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Abstract performs multiple simultaneous operations on a fixed set

The requirements of a general purpose massively parallelof data may work best with a star topology, while a
processing system are outlined. The suitability of a fine- parallel circuit simulator is better suited to a nearest-
grained self-reconfigurable system to general massivelyneighbor interconnection scheme. This suggests that both
parallel processing is shown. A new type of self- the processors and their interconnection scheme must be
reconfigurable device called the PIG is introduced, and extremely flexible.

details of its design and operation are explained. The ©One way to achieve this flexibility is to use a general
PIG's uniqueness compared to other reconfigurable Purpose reconfigurable platform, composed of a large
systems is discussed. This uniqueness is further illustratediumber of hardware elements which can be individually
through specific examples of PIG circuits. An application configured via software. The variation in the above
of the PIG to evolvable hardware is described. Further €xamples suggests a very fine-grained architecture, where
potential applications are discussed. Plans for future the individual configurable elements are relatively simple
work, including options for building a large-scale PIG are and are combined to perform more complex functions. Of

discussed. course, such a reconfigurable platform needs to be quite
large.

Since such a system is composed of general purpose

1 Introduction hardware, there must be some way to specify the

configuration of that hardware. Most current

There is good cause to be interested in Computingreconfigurable systems use an external control system
systems which can perform thousands or millions of (Usually a PC or other sequential machine), with the
operations in parallel. While traditional uniprocessors and féconfigurable platform (usually an FPGA) attached as a

specialized parallel processors are in no danger ofcoprocessor [1]. The popularity of this setup extends even

becoming obsolete, there is a wide range of applicationsto single-chip solutions [2]. Such an arrangement is in fact

which are inherently massively parallel, and which can peSometimes stated as thiefini.tion of a reconfiglurable
executed most efficienty of a massively parallel system [3]. Unfortunately, this setup is not suitable for
processing system. systems which require massively parallel

If a system is going to perform millions of independent reconfiguration, in which multiple parts of the system are

operations in parallel, it clearly must contain millions of Simultaneously —reconfigured, —perhaps based on
independent processors. What is less clear is exactly honformation — within  the  reconfigurable  elements
this parallel hardware should be configured. The desirablenémselves. , ,
capabilities of each processor depend on the nature of the 'S suggests the following requirements for the
problem being solved. For example, applications such asconfiguration — controller of a massively parallel
finite element analysis require high-precision floating réconfigurable system: _

point arithmetic, while pattern detection in DNA requires  * Since it should be able to monitor, analyze and
rapid comparison of memory blocks, and would benefit ~ réconfigure multiple circuits simultaneously, the
more from a hardware pattern matcher than from deep  Controller itself should be massively parallel
multiplicative pipelines. Moreover, the interconnections

among these processors is critical. An application which



« To avoid communication bottlenecks, the interconnections within is less likely to have critical failure
configuration control should be distributed throughout points.
the reconfigurable platform The next section describes a processing system which
satisfies the above requirements.

2 The Processing Integrated Grid

Control Layer

) NS TR
\ A\ A\ R The Processing Integrated Grid (US Patent #5,886,537),
w‘,*ﬁ%‘—*\ or PIG, is a massively parallel, fine grained, self-
AN ; reconfigurable infinitely scalable system which satisfies
Reconfigurable YANY v i i i
L 'gu ¥ ¥ the requirements presented in section 1. A few general
(aR{e)r comments about this system will help in the discussion

which follows. First, the PIG is not intended as a
) ) o ] _ replacement for traditional von Neumann processors,
Figure 1. One possible way to distribute reconfiguration \ynich are already extremely efficient at executing scalar

control throughout a grid of reconfigurable devices. The algorithms. Neither is the PIG intended for scalar
reconfigurable layer shown consists of a two-dimensional

array of reconfigurable elements. Each element is controlledalgor'thms_ which have som_ehow begn Coerced_ Into
by a separate processing element in the control layer. Whil€x€cuting in parallel. The PIG is best suited to algorithms

this allows parallel reconfiguration of the devices in the RL, Which are inherently massively parallel.

the RL cannot directly configure itself, nor can the CL layer ~ The PIG is not anything like a von Neumann machine.

be configured without an external controller It is not programmed in the traditional sense of the word, it

does not have an attached memory per se, there are no

instructions, no internal buses, no registers. It is basically a

platform of reconfigurable hardware which functions

similar to a dataflow machine. However, the PIG is much
more than a simple grid of blank hardware. While the

PIG’'s circuits can process data, they can also

interchangeably process configuration information.

