
Indicating Asynchronous Multipliers

P. Balasubramanian, D.L. Maskell
School of Computer Science and Engineering

Nanyang Technological University

Singapore 639798
{balasubramanian, asdouglas}@ntu.edu.sg

N.E. Mastorakis
Department of Industrial Engineering

Technical University of Sofia

Sofia 1000, Bulgaria
mastor@tu-sofia.bg

Abstract—Multiplication is a basic arithmetic operation that

is encountered in almost all general-purpose microprocessing

and digital signal processing applications, and multiplication is

physically realized using a multiplier. This paper discusses the

physical implementation of indicating asynchronous multipliers,

which are inherently elastic and are robust to timing, process,

and parametric variations, and are modular. We consider the

physical implementation of many weak-indication asynchronous

multipliers using a 32/28-nm CMOS technology by adopting the

array multiplier architecture. The multipliers are synthesized in

a semi-custom ASIC-design style. The 4-phase return-to-zero

(RTZ) and the 4-phase return-to-one (RTO) handshake protocols

are considered for the data communication. The multipliers are

realized using strong-indication or weak-indication full adders.

Strong-indication 2-input AND function is used to generate the

partial products in the case of both RTZ and RTO handshaking.

The full adders considered are derived from different indicating

asynchronous logic design methods. Among the multipliers

considered, a weak-indication asynchronous multiplier utilizing

the biased weak-indication full adder is found to be efficient in

terms of the cycle time and the power-cycle time product with

respect to both RTZ and RTO handshaking. Also, the 4-phase

RTO handshake protocol is found to be preferable than the 4-

phase RTZ handshake protocol for achieving enhanced

optimizations in the design metrics.

Keywords—multiplier, asynchronous circuits, indication, ASIC,

standard cells, CMOS

I. INTRODUCTION

Addition is a basic arithmetic operation that forms the basis
of other important arithmetic operations such as multiplication,
division etc. Recently, in [1], different asynchronous
implementations of the adder were discussed. This paper
considers the robust asynchronous implementations of the
multiplier since multiplication is also a common arithmetic
operation that is encountered in almost all general-purpose
microprocessing and digital signal processing applications [2].
References [3–9] discuss different transistor-level and gate-
level designs of the asynchronous multipliers. However, most
of these multipliers correspond to the bundled-data protocol,
which has separate request and acknowledge wires besides the
data bundle (i.e., data bus) and features a constant delay
element with fixed delay assumed between the transmitter and
the receiver. Due to the assumed delay for data transfer
between the transmitter and the receiver, those multipliers are
not robust when the presumed delay is exceeded, and therefore
they are non-indicating.

In this work, we consider the robust class of asynchronous
multipliers which are indicating. We consider the well-known
array multiplier architecture for example, which corresponds to
the shift-and-add multiplication approach. We physically
implement many indicating asynchronous realizations of the
4×4 array multiplier, which utilize asynchronous components
pertaining to different indicating asynchronous logic design
methods. The resultant asynchronous array multipliers
correspond to the weak-indication timing model.

The rest of this paper is organized into 4 sections. Section 2
gives a background into the design of indicating asynchronous
circuits. Section 3 discusses different indicating asynchronous
implementations of the 4×4 array multiplier by following a
semi-custom ASIC design style. Section 4 presents the design
metrics estimated for the multipliers after their physical
realization using a 32/28-nm CMOS process technology. Also,
the normalized power-cycle time product of the multipliers is
provided. Finally, we draw some conclusions and state the
scope for further work in Section 5.

II. BASICS OF INDICATING ASYNCHRONOUS CIRCUIT DESIGN

A. Data Encoding, Processing and Handshaking

The schematic of a typical indicating asynchronous circuit
stage is shown in the middle of Fig. 1, which is correlated with
the transmitter-receiver analogy at the top.

In Fig. 1, the current stage and the next stage registers are
analogous to the transmitter and the receiver, and the indicating
asynchronous circuit is sandwiched between the current stage
and the next stage register banks. The register bank comprises
a series of registers, with one register allotted for each of the
rails of an encoded data input. Here, the register refers to a 2-
input C-element. The C-element will output 1 or 0 if all its
inputs are 1 or 0 respectively. If the inputs to a C-element are
not identical, then the C-element would retain its existing
steady-state. The circles with the marking ‘C’ represent the C-
elements in the figures.

