require access to
persistent storage; whereas, it may not worth optimizing a
local computational algorithm to gain some milliseconds if
the algorithm involves communication delays, e.g., over the
Internet. Therefore, understanding the big picture of systems
can change how we think about a problems and its solution.

The second benefit is to educate the PhD students with
best practices and lessons learned from the industry. In our
opinion, several research works in academia focus on theoret-
ical aspects not explicitly practical in real production systems.
Therefore, we believe that educating the PhD candidate with
some practical expertise is one way to bridge this gap.

C. Samples of Taught Topics

We explain the structure and methodology of SSP through
giving two sample topics. The first is on NoSQL Databases
that tackles the Amazon DynamoDB [4] as a successful system
in production. The second is on Containers and focuses on
Docker [1]. This is different from the former as it includes a
hands-on tutorial on how to use Docker containers to make
the students’ research easy to test, deploy, and reproduce.
Although a hands-on part is not research-focused as in the
DyanmoDB case, the aim is to give the graduate student new
skills useful for experimenting their research. In fact, since
most SSP topics are implicitly distributed, Docker is important
to reduce the complexity of building and deploying distributed
systems, especially for non distributed systems students.

a) NoSQL Databases (Amazon DynamoDB): “Who owns
the information, owns the world!—Francis Bacon”. This rep-
resents the main motivation for this topic showing that data
storage and retrieval are necessary to build information base,
and thus leaving impact on all aspects of society and business.
The class also demonstrates that a DB is a critical part of most
systems and services nowadays. Then, the lecturer shows the
overlap of databases with the different CS areas, especially
those of the enrolled PhD students involving Databases, Sys-
tems, Software Engineering, Artificial Intelligence, Internet of
Things, Security, etc. Our experience reveals that it is not
too challenging to convince the students of the importance
of databases and its relevance to each of them.

The lecturer then starts explaining the theoretical part
through three main stages. The first starts by showing the need
for a database. This starts at a very initial state where some
data is presented in a raw file. The lecturer then challenges
the students showing the importance of indexing, relations,
and normalization for both data storage and retrieval. The
lecturer then moves to focus on the foundation of schema-
based (relational) databases and the added value of DBMS
considering performance optimizations or features (integrity,
transactions, triggers, etc.). The third stage starts by showing
the limitation of schema-based databases when it comes to data
heteroginity, system elasticity, scalability, and availability. The
class covers the CAP theorem [2] and the ACID versus BASE
tradeoffs [10]. The rest of the theoretical part focuses on the
properties of schema-less NoSQL databases through explain-

45

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on June 16,2020 at 08:55:44 UTC from IEEE Xplore. Restrictions apply.

ing how it addresses modern data problems like: unstructured
data, scalability, loose synchronization, elasticity, robustness.
The lecturer shows that these features come at the cost of
more complex programming logic due to the lack of built-in
integrity, joins, and the SQL language schema-based databases
provide. Finally, the class overviews the variants of NoSQL
databases (Key-Value, Graph, Column, Document, Hybrid),
how each of them excels, and the fact that SQL databases
remain crucial for a substantial number of cases among them
classical applications, OLTP, and OLAP.

The remaining part of the class digs in to Amazon’s
DynamoDB as a successful NoSQL database in production.
The lecturer starts justifying the choice of this database for
the topic. In this vein, DynamoDB is one of the very first
NoSQL databases that used a synthesis of key techniques and
features at once like DHTs, consistent hashing, versioning,
vector clocks, quorums, sloppy quorums, anti-entropy-based
recovery, etc. This made it a source of inspiration of several
moderns NoSQL databases, e.g., Cassandra, Riak DB, etc. In
terms of impact, the DynamoDB allowed Amazon’s Shopping
Cart Service [4] serve tens of millions of requests per day.
The lecturer then moves to explaining the design decisions of
DynamoDB summarized by building highly available always-
writable database for latency-sensitive applications. After-
wards, the key properties and features of DynamoDB are
presented covering: partitioning (consistent hashing), data ver-
sioning, replication, quorums, sloppy quorums, synchroniza-
tion through Merkle trees, and anti-entropy-based membership.
The final part shows how DynamoDB can be used explaining
its simple API, provided with some examples. Unfortunately,
this topic does not include code snippets since DynamoDB is
not open sourced; however, the students are referred to open-
source DynamoDB alternatives like DynomiteDB, Voldemort,
or Riak KV.