. . - ~ ' Therefore, unlike a Field Programmable Gate Array
for example, in the .evqlut|on Of. circuits which (FPGA) or other similar reconfigurable device, the PIG is
th_emselves perform circuit synthe3|s. capable of analyzing and modifying its own circuits.

2. Since the CL needs to be configured, there must be The PIG is composed of a collection of simple
another controller to handle that. reconfigurable elements calledells connected in a

tm gtf:jeLV\;ct)]rd% the tﬁ)]'cugf In gggr? 1 r:;:ghéEe%d to be regular array structure. Figure 2 shows one arrangement of
extended both above the and below the RL. Une way.q|i5 55 a regular two-dimensional array, with each cell

around this is to utilize a reconfigurable platform which is connected to exactly four neighbors. This simple

self-reconfigurab_le meaning the same Gircuits Whic_h ar€ jinterconnection scheme among homogeneous cells, and
themse_lve§ configurable are also capable of conflgurlngthe complete lack of non-adjacent connectivity, leads to an
other cireutts. ' : , infinitely-scalable architecture. If you take two PIGs and
A massively-parallel, fine-grained, self-reconfigurable connect them along their edges, the result is a larger PIG
system embodies all of the above requirements. Obviously, vt functions identically to the originals
it is massively parallel and reconfigurable. Since it can Each individual cell can be configur.ed to act as a
_modify_its own_circuits, the rec_onfiguration control (i.e., simple combinatorial device, and as such, the entire PIG
itself) is massively para_llel,_ dlstr!buted t_thQhOUt the can be configured as a large digital circuit, with cells
sys;edrg_,tgnd lllocal to thi c:;cwts being Conflgured._ " functioning together to implement, for example, logic
itionally, -we Introduce oné more requirement. gates, flip flops, and wires. While the PIG can thus be
scalability. The system_ ShO.UId have_ a r_egu_lar m_ternal used to implement state machines, memories, or CPUs, it
structure, composed of identical atomic units in a S|mple,iS capable of much more than simply implementing fixed

regular interconnection scheme. Certainly this simplifies digital circuits. The PIG iself-reconfigurable meaning

the manufacturlng process. I_\/Ioreov_e_r, with the_degree Ofthat it is capable of modifying its own circuits, without
parallelism we are discussing (millions or billions of

devi fault tol b itical derati requiring external control. In fact, it can be rather difficult
evices), fault to erance becomes a critical Considerationy, o,niro| the PIG externally, as most of its cells are not
and a system with identical hardware and identical

directly accessible from outside the grid.

Figure 1 shows one way to satisfy these requirements
This setup consists of a reconfigurable layer (RL) of
reconfigurable hardware, and a controller layer (CL)
which monitors the circuits in the RL and can analyze and
modify their configuration. Such a setup meets the above
requirements, but still has two shortcomings:

1. The RL itself might need to configure other circuits



To understand this self-reconfiguration mechanism, 2. By placing a neighboring cell in C mode and reading
which is the key to the PIG’s power, we must take a closerand writing that neighbor’'s D lines, a cell can read and
look at a single PIG cell. write the truth table of any neighboring cell, and thereby

Each cell in figure 2 has two inputs;{@nd B,) and configure it to subsequently perform any combinatorial
two outputs (G and ) on each side. Additionally, function desired (after returning the neighbor to D mode).

3. Since the neighbor’s new combinatorial function can
VM VM VM produce any desired C and D outputs, that neighbor can be

DnCnDnCn DnCnDnCn DnCnDnCn . . . . . .

<—1Dw De [<—{Dw De [<—{Dw Del— configured to itself configure any @§ neighboring cells.