In Fig. 1, (A1, A0), (B1, B0) and (C1, C0) represent the
delay-insensitive dual-rail encoded inputs of the single-rail
inputs A, B and C respectively. According to dual-rail data
encoding [10] and 4-phase RTZ handshaking [11], an input A
is encoded as (A1, A0) where A = 1 is represented by A1 = 1
and A0 = 0, and A = 0 is represented by A0 = 1 and A1 = 0.
Both these assignments are called data. The assignment A1 =
A0 = 0 is called the spacer, and the assignment A1 = A0 = 1 is

This work is supported by the Academic Research Fund Tier-2 research
award of Ministry of Education, Singapore under grant MOE2017-T2-1-002.

deemed illegal since the coding scheme should remain
unordered [12] to maintain the delay-insensitivity.

Fig. 1. A typical indicating asynchronous circuit stage. The RTZ and RTO
completion detectors for the example dual-rail inputs are shown within the
blue and green dotted boxes.

The application of input data to an indicating asynchronous
circuit which conforms to the 4-phase RTZ handshake protocol
follows this sequence: data-spacer-data-spacer, and so forth. It
may be noted that the application of data is followed by the
application of the spacer, which implies that there is an interim
RTZ phase between the successive applications of input data.
The RTZ phase ensures a proper data communication i.e.,
handshaking between the transmitter and the receiver. The
RTZ handshaking process is governed by the following steps:

• Firstly, the dual-rail data bus specified by (A1, A0),
(B1, B0) and (C1, C0) is a spacer, and therefore the
acknowledgment input (ACKIN) is equal to binary 1.
After the transmitter transmits a data, this would cause
rising signal transitions i.e., binary 0 to 1 to occur on
one of the dual rails of the entire dual-rail data bus

• Secondly, the receiver would receive the data sent and
drive the acknowledgment output (ACKOUT) to 1

• Thirdly, the transmitter waits for ACKIN to become 0
and would then reset the dual-rail data bus, i.e., the
dual-rail data bus becomes a spacer again

• Fourthly, after an unbounded but a finite and positive
time duration, the receiver drives ACKOUT to 0 and
subsequently ACKIN would assume 1. With this, a
single data transaction is said to be complete, and the
asynchronous circuit is permitted to start the next data
transaction

According to the dual-rail data encoding and the 4-phase
RTO handshaking [13], the input A is encoded as (A1, A0) but
A = 1 is represented by A1 = 0 and A0 = 1, and A = 0 is
represented by A0 = 0 and A1 = 1. Both these assignments are
called data. The assignment A1 = A0 = 1 is called the spacer,
and the assignment A1 = A0 = 0 is deemed illegal to maintain
the delay-insensitivity.

The application of input data to an indicating asynchronous
circuit conforming to the 4-phase RTO handshake protocol
follows this sequence: spacer-data-spacer-data, and so forth. It
may be noted that there is an interim RTO phase between the
successive applications of input data. The RTO phase ensures a
proper data communication i.e., handshaking between the
transmitter and the receiver. The RTO handshaking process is
governed by the following four steps:

• Firstly, the acknowledgment input (ACKIN) is equal to
binary 1. After the transmitter transmits the spacer, this
would cause rising signal transitions i.e., binary 0 to 1
on all the rails of the entire dual-rail data bus

• Secondly, the receiver would receive the spacer sent
and drive the acknowledgment output (ACKOUT) to 1

• Thirdly, the transmitter waits for ACKIN to become 0
and would then transmit the data through the dual-rail
data bus

• Fourthly, after an unbounded but a finite and positive
time duration, the receiver drives ACKOUT to 0 and
subsequently ACKIN would assume 1. With this, a
single data transaction is said to be complete, and the
asynchronous circuit is permitted to start the next data
transaction

In an indicating asynchronous circuit, the time taken to
process the data in the datapath highlighted by the red dashed
lines in Fig. 1 is called forward latency, and the time taken to
process the spacer is called reverse latency. Because there is an
intermediate RTZ or RTO phase between the applications of
two input data sequences, the cycle time is given by the sum of
forward and reverse latencies. The cycle time of an indicating
asynchronous circuit is the equivalent of the clock period of a
synchronous circuit.