b) Containers (Docker): This topic is more practical as
it includes a hands-on demonstration. The class is divided into
two parts. The first is more theoretical and starts by explaining
the importance of Cloud Computing, in general, from the
business and technical perspectives focusing on cost, elasticity,
and efficiency. In particular, Containers are motivated through
highlighting their extensive use today being an easy way
for software packaging, portability, deployment, and being
a lightweight virtualization alternative to virtual machines.
The lecturer then shows how this topic intersects with the
students’ research interests and work. Interestingly, this part
was easy in our case since everyone was eager to learn about
the topic and try to understand how to make use of it in the
future. The lecturer continues through introducing the needed
background to understand how containers work. Again, this
starts by introducing the idea of virtualization back to the early
times of Cloud Computing, thus touching upon Cloud services
types (SAAS, PAAS, and IAAS), public and private clouds,
virtualization types and aggregation (a.k.a., clustering). The
lecturer then digs in explaining the concept of containers fo-
cusing on namespaces and resource management via cgroups.
This part ends by presenting the differences between bare-

Fig. 2. Docker commands and options extensively used in the demo of
containers topic.

metal virtualization, virtual machines, and containers.
The second part follows a tutorial hands-on style. A script

of commands is distributed over the students who execute
it step by step. The tutorial starts by choosing a software
to “containerize”, e.g., a simple one like a web server or a
more relevant one as Apache Spark. If the students are asked
to install the platform, e.g., Docker, prior to the class, it is
possible to cover the crucial parts like: prepare and build
a software, build a container image from scratch, access a
container through IP and Ports, build a docker network, and
run multi-dockers. Fig. 2 depicts some Docker commands and
options that have been extensively used in the demo, during
the two past years, including some intentional bugs to teach
the students how to debug an issue, and what is the reasoning
behind it. As expected, the topic was the most interactive and
enjoying topic for all, students and lecturers.

D. Assessment Method

The assessment method of SSP is directly inspired from the
motivations presented in Section II: it must be practical and
considers the diversity, time, and relevance aspects. Therefore,
the student is required to propose, execute, and present a
project that is related to one of the SSP presented topics and
intersects with her own research topic. In our experience, this
method is key to ensure the student is more involved in the
course and significantly reduce the sense of distraction as long
as the project “adds something” to her own research.

The process starts at the first lecture of the course where
the lecturer presents an overview of the entire SSP topics, thus
giving the students the spark to look up their project proposals.
Then, the students are given a period (of maximum one month)
to deliver a proposal through discussing it with one of the
lecturers (preferably whose expertise are more relevant to the
topic). The proposal shall not be over-killing nor naive, and
thus estimated to 50 working hours. Finally, the projects are
all presented in the final class that is a small symposium where
each student has a time slot to present his work, run a demo,
and answer questions posed by the lecturers and the students.
The project and presentation/discussion are, respectively, given
60% and 20% of the final mark—the remaining 20% go for
involvement and attendance.

Our experience together with the feedback of the students
reveal the promising and interesting assessment method in
SSP. Surprisingly, or maybe not, the discussions during the

46

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on June 16,2020 at 08:55:44 UTC from IEEE Xplore. Restrictions apply.

symposium (presentation day) have been vivid and engaging;
many students asked questions and suggested ideas to the
presenter. In addition, most projects have been useful to the
students either through learning and building new tools to
assist them in their research, or even to develop some seed
research ideas or publish parts of them later. Finally, to address
the few cases where students cannot develop a practical
project, e.g., students with pure mathematics background, the
lecturer may resort to a more theoretical project, e.g., a study
to compare a presented successful system to another. However,
this option should be avoided if possible.

IV. FEEDBACK AND EXECUTION CHALLENGES

To give a concrete indicator to the success and impact of
SSP, we give some concrete examples on the acquired skills
and tangible outcomes of the course. We also touch upon
the feedback of the enrolled students and the programme’s
scientific committee. We finally present some of the course
execution challenges we faced.

a) Acquired skills and tangible outcomes: As a practical
graduate course, SSP focues on the tangible experiences and
skills a graduate student aquires throughout the project, and
how the latter supports her thesis or research topic. These
expected oucomes are required to be explictly arcticulated in
the project proposal and delivered material. Our observation
was that the majority of students found this course an oppor-
tunity to bootstrap the practical side of their thesis. This was
expected for a first-year graduate student. In some cases, the
outcome was more significant than others, and thus appeared
in peer-reviewed publications or sparked new practical ideas.
We give three particular examples for students with different
research interests, e.g., Security, Distributed Computing, and
Big Data, respectively.