<—Cw Ce<—(Cw Ce <—(Cw CeK— ioti i A

oy N o sloy oS These characteristics are sufficient to allow any cell

%CWD oo CCE%CWD oo CCE%CWD oo CCE% access to both the data and configuration information of
\NM\ \NM\ \NM\ any other cell within the PIG. Figure 4 shows a typical
DnChDrCr DnChDrCr DnChDrCr programming sequence. Cell X first configures cell Y to

SR R R > read data from X and pass it to Z, while asserting its C

—>{Dw De [—>IDw De [—>IDw De—> output to Z. Cell X then feeds data into Y, which passes it

—>Cw Ce[—>ICw Ce[—>ICw Ce—> . . . . .
DsCsDsCs DsCsDsCs DsC<DsCs on as configuration information for Z. Hence cell X is able
VM VM YV to reconfigure cell Z, even though there is no direct
DNCADAC DNCADAC DANCNDNCy connection between cells X and Z. This is possible

<1bw De[<{Dw De[<{Dw Def<— vee . : . P

<{Cw Ce<1Cw Cel<{Cw Cel<— because cell Y is first the object of a configuration step,

—>Dw De —>Dw De —>Dw De— y . .

—>ICw Ce—>ICw Ce—>ICw Cel> and then becomes the controller of Z's configuratalh,
DJM\?\ DJM\?\ DJM\?\ under the control of cell X This interchangeability of

controllers and controlled-devices is sometimes refereed to

Figure 2. Sample two-dimensional 3x3 grid of PIG as “Code/Data Duality.” This duality is not merely an

_Ce”s-d_Ef;‘Ch ?er']'b is d'fegt'y ﬁonneaetd only tto 'tz incidental consequence of the PIG’s design. It derives

Immediate neignbors, ana exchanges two Inputs an f P . . .

two outputs with each neighbor. Sides are designated directly from the or|gl|nal motivating problem b.ehmd the

N, S, W and E for convenience. PIG, which was to write a software program which outputs

its own source code. The software solution was

each cell contains an internal 16-row by 8-column truth reformulated in hardware, and the result was the first PIG
table, which governs the combinatorial behavior of the cell.
cell. Cells exchange information on their D lines, though  Note that there is nothing special about cells X, Y or Z.
the nature of this information depends on which of two They are identical to each other and to every other cell
modesthe cell is currently operating in. Data mode (or within the PIG.
D mode), the cell is a pure combinatorial device, which Since any cell can configure any neighboring cell, as
reads its four D inputs and, using them as inputs to its truthwell as non-neighboring cells, the task of reconfiguring
table (to select one of 16 rows), determines a set of eightells can be distributed throughout the grid, with multiple
output values to present on the four D and four C outputs.reconfigurations occurring simultaneously. Hence the PIG
In Control mode (or C mode), the D inputs are serially is quite capable of parallel self-reconfiguration. This
shifted into the cell's internal truth table, according to a internally-controlled reconfigurability, combined with the
system-wide clock. This allows one cell to write another code/data duality, has been used to realize many
cell's internal truth table, which subsequently affects thatinteresting and powerful functions, including cell
cell’s behavior when it returns to D mode. Additionally, as replication, dynamic path construction for control of non-
the new truth table is shifted into the cell, the cell's prior adjacent cells, dynamic circuit analysis and synthesis, and
truth table is shifted out on it's D outputs, and is available the creation of self-replicating circuits.
for reading. The current mode of a cell is determined by its While a small cMOS PIG has been built and
C inputs. If any of a cell's C inputs is 1, the cell is in C successfully tested (see Section 5), most PIG work has
mode, otherwise it is in D-mode. When a cell is in C been done on simulators. In addition to providing a higher
mode, only the D inputs and outputs on sides whegrelC  cell count than currently possible with their physical
are relevant. Normally this would only be one side, but counterparts, simulators offer direct access to interior PIG
there are exceptions to this. Figure 3 illustrates these twacells, which aids the development and debugging process.
modes of operation for a single cell. Full details of the PIG’s circuit design, timing diagrams

The PIG’s design has three immediate consequences: for its programming, and other details can be found in the