The gate-level detail of the example completion detectors
corresponding to the 4-phase RTZ and RTO handshake
protocols is shown at the bottom of Fig. 1, within the dotted
blue and green boxes respectively. The completion detector
indicates i.e., acknowledges the receipt of all the primary
inputs given to an asynchronous circuit stage. In the case of the
4-phase RTZ handshaking, ACKOUT is provided by
employing a 2-input OR gate to combine the respective dual
rails of each encoded input, and then synchronizing the outputs
of such 2-input OR gates using a C-element or a tree of C-
elements. In the case of the 4-phase RTO handshaking,
ACKOUT is provided by employing a 2-input AND gate to
combine the respective dual rails of each encoded input, and
then synchronizing the outputs of such 2-input AND gates
using a C-element or a tree of C-elements. ACKIN is the
Boolean complement of ACKOUT.

B. Indicating Asynchronous Circuit Types

Indicating asynchronous circuits are generally classified
into two types as strong-indication and weak-indication [14].
The input-output timing correlation of strong-indication and
weak-indication circuits is illustrated by a representative timing
diagram, shown in Fig. 2. Strong-indication circuits [15] would
wait to receive all the primary inputs (i.e., data or spacer) and
would then process them to produce the required primary
outputs (data or spacer). On the other hand, weak-indication
circuits [16] can produce all but one of the primary outputs
after receiving a subset of the primary inputs. Nevertheless,
only after receiving the last primary input, they would produce
the last primary output.

Both the strong- and weak-indication asynchronous circuits
embed the isochronic forks assumption [17], which represents
the weakest compromise to delay-insensitivity. Isochronic
forks refer to the wires branching out from a node or junction,
and the signal transitions whether they be rising or falling are
presumed to occur concurrently on all the wire branches. But
for the isochronic fork assumption, the practical realization of
delay-insensitive circuits would not in fact be feasible [17]. It
is reported in [18] that enforcing isochronicity is feasible even
in the nanoelectronics regime, which is encouraging to note in
the context of indicating asynchronous circuits.

A cascade of strong-indication sub-circuits may not result
in a strong-indication circuit; rather, a weak-indication circuit
may result. For example, if two strong-indication full adders
are cascaded, the resultant would be a weak-indication 2-bit
ripple carry adder (RCA). This is because if all the inputs to
one of the full adders are provided, the corresponding sum and
carry output bits of that full adder could be produced regardless
of the non-availability of the inputs for the other full adder in
the RCA. However, only after all the inputs to the other full
adder are supplied, its corresponding sum and carry output bits
would be produced. This scenario is characteristic of weak-
indication, as discussed earlier.

Among the strong- and weak-indication circuits, the latter
are preferable for practical implementation [19], and this is
because of the strict timing restrictions inherent in the former.
In general, for implementing arithmetic functions, the weak-
indication type is preferable to the strong-indication type [20–
22] and this is due to the following reasons: i) strong-indication
arithmetic circuits tend to experience worst-case forward and
reverse latencies for the application of data and spacer, and
therefore the cycle time of strong-indication arithmetic circuits
is always the maximum, ii) weak-indication arithmetic circuits
may encounter data-dependent forward and reverse latencies or
just a data-dependent forward latency and a constant reverse
latency, and thus the cycle time of weak-indication arithmetic
circuits is generally reduced compared to the strong-indication
arithmetic circuits. However, for the weakly indicating
asynchronous implementations of the array multiplier
considered here, it is noted that their forward and reverse
latencies would not be data-dependent or a constant; rather
they correspond to the worst-case timing and so the cycle time
also corresponds to the worst-case. Notwithstanding, the weak-
indication array multipliers incorporating weak-indication full
adders facilitate reductions in the cycle time, silicon area, and

average power dissipation compared to the weak-indication
array multipliers incorporating strong-indication full adders.

Inputs

All

None

All

None

OutputsStrong-indication

All

None

OutputsWeak-indication

Data

arrives
Spacer

arrives

Data arrived

Spacer

arrived

(a)

(b)

Inputs

None

All

None

All

OutputsStrong-indication

None

All

OutputsWeak-indication

Data

arrives
Spacer

arrives

Data arrived Spacer

arrived

Fig. 2. Input-output timing relation of strong-indication and weak-indication
circuits corresponding to: (a) RTZ handshaking, and (b) RTO handshaking.