The first project is a cloud computing security solution
(called “SafeNoSQL”) that provides modular security tech-
niques for NoSQL databases. This work eventually lead to a
peer-reviewed publication [8]. In the project, the student built
SafeDynamo: a proof-of-concept prototype to demonstrate how
the modularity of this solution improve its applicability to
diverse NoSQL Dynamo-like databases. A second example
is Tricks [5]: a benchmarking tool for deploying and exper-
imenting distributed computing protocols on Kubernetes [7].
The goal of Tricks is to make running real experiments as
simple as defining the experimental settings (e.g., network
topology, number of nodes, operation size, etc.) in a YAML file.
This is enough to automatically create the needed distributed
network, run the benchmark, and report the results in graphs.
A third (not published) example focused on comparing the ac-
curacy and overhead of running Spark or Hadoop ecosystems
in a cluster versus distributed container-baised deployments.
Although this work was not research-intensive, the lectueres
acknowledged the administration skills acquired throughout
the project to deploy and run such a complex distributed
system. These examples (among others) gave an indication that
the course achieved its goals in supporting graduate students
with useful skills for their research despite having different

Neutral
9.1%

Strongly agree
45.5%

Agree
45.5%

Fig. 3. The agreement on the proposition “SSP is the most useful course I
took at MAPI (excluding those of my own area)?”.

backgrounds. This resulted in tangible outcomes as in the case
of [8] and [5].

b) Student feedback: Being the target of the course, we
took the feedback of the students during the two taught years
via an anonymous questionnaire. The purpose was mainly
to understand the weaknesses and strengths of the course
and improve upon it for the next years. All the enrolled
eleven students in SSP contributed to this questionnaire.
The students had diverse backgrounds, spanning Distributed
Systems, Databases, Mathematics, Artificial Intelligence, High
Performance Computing, Security, etc., which is important to
get fair results. The results of the questionnaire showed that
the average Likert scale rate given to the course was 8.3/10.
As expected, this was also justified through the students’
comments through recommending the focus and assessment
model of the course. In particular, all students have considered
the assessment method practical and convenient; however, they
suggested it to be more systemized (e.g., suggest some projects
a priori and schedule follow ups).

On the other hand, the Likert rate of the relevance of
topics was 8.6. As previously mentioned in Fig. 1, the greater
majority of students recommended 90% of the selected topics
to be taught in the following year. Other answers demonstrated
that most students liked more the topics that include hands-
on tutorials. In our experience, these numbers are considered
excellent given the challenges mentioned above.

To understand the strengths of SSP over other courses within
the PhD programme, we asked this question “SSP is the most
useful course I took at MAPI (excluding those of my own
area)?”. Interestingly, the results came as depicted in Fig. 3,
where more than 90% percent of the students over the two
years affirmed the proposition, although less than one third
are “systems” students.

c) Scientific committee feedback: The doctoral pro-
gramme scientific committee often adopts successful PhD
programme models followed in well-known universities, es-
pecially CMU [3]. Consequently, the committee recommends
course proposals that are taught or inspired from leading

47

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on June 16,2020 at 08:55:44 UTC from IEEE Xplore. Restrictions apply.

worldwide universities. Despite being a novel course that has a
little chance on this front, SSP has been approved during all the
three recent academic years it had been proposed. Fortunately,
this approval has been followed by the selection of the needed
number of students to run the course during the two past years.

d) Execution challenges: Since the lecturers’ feedback is
consistent with that of the students, and the desired objectives
of the course are considered successfully met, we rather focus
on the challenges we faced during the execution of the course.

The main challenge is referred to the centralization of
the course, which imposes more load on the coordinator
being the principal lecturer, whereas the other lecturers are
invited on a yearly basis. For instance, the coordinator’s
responsibility appears at a very early stage of the preparation
of the proposal, presenting it in the selection symposium,
reaching out the interested students to confirm the selected
list of topics, looking up corresponding lecturers depending
on the selected topics, synchronizing topics, moderating the
projects’ selection, etc. Nevertheless, we believe that these
extra overheads are justified as a price for the dynamic and
flexible nature of SSP.