1. Since a cell can control its C outputs (via its truth patent, which can be found online at [4].
table), each of which is a neighboring cell’'s C inuty
cell can control the mode of any neighboring cell
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Ce Ce Ce —>Ce Ce Ce
Truth Table Truth Table Truth Table
(TToLp) H—> (??7?) — (TTnew)
Initial State of Cell. All C inputs Same Cell Being Reconfigured. Final State of Cell. All C inputs
are 0, so cell is in D-mode. The Since Cy is 1, the cell is now in C- are again 0, so cell returns to D-
truth table executor uses the D mode. The Dy input is fed directly mode. The truth table executor
inputs to look up output values in into the cell’s truth table, while the uses D inputs to look up output
truth table TToyp. old truth table is output on the Dy values in the new truth table
output. All other outputs=0. TTneEW-

Figure 3. Reconfiguration of a single cell. In figure on left, the cell is processing D inputs based og the TT
truth table. In the middle picture, the cell is being reprogrammed witfzgf While its old truth table is

being read. In the picture on the right, the cell has been reprogrammed toggefarigenerating outputs.

All C inputs are 0 unless shown otherwise. For simplicity, all inputs are shown on the left and all outputs are
shown on the right.
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Figure 4. Cell X configures non-adjent cell Z by first configuring cell Y to act as a router of X’s configuration information
(Step 1), and then passing Z's desired truth tabieifto Z via Y (Step 2). Cell Y is first an object of configuration, and
then becomes a configuration controller itself. This is called “Code/Data Duality.”

3 Sample PIG circuits 3. A cell library, which contains an archive of fixed
cells, any of which can be selected and replicated at some

Most of the development work on the PIG has dealt target location. A 2cell library requires %(n+2) cells for
with foundational tasks, such as how to analyze andstoring and selecting the desired cell, one cell for
configure circuits from within the grid. While these lower- Performing the replication, plus a two-cell-wide pathway
level tasks do not represent complete applications int0 the target cell.
themselves, they deal with more PIG-specific features of 4. A general wire building circuit, which combines the
the system, and as such, are illustrative of the uniqueabove circuits to build the structures necessary to access
nature of the PIG. Section 4 will describe a specific remote cells,without having any pre-existing access

higher-order application involving evolvable hardware. ~ Paths to those remote cellsThe basic wire structure is
Some of the foundational circuits developed for the Still only two cells wide. The sequence of operations to
PIG include: extend the wire a single cell requires 512 clock cycles.

1. A cell replicator, which non-destructively reads the One simple control circuit for this process can be built
configuration of one adjacent cell, and uses it to configureusing 11x17 cells, though numerous configurations are
another adjacent cell identically. This circuit requires only possible.

a single cell, and executes in 128 clock cycles. This circuit is an example of a more general class of

2. A remote cell copier, which performs the above cell circuits called “sequence generators.” Sequence generators
replication on non-adjacent cells. This circuit requires acreate sequences of bits which modulate the C and D

single cell, plus pathways to the source and destinationnputs of remote cells to ultimately control the
cells. These pathways are two cells wide. configuration of other cells. These circuits are key to most

of the interesting circuits developed so far for the PIG.