III. INDICATING ASYNCHRONOUS ARRAY MULTIPLIERS

The 4×4 array multiplier structure is portrayed by Fig. 3.
Here, (A3, A2, A1, A0) and (B3, B2, B1, B0) represent the
inputs of the multiplier which are dual-rail encoded. (A3, B3)
and (A0, B0) represent the most significant and the least
significant input bit-pairs respectively. P7 to P0 represent the
product bits, which are also dual-rail encoded, with P7 being
the most significant product bit and P0 being the least
significant product bit.

Fourteen indicating asynchronous array multipliers were
physically realized with seven multipliers corresponding to the
RTZ handshake protocol and the same seven multipliers

corresponding to the RTO handshake protocol. The intent is to
determine which indicating asynchronous logic components
would be more optimum to realize the array multiplier. This
observation may also be useful to determine which indicating
asynchronous logic components would be better suited for the
optimum realization of indicating asynchronous multipliers
corresponding to the other multiplier architectures. Further, it is
of interest to ascertain whether the RTZ or the RTO handshake
protocol would help to better optimize the design metrics.

The 4×4 array multiplier requires sixteen 2-input AND
functions to generate the partial products and twelve full
adders. Of these, the carry input of four full adders are set to 0
in the case of RTZ handshaking and set to 1 in the case of RTO
handshaking. The inputs to the full adders in the multiplier
array shown in Fig. 3 represent the partial products. These
partial products are generated through the 2-input AND
function. The strong-indication realization of the 2-input AND
function corresponding to RTZ and RTO handshake protocols
are portrayed by Figs. 4(a) and 4(b) respectively. In Fig. 4, C1
to C4 represent the 2-input C-elements. (X1, X0) and (Y1, Y0)
are the inputs of the 2-input AND function and (Z1, Z0) is its
output.

Full

Adder

Full

Adder

Full

Adder

Full

Adder

Full

Adder

Full

Adder

Full

Adder

Full

Adder

Full

Adder

Full

Adder

Full

Adder

Full

Adder

A3B0 A2B0 A1B0 A0B0

P0

A0B1A1B1A2B1

A3B1

A3B2

A3B3

P1P2P3P4P5P6P7

A0B3A1B3A2B3

2 2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2222

2 22

2

2

2

X
2

X1

X0

NOTE: In the figure, all the signals are dual-rail

encoded. For example, X is encoded as shown below.

22

A0B2A1B2A2B2
2 22

Traversal of data path for the

application of data and spacer in

the multiplier array

2 2 2

2

Carry input set to 0 for RTZ

handshaking and 1 for RTO

handshaking

Fig. 3. 4×4 array multiplier schematic. The partial products, primary inputs,
intermediate outputs, and primary outputs shown are all dual-rail encoded.

References [1] [23] [41] provide practical examples for the
transformation of an asynchronous logic corresponding to the
RTZ protocol into that that corresponds to the RTO protocol
and vice-versa. The rules for the logical transformation
between the RTZ and RTO handshake protocols are given in
[25] along with the proofs. Note that a weak-indication 2-input
AND function cannot be physically realized since it has one
dual-rail primary output. A weak-indication design requires at
least a pair of dual-rail primary outputs to satisfy the weak-
indication timing constraints [14].

The indicating asynchronous full adders derived from
different logic design methods [26–31] are used to realize the
asynchronous array multipliers, by substituting the full adders
in the respective places as highlighted in the architecture
shown in Fig. 3. The fourteen asynchronous array multipliers
are implemented as follows:

• Two indicating asynchronous array multipliers which
incorporate strong-indication full adders based on [26],
corresponding to RTZ and RTO handshake protocols

• Two indicating asynchronous array multipliers which
incorporate strong-indication full adders based on [27];
corresponding to RTZ and RTO handshake protocols

• Two indicating asynchronous array multipliers which
incorporate strong-indication full adders based on [28];
corresponding to RTZ and RTO handshake protocols

• Two indicating asynchronous array multipliers which
incorporate weak-indication full adders based on [27];
corresponding to RTZ and RTO handshake protocols

• Two indicating asynchronous array multipliers which
incorporate weak-indication full adders based on [29];
corresponding to RTZ and RTO handshake protocols

• Two indicating asynchronous array multipliers which
incorporate weak-indication full adders based on [30];
corresponding to RTZ and RTO handshake protocols

• Two indicating asynchronous array multipliers which
incorporate weak-indication full adders based on [31];
corresponding to RTZ and RTO handshake protocols

Fig. 4. Strongly indicating realization of the 2-input AND function
corresponding to: (a) RTZ handshaking, and (b) RTO handshaking.