Another related challenge is the coherence across different
topics. This is resolved through short meetings across lecturers
to identify the best order of classes and reduce the overlap.
Furthermore, consistency in the teaching methodology across
topics is another challenge that the coordinator shall emphasize
and maintain before the invited lecturers prepare the material.
In our experience, this is not an easy task especially when the
lecturer is used to another teaching methodology and cannot
easily stick to SSP’s methodology; obviously, it is harder to
impose a strict teaching style on an invited lecturer—especially
senior ones.

Finally, the material of SSP’s topics is more practical
which requires special preparation unusual in fundamental or
classical academic teaching. Although this is manageable, care
should be taken when the time is short to prepare the material
from scratch, otherwise the lecturer will end up using patches
from previous slides. In the past years, we tried to advance
the more standard topics taught by the principal lecturer, thus
giving more time for invited classes’ preparations.

V. CONCLUSIONS

Successful Systems in Production is a novel graduate sys-
tems course that mainly targets the practicality, diversity, and
relevance requirements and challenges often exist at the PhD
level. The selected topics of the course are broad enough
to cover many research backgrounds, each topic targets the
practical part of a system in particular, and the assessment
method is agile to respect the diversity of students’ back-
grounds and exploit the time of the course to serve their
own research. Based on our teaching experience depicted in
this paper, we recommend this course to graduate teaching at
other universities that exhibit similar conditions. This does not
necessarily suggest to adopt the entire course model though.
For instance, the methodology used is generic to be applied
to any practical course whereas the assessment methods can

easily be applied to have the graduates make better use of their
time. All in all, we believe that future researchers should know
how “successful systems” work “in production”, whether they
pursue their research career in academia or industry.

ACKNOWLEDGMENTS

The author would like to thank the following invited lectur-
ers for their valuable discussions and comments that lead to
shaping this course: Rolando Martins, Jose Maria Fernandes,
Vitor Santos Costa, and Ines Dutra.

REFERENCES

[1] Carl Boettiger. An introduction to docker for reproducible research.
ACM SIGOPS Operating Systems Review, 49(1):71–79, 2015.

[2] Eric Brewer. Cap twelve years later: how the. Computer, (2):23–29,
2012.

[3] Carnegie Mellon University Computer Science Department. The com-
puter science ph.d. program at carnegie mellon university. https://
csd.cmu.edu/sites/default/files/CSD-PhD-Handbook-2018-19.pdf, 2018.
Accessed: 2019-08-29.

[4] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. Dynamo: amazon’s highly
available key-value store. In ACM SIGOPS operating systems review,
volume 41, pages 205–220. ACM, 2007.

[5] Vitor Enes. Tricks. https://github.com/vitorenesduarte/tricks, 2017.
Accessed: 2019-10-05.

[6] EPFL. Edic course catalogue & registration. https://www.epfl.ch/
education/phd/programs/edic-computer-and-communication-sciences/
edic-course-offering/, 2019. Accessed: 2019-08-29.

[7] The Linux Foundation. Kuberntes. https://kubernetes.io/, 2019. Ac-
cessed: 2019-10-05.

[8] Ricardo Macedo, João Paulo, Rogério Pontes, Bernardo Portela, Tiago
Oliveira, Miguel Matos, and Rui Oliveira. A practical framework for
privacy-preserving nosql databases. In 2017 IEEE 36th Symposium on
Reliable Distributed Systems (SRDS), pages 11–20. IEEE, 2017.

[9] MAP-I. Map-i doctoral programme in computer science. https://mapi.
map.edu.pt/, 2019. Accessed: 2019-10-05.

[10] Dan Pritchett. Base: An acid alternative. Queue, 6(3):48–55, 2008.
[11] MIT Electrical Engineering & Computer Science. Eecs graduate

subjects. http://www.eecs.mit.edu/grad-areas/2-ai/subjects.html, 2019.
Accessed: 2019-08-29.

[12] Northeastern University. Computer science graduate courses. https:
//www.khoury.northeastern.edu/academics/courses-fall-2018/, 2019. Ac-
cessed: 2019-08-29.

[13] Stanford University. Phd computer science requirements. https://cs.
stanford.edu/academics/phd, 2019. Accessed: 2019-08-29.

[14] ETH Zurich. Doctoral and post-doctoral courses. http://www.vvz.ethz.
ch/Vorlesungsverzeichnis/sucheLehrangebot.view?abschnittId=81372\
&semkez=2019W\&ansicht=1\&lang=en\&seite=1, 2019. Accessed:
2019-08-29.

48

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on June 16,2020 at 08:55:44 UTC from IEEE Xplore. Restrictions apply.

