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Abstract
The requirements of a general purpose massively parallel
processing system are outlined. The suitability of a fine-
grained self-reconfigurable system to general massively
parallel processing is shown. A new type of self-
reconfigurable device called the PIG is introduced, and
details of its design and operation are explained. The
PIG’s uniqueness compared to other reconfigurable
systems is discussed. This uniqueness is further illustrated
through specific examples of PIG circuits. An application
of the PIG to evolvable hardware is described. Further
potential applications are discussed. Plans for future
work, including options for building a large-scale PIG are
discussed.

1 Introduction

There is good cause to be interested in computing
systems which can perform thousands or millions of
operations in parallel. While traditional uniprocessors and
specialized parallel processors are in no danger of
becoming obsolete, there is a wide range of applications
which are inherently massively parallel, and which can be
executed most efficiently of a massively parallel
processing system.

If a system is going to perform millions of independent
operations in parallel, it clearly must  contain millions of
independent processors. What is less clear is exactly how
this parallel hardware should be configured. The desirable
capabilities of each processor depend on the nature of the
problem being solved. For example, applications such as
finite element analysis require high-precision floating
point arithmetic, while pattern detection in DNA requires
rapid comparison of memory blocks, and would benefit
more from a hardware pattern matcher than from deep
multiplicative pipelines. Moreover, the interconnections
among these processors is critical. An application which

performs multiple simultaneous operations on a fixed set
of data may work best with a star topology, while a
parallel circuit simulator is better suited to a nearest-
neighbor interconnection scheme. This suggests that both
the processors and their interconnection scheme must be
extremely flexible.

One way to achieve this flexibility is to use a general
purpose reconfigurable platform, composed of a large
number of hardware elements which can be individually
configured via software. The variation in the above
examples suggests a very fine-grained architecture, where
the individual configurable elements are relatively simple
and are combined to perform more complex functions.  Of
course, such a reconfigurable platform needs to be quite
large.

Since such a system is composed of general purpose
hardware, there must be some way to specify the
configuration of that hardware. Most current
reconfigurable systems use an external control system
(usually a PC or other sequential machine), with the
reconfigurable platform (usually an FPGA) attached as a
coprocessor [1]. The popularity of this setup extends even
to single-chip solutions [2]. Such an arrangement is in fact
sometimes stated as the definition  of a reconfigurable
system [3]. Unfortunately, this setup is not suitable for
systems which require massively parallel
reconfiguration, in which multiple parts of the system are
simultaneously reconfigured, perhaps based on
information within the reconfigurable elements
themselves.

This suggests the following requirements for the
configuration controller of a massively parallel
reconfigurable system:

• Since it should be able to monitor, analyze and
reconfigure multiple circuits simultaneously, the
controller itself should be massively parallel



• To avoid communication bottlenecks, the
configuration control should be distributed throughout
the reconfigurable platform

Figure 1 shows one way to satisfy these requirements.
This setup consists of a reconfigurable layer (RL) of
reconfigurable hardware, and a controller layer (CL)
which monitors the circuits in the RL and can analyze and
modify their configuration. Such a setup meets the above
requirements, but still has two shortcomings:

1. The RL itself might need to configure other circuits,
for example, in the evolution of circuits which
themselves perform circuit synthesis.

2. Since the CL needs to be configured, there must be
another controller to handle that.

In other words, the picture in figure 1 might need to be
extended both above the CL and below the RL. One way
around this is to utilize a reconfigurable platform which is
self-reconfigurable, meaning the same circuits which are
themselves configurable are also capable of configuring
other circuits.

A massively-parallel, fine-grained, self-reconfigurable
system embodies all of the above requirements. Obviously
it is massively parallel and reconfigurable. Since it can
modify its own circuits, the reconfiguration control (i.e.,
itself) is massively parallel, distributed throughout the
system, and local to the circuits being configured.

Additionally, we introduce one more requirement:
scalability. The system should have a regular internal
structure, composed of identical atomic units in a simple,
regular interconnection scheme. Certainly this simplifies
the manufacturing process. Moreover, with the degree of
parallelism we are discussing (millions or billions of
devices), fault tolerance becomes a critical consideration,
and a system with identical hardware and identical

interconnections within is less likely to have critical failure
points.

The next section describes a processing system which
satisfies the above requirements.