IV. RESULTS AND DISCUSSION

Fourteen indicating asynchronous array multipliers were
physically realized using the gates of a 32/28-nm bulk CMOS
standard digital cell library [32], and all the array multipliers
correspond to weak-indication. The 2-input C-element does not
form a part of the cell library and so it was custom-realized
using the AO222 cell with feedback to implement the various

array multipliers. Delay-insensitivity was carefully considered
while decomposing the logic [28] [33] to avoid the possibility
of gate orphan(s). A gate orphan is an unacknowledged signal
transition on a gate output. Gate orphans are problematic as
they might affect the robustness of an indicating asynchronous
circuit and so they are better avoided [34]. For a detailed
explanation of gate orphans, the interested reader is referred to
[35–37]. Wire orphan, which refers to the unacknowledged
transition on a data wire, is however nullified by imposing the
isochronic fork assumption [38].

A typical case PVT specification of the high Vt digital cell
library viz. 1.05V and 25°C was used to perform the
simulations. The design metrics such as cycle time, area, and
average power dissipation estimated are given in Table I.

TABLE I. DESIGN METRICS OF INDICATING ASYNCHRONOUS

MULTIPLIERS CORRESPONDING TO RTZ AND RTO HANDSHAKING, ESTIMATED

USING A 32/28-NM CMOS PROCESS TECHNOLOGY

Multiplier

Reference

Cycle Time

(ns)
Area

(µm2)
Power

(µW)
Normalized

PCTP

Corresponding to 4-phase RTZ handshake protocol

[26] 7.26 1015.30 1245 1

[27]1 5.42 1006.16 1228 0.736

[28] 5.32 926.86 1207 0.710

[27]2 5.20 975.66 1222 0.703

[29] 5.18 823.17 1216 0.697

[30] 3.90 853.67 1222 0.527

[31] 4.48 835.37 1217 0.603

Corresponding to 4-phase RTO handshake protocol

[26] 7.08 1015.31 1240 1

[27]1 5.16 957.36 1211 0.712

[28] 5.24 926.86 1206 0.720

[27]2 5.02 951.26 1211 0.692

[29] 5.12 823.17 1212 0.707

[30] 3.70 853.67 1217 0.513

[31] 4.38 835.37 1213 0.605
1 Utilizes strong-indication full adder; 2 Utilizes weak-indication full adder

As mentioned earlier, the cycle time of an indicating
asynchronous circuit is synonymous with the clock period of a
synchronous circuit. Given that the cycle time is the sum of
forward and reverse latencies, the forward latency is like the
critical path delay which can be directly estimated. The
estimation of reverse latency is non-trivial since it is the time
taken to process the spacer. The reverse latency cannot be
directly estimated using a commercial static timing analyzer,
and so the reverse latency was estimated manually based on the
timing information derived from the gate-level simulations. For
the indicating asynchronous multipliers mentioned in Table I,
their forward and reverse latencies are equal, and the longest
datapath traversed for the application of data or spacer is the
same, which is highlighted by the dotted orange line in Fig. 3.

Since power and cycle time are desirable to be less, the
power-cycle time product (PCTP) is also desirable to be less.
The PCTP serves as a qualitative low power parameter for an
indicating asynchronous design, which is analogous to the
power-delay product of a synchronous design. The PCTP of
the indicating asynchronous multipliers given in Table I are
calculated and normalized. To perform the normalization, the
highest value of the PCTP corresponding to a multiplier was
considered as the baseline, and this value was used to divide
the actual PCTPs of all the multipliers. This procedure was

followed for the multipliers corresponding to the RTZ and
RTO handshake protocols separately. Thus, the least value of
the PCTP is representative of the best design in Table I with
respect to RTZ and RTO handshaking.

It is seen from Table I that the average power dissipation
does not vary significantly across the different multipliers, and
this is because all the indicating asynchronous array multipliers
satisfy the monotonic cover constraint (MCC) [11]. The MCC
basically refers to the activation of a unique signal path from a
primary input to a primary output after the application of an
input data. The MCC enables ensuring the proper indication of
signal transitions throughout an entire asynchronous circuit
from the first up to the last logic level. This is because the
signal transitions, whether they be rising or falling, should
occur monotonically throughout the entire circuit [34], and the
MCC ensures this. The MCC arises from the adoption of a
logic expression format which is composed of disjoint or
orthogonal terms [39] to describe the primary outputs. For
example, in a disjoint sum-of-products expression, the logical
conjunction of any two product terms would yield 0 [40].
Hence, only one term would become activated in a disjoint
logic expression after the application of data.