5. An expanding 12-bit counter, which responds to an4 Application areas
impending overflow by synthesizing additional stages
beyond the most-significant bit, thereby becoming a 13-bit  \hile all of the above circuits have been thoroughly
counter, or a 14-bit counter, or as large a counter asgesigned, simulated and studied on PIG simulators, they
necessary. The basic circuit for this requires 37x25 cellsgre really intended as building blocks for higher-level
for the control system, plus n x 4 cells for an n-bit counter. gpplications. One such application which has been studied
The sequence of steps to extend the counter a single bis g highly parallel genetic algorithm for evolving digital
requires 6272 clock cycles. circuits on the PIG. A new type of genetic algorithm called
6. A space filling circuit (SFC), which, from a single 4 Ringed GA (RGA) was developed to allow an O(1)
control circuit, can be replicated with time @}, i.e., it evolutionary cycle, e.g., the time for each cycle of
will fill a space of size fin a time proportional to n. The  evaluation, selection and mating is independent of the
space occupied by these SFCs expands outward in alhopulation size. Execution of the RGA on a PIG was
directions along a wavefront of increasing diameter. At simulated for the evolution of a parity generator, 4-1
each step, the control circuit has simultaneous access to athultiplexer and 3-bit counter. In each case, the algorithm
cells along this wavefront. Additionally, the SFC is was able to evolve a perfect circuit. Full details of the
endowed with a dynamic locator circuit, which indicates RGA and the experimental setup are available in [5].
where each copy of the SFC resides relative to the central While the RGA can not be implemented on a standard
controller. This positional information can be used to FPGA or other externally-controlled reconfigurable device
control configuration of individual cells along the (internal control is required to keep the mating time
expanding wavefront. In this way, the SFC can be used tandependent of population size), it uses only one of the
dynamically construct large circuits. The basic SFC is anpuilding blocks described above (remote cell replication).
11x11 circuit, and requires approximately 1,280,000 clock  Other possible applications abound. For example, the
cycles to sweep outward one step. The control circuit for expanding counter can also be made to contract after the
this system has not been implemented in PIG cells, but hagigher-order bits are no longer needed. Expanding
been simulated in a higher-level “Virtual PIG” simulator.  multipliers and dividers have been designed though not
7. An autonomous self-replicating circuit. This circuit, simulated. Together, these could be combined into a
once loaded into the PIG, immediately begins making anhardware management system, which dynamically adapts
exact copy of itself. As soon as that copy is finished beingits circuits to changing problems. The space filling circuit
created, it (the copy) begins making a copytsdif, and s useful for fault handling and path finding, as well as
so on. While this circuit is much larger and slower than the hootstrapping a grid via external control. The self-
space-filling circuit, there is no need for a central control replicating circuit is useful for autonomous bootstrapping,
circuit, and as such the self-replicator may be more robusivhere a single seed is loaded into the grid, which then
than an array of SFCs. This circuit requires 255x150 Ce”S,repﬁcateS and differentiates according to a global grid
and takes 19,381,504 clock cycles to execute a singlemap. Guard walls have obvious potential for fault tolerant
replication sequence. processing. It is hoped that work on specific applications,
8. A guard wall, which surrounds a critical circuit and sych as evolvable hardware, will lead to a better
allows data to pass through the wall, but prohibits the cellsunderstanding of how to apply the PIG to other areas.
inside from being reconfigured. If a cell tries to
reconfigure one of the guard wall’s cells, that section of
the guard wall is effectively shut down, and any exchange

through that cell becomes impossible. A single piece of While specialized massively parallel systems exist for

this wall is only 2x2 cells. . i .
These are only some of the interesting circuits one Cansolvmg specific types of problems, there is need for a truly

implement on the PIG. Again, in all these examples, theregeneral purpose massively parallel system. To be general

is no special hardware involved, other than a uniform arraypurpose, such a system needs to be controliable at a very

of homogeneous PIG cells which operate as describecﬂne'gramed level, suggestmg_ the use of reconﬂgura_ble
above. ardware. The need for massively parallel reconfiguration

The circuits described above are part of a growing setllaadS fto tth_e goal dOff haﬁ”ﬁg 3I_Se'f'recog'9”;?‘b'e _system.
of building blocks which can be assembled into large self- anutacturing and fauit handling considerations 1mpose

reconfigurable circuits for executing parallel algorithms the further requirement of an infiniiely scalable

which require self-modification. architecture. . .
The PIG is a general purpose massively parallel

system. While it is not intended as a replacement for
traditional von Neumann systems, its capacity for self-

5 Conclusions and future work



reconfiguration, and its code/data duality make it well circuit configurations, and learning systems which analyze
suited to a variety of tasks fundamentally different from an algorithm’'s execution and synthesize hardware to
those which a von Neumann machine does best. capture its functionality.

While a PIG can be configured to solve a wide range  Finally, we must note that the applications we've
of specific problems, one of its most important explored so far barely scratch the surface of the PIG’s
applications is for the general exploration of new conceptscapabilities. The PIG represents a fundamentally different
involving self-reconfigurability. Because of the PIG’'s programming paradigm, and the types of problems it can
distributed configuration control, it can be used to study efficiently solve are quite different from those we are used
not only parallel execution of algorithms in hardwdret to thinking about in the von Neumann world. Until we
parallel reconfiguration of hardware. Moreover, the  have more experience working in the PIG paradigm, we
PIG can implement circuits which create new circuits, cannot imagine most of the PIG’s possible applications.
which themselves create and modify other circuits. This is
an extremely powerful capability which is not currently Acknowledgements
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