It can be seen from Table I that the weak-indication array
multiplier incorporating the biased weak-indication full adder
of [30] and the strong-indication 2-input AND function to
generate the partial products enables reduced cycle time and
PCTP compared to the rest with respect to RTZ and RTO
handshaking. Compared to the weak-indication array multiplier
embedding the weak-indication full adder of [31], the weak-
indication array multiplier embedding the weak-indication full
adder of [30] reports corresponding reductions in cycle time
and PCTP by 12.9% and 12.6% for RTZ handshaking, and by
15.5% and 15.2% for RTO handshaking respectively.

V. CONCLUSION AND SCOPE FOR FURTHER WORK

This paper has discussed the physical implementation of
robust indicating asynchronous array multipliers based on
indicating asynchronous logic design methods. The multipliers
were realized based on 4-phase RTZ and RTO handshake
protocols, and they correspond to the weak-indication. It is
noted that the array multiplier incorporating the weak-
indication full adder of [30] enables enhanced optimizations in
the design metrics compared to the other indicating
asynchronous array multipliers. As the size of the
multiplication is increased, we hypothesize that the array
multiplier utilizing the weak-indication full adder of [31] might
be competitive to that utilizing the weak-indication full adder
of [30]. However, higher bit-width multiplications should have
to be considered to unravel the reality. Nevertheless, both [30]
and [31] present full adder designs which incorporate
redundant logic, and it was shown in [43] that logic
redundancy could help to significantly reduce the latencies and
the cycle time at almost no increase in the area or average
power dissipation.

The construction of indicating asynchronous array
multipliers given in Table I is quite straightforward since the
full adders based on the corresponding design methods [26–31]
can be used to substitute the respective function blocks as

shown in Fig. 3, corresponding to RTZ or RTO handshaking.
However, the constructions of early output quasi-delay-
insensitive asynchronous array multipliers using early output
full adders of say, [22] and [42] may not be straightforward.
This is due to the likelihood of the problem of gate orphans. To
overcome the gate orphan problem in the realization of the
early output asynchronous array multiplier, the provision of
internal completion detectors as used in [44] may become a
necessity to ensure a proper indication of rising and falling
signal transitions at the intermediate outputs. Moreover, the
outputs of all the internal completion detectors would have to
be synchronized with at least one dual-rail product bit of the
array multiplier using a tree of C-elements. This would enable
the provision of proper acknowledgment for the receipt of data
or spacer throughout an indicating asynchronous circuit
starting from the first logic level up to the last logic level.

Although the early output logic could simplify the physical
realization of the full adder blocks thereby suggesting potential
savings in the design metrics, the additional introduction of
internal completion detectors to ensure delay-insensitivity may
partially or fully offset the reductions in the design metrics
achieved for the early output logic type. However, this should
be investigated. Hence, the design and implementation of early
output quasi-delay-insensitive asynchronous array multipliers
and their comparison with the indicating asynchronous
multipliers in terms of the design metrics is necessary, which
points to a scope for further work.

REFERENCES

[1] P. Balasubramanian, D. Maskell, N. Mastorakis, “Low power robust
early output asynchronous block carry lookahead adder with redundant
carry logic,” Electronics, vol. 7, no. 10, Article #243, pages 21, 2018.

[2] L. Wanhammar, DSP Integrated Circuits, Academic Press, USA, 1999.

[3] D. Kearney, N.W. Bergmann, “Bundled data asynchronous multipliers
with data dependent computation times,” Proc. Third International

Symposium on Advanced Research in Asynchronous Circuits and

Systems, pp. 186-197, 1997.

[4] B.-H. Gwee, J.S. Chang, Y. Shi, C.-C. Chua, K.-S. Chong, “A low-
voltage micropower asynchronous multiplier with shift-add
multiplication approach,” IEEE Transactions on Circuits and Systems I:

Regular Papers, vol. 56, no. 7, pp. 1349-1359, 2009.

[5] J. Crop, S. Fairbanks, R. Pawlowski, P. Chiang, “150mV sub-threshold
asynchronous multiplier for low-power sensor applications,” Proc.

International Symposium on VLSI Design, Automation and Test, pp.
254-257, 2010.

[6] B.R. Sheikh, R. Manohar, “An asynchronous floating-point multiplier,”
Proc. 18th IEEE International Symposium on Asynchronous Circuits and

Systems, pp. 89-96, 2012.

[7] S. Bo, W. Zhiying, H. Libo, S. Wei, W. Yourui, “Reducing power
consumption of floating-point multiplier via asynchronous technique,”
Proc. 4th International Conference on Computational and Information

Sciences, pp. 1360-1363, 2012.

[8] Z. Xia, M. Hariyama, M. Kameyama, “Asynchronous domino logic
pipeline design based on constructed critical data path,” IEEE

Transactions on VLSI Systems, vol. 23, no. 4, pp. 619-630, 2015.

[9] M.M. Kim, J. Kim, P. Beckett, “Area performance tradeoffs in NCL
multipliers using two-dimensional pipelining,” Proc. International SoC

Design Conference, pp. 125-126, 2015.

[10] T. Verhoeff, “Delay-insensitive codes – an overview,” Distributed

Computing, vol. 3, pp. 1-8, 1988.

[11] J. Sparsø, S. Furber (Eds.), Principles of Asynchronous Circuit Design:

A Systems Perspective, Kluwer Academic Publishers, 2001.

[12] B. Bose, “On unordered codes,” IEEE Transactions on Computers, vol.
40, pp. 125-131, 1991.

[13] M.T. Moreira, R.A. Guazzelli, N.L.V. Calazans, “Return-to-one
protocol for reducing static power in C-elements of QDI circuits
employing m-of-n codes,” Proc. 25th Symposium on Integrated Circuits

and Systems Design, pp. 1-6, 2012.

[14] C.L. Seitz, “System Timing”, in Introduction to VLSI Systems, C. Mead
and L. Conway (Eds.), pp. 218-262, Addison-Wesley, Massachusetts,
USA, 1980.

[15] P. Balasubramanian, D.A. Edwards, “Efficient realization of strongly
indicating function blocks,” Proc. IEEE Computer Society Annual

Symposium on VLSI, pp. 429-432, 2008.

[16] P. Balasubramanian, D.A. Edwards, “A new design technique for
weakly indicating function blocks,” Proc. 11th IEEE Workshop on

Design and Diagnostics of Electronic Circuits and Systems, pp. 116-
121, 2008.

[17] A.J. Martin, “The limitation to delay-insensitivity in asynchronous
circuits,” Proc. 6th MIT Conference on Advanced Research in VLSI, pp.
263-278, 1990.

[18] A.J. Martin, P. Prakash, “Asynchronous nano-electronics: preliminary
investigation,” Proc. 14th IEEE International Symposium on

Asynchronous Circuits and Systems, pp. 58-68, 2008.

[19] P. Balasubramanian, N.E. Mastorakis, “Global versus local weak-
indication self-timed function blocks – a comparative analysis,” Proc.

10th International Conference on Circuits, Systems, Signal and

Telecommunications, pp. 86-97, 2016.

[20] P. Balasubramanian, “Self-timed logic and the design of self-timed
adders,” PhD thesis, School of Computer Science, The University of
Manchester, UK, 2010.

[21] P. Balasubramanian, N.E. Mastorakis, “Timing analysis of quasi-delay-
insensitive ripple carry adders – a mathematical study,” Proc. 3rd

European Conference of Circuits Technology and Devices, pp. 233-240,
2012.

[22] P. Balasubramanian, S. Yamashita, “Area/latency optimized early output
asynchronous full adders and relative-timed ripple carry adders,”
SpringerPlus, vol. 5, no. 1, pages 26, 2016.

[23] P. Balasubramanian, “Approximate early output asynchronous adders
based on dual-rail data encoding and 4-phase return-to-zero and return-
to-one handshaking,” International Journal of Circuits, Systems and

Signal Processing, Invited Paper, vol. 11, pp. 445-453, 2017.

[24] P. Balasubramanian, C. Dang, “A comparison of quasi-delay-insensitive
asynchronous adder designs corresponding to return-to-zero and return-
to-one handshaking,” Proc. 60th IEEE International Midwest Symposium

on Circuits and Systems, pp. 1192-1195, 2017.

[25] P. Balasubramanian, “Comparative evaluation of quasi-delay-insensitive
asynchronous adders corresponding to return-to-zero and return-to-one
handshaking,” Facta Universitatis, Series: Electronics and Energetics,
Invited Paper, vol. 31, no. 1, pp. 25-39, March 2018.

[26] N.P. Singh, “A design methodology for self-timed systems,” M.Sc.

dissertation, Massachusetts Institute of Technology, USA, 1981.

[27] J. Sparsø, J. Staunstrup, “Delay-insensitive multi-ring structures,”
Integration, the VLSI Journal, vol. 15, no. 3, pp. 313-340, 1993.

[28] W.B. Toms, “Synthesis of quasi-delay-insensitive datapath circuits,”
PhD thesis, School of Computer Science, University of Manchester,UK,
2006.

[29] B. Folco, V. Bregier, L. Fesquet, M. Renaudin, “Technology mapping
for area optimized quasi delay insensitive circuits,” Proc. IFIP 13th

International Conference on VLSI-SoC, pp. 146-151, 2005.

[30] P. Balasubramanian, D.A. Edwards, “A delay efficient robust self-timed
full adder,” Proc. IEEE 3rd International Design and Test Workshop, pp.
129-134, 2008.

[31] P. Balasubramanian, “A latency optimized biased implementation style
weak-indication self-timed full adder,” Facta Universitatis, Series:

Electronics and Energetics, vol. 28, pp. 657-671, 2015.

[32] Synopsys SAED_EDK32/28_CORE Databook, Revision 1.0.0, 2012.

[33] P. Balasubramanian, N.E. Mastorakis, “QDI decomposed DIMS method
featuring homogeneous/heterogeneous data encoding,” Proc.

International Conference on Computers, Digital Communications and

Computing, pp. 93-101, 2011.

[34] V.I. Varshavsky (Ed.), Self-Timed Control of Concurrent Processes:

The Design of Aperiodic Logical Circuits in Computers and Discrete

Systems, Chapter 4: Aperiodic Circuits, pp. 77-85, (Translated from the
Russian by A.V. Yakovlev), Kluwer Academic Publishers, 1990.

[35] P. Balasubramanian, K. Prasad, N.E. Mastorakis, “Robust asynchronous
implementation of Boolean functions on the basis of duality,” Proc. 14th

WSEAS International Conference on Circuits, pp. 37-43, 2010.

[36] P. Balasubramanian, Comments on “Dual-rail asynchronous logic multi-
level implementation,” Integration, the VLSI Journal, vol. 52, no. 1, pp.
34-40, 2016.

[37] P. Balasubramanian, Critique of “Asynchronous logic implementation
based on factorized DIMS,”, arXiv: 1711.02333, 2017.

[38] C. Jeong, S.M. Nowick, “Block level relaxation for timing-robust
asynchronous circuits based on eager evaluation,” Proc. 14th IEEE

International Symposium on Asynchronous Circuits and Systems, pp. 95-
104, 2008.

[39] P. Balasubramanian, D.A. Edwards, “Self-timed realization of
combinational logic,” Proc. 19th International Workshop on Logic and

Synthesis, pp. 55-62, 2010.

[40] P. Balasubramanian, R. Arisaka, H.R. Arabnia, “RB_DSOP: A rule
based disjoint sum of products synthesis method,” Proc. 12th

International Conference on Computer Design, pp. 39-43, 2012.

[41] P. Balasubramanian, K. Prasad, “Latency optimized asynchronous early
output ripple carry adder based on delay-insensitive dual-rail data
encoding,” International Journal of Circuits, Systems and Signal

Processing, vol. 11, pp. 65-74, 2017.

[42] P. Balasubramanian, “A robust asynchronous early output full adder,”
WSEAS Transactions on Circuits and Systems, vol. 10, no. 7, pp. 221-
230, 2011.

[43] P. Balasubramanian, D.A. Edwards, W.B. Toms, “Redundant logic
insertion and latency reduction in self-timed adders,” VLSI Design, vol.
2012, Article #575389, pages 13, 2012.

[44] A. Kondratyev, K. Lwin, “Design of asynchronous circuits by
synchronous CAD tools,” Proc. Design Automation Conference, pp.
411-414, 2002.