2 The Processing Integrated Grid

The Processing Integrated Grid (US Patent #5,886,537),
or PIG, is a massively parallel, fine grained, self-
reconfigurable infinitely scalable system which satisfies
the requirements presented in section 1. A few general
comments about this system will help in the discussion
which follows. First, the PIG is not intended as a
replacement for traditional von Neumann processors,
which are already extremely efficient at executing scalar
algorithms. Neither is the PIG intended for scalar
algorithms which have somehow been coerced into
executing in parallel. The PIG is best suited to algorithms
which are inherently massively parallel.

The PIG is not anything like a von Neumann machine.
It is not programmed in the traditional sense of the word, it
does not have an attached memory per se, there are no
instructions, no internal buses, no registers. It is basically a
platform of reconfigurable hardware which functions
similar to a dataflow machine. However, the PIG is much
more than a simple grid of blank hardware. While the
PIG’s circuits can process data, they can also
interchangeably process configuration information.
Therefore, unlike a Field Programmable Gate Array
(FPGA) or other similar reconfigurable device, the PIG is
capable of analyzing and modifying its own circuits.

The PIG is composed of a collection of simple
reconfigurable elements called cells, connected in a
regular array structure. Figure 2 shows one arrangement of
cells as a regular two-dimensional array, with each cell
connected to exactly four neighbors. This simple
interconnection scheme among homogeneous cells, and
the complete lack of non-adjacent connectivity, leads to an
infinitely-scalable architecture. If you take two PIGs and
connect them along their edges, the result is a larger PIG
which functions identically to the originals.

Each individual cell can be configured to act as a
simple combinatorial device, and as such, the entire PIG
can be configured as a large digital circuit, with cells
functioning together to implement, for example, logic
gates, flip flops, and wires. While the PIG can thus be
used to implement state machines, memories, or CPUs, it
is capable of much more than simply implementing fixed
digital circuits. The PIG is self-reconfigurable, meaning
that it is capable of modifying its own circuits, without
requiring external control. In fact, it can be rather difficult
to control the PIG externally, as most of its cells are not
directly accessible from outside the grid.

Control Layer
(CL)

Reconfigurable
Layer
(RL)

Figure 1. One possible way to distribute reconfiguration
control throughout a grid of reconfigurable devices. The
reconfigurable layer shown consists of a two-dimensional
array of reconfigurable elements. Each element is controlled
by a separate processing element in the control layer. While
this allows parallel reconfiguration of the devices in the RL,
the RL cannot directly configure itself, nor can the CL layer
be configured without an external controller.



To understand this self-reconfiguration mechanism,
which is the key to the PIG’s power, we must take a closer
look at a single PIG cell.

Each cell in figure 2 has two inputs (Cin and Din) and
two outputs (Cout and Dout) on each side. Additionally,

each cell contains an internal 16-row by 8-column truth
table, which governs the combinatorial behavior of the
cell. Cells exchange information on their D lines, though
the nature of this information depends on which of two
modes the cell is currently operating in. In Data mode (or
D mode), the cell is a pure combinatorial device, which
reads its four D inputs and, using them as inputs to its truth
table (to select one of 16 rows), determines a set of eight
output values to present on the four D and four C outputs.
In Control mode (or C mode), the D inputs are serially
shifted into the cell’s internal truth table, according to a
system-wide clock. This allows one cell to write another
cell’s internal truth table, which subsequently affects that
cell’s behavior when it returns to D mode. Additionally, as
the new truth table is shifted into the cell, the cell’s prior
truth table is shifted out on it’s D outputs, and is available
for reading. The current mode of a cell is determined by its
C inputs. If any of a cell’s C inputs is 1, the cell is in C
mode, otherwise it is in D-mode. When a cell is in C
mode, only the D inputs and outputs on sides where Cin=1
are relevant. Normally this would only be one side, but
there are exceptions to this. Figure 3 illustrates these two
modes of operation for a single cell.

The PIG’s design has three immediate consequences:
1. Since a cell can control its C outputs (via its truth

table), each of which is a neighboring cell’s C input, any
cell can control the mode of any neighboring cell.

2. By placing a neighboring cell in C mode and reading
and writing that neighbor’s D lines, a cell can read and
write the truth table of any neighboring cell, and thereby
configure it to subsequently perform any combinatorial
function desired (after returning the neighbor to D mode).

3. Since the neighbor’s new combinatorial function can
produce any desired C and D outputs, that neighbor can be
configured to itself configure any of its neighboring cells.

These characteristics are sufficient to allow any cell
access to both the data and configuration information of
any other cell within the PIG. Figure 4 shows a typical
programming sequence. Cell X first configures cell Y to
read data from X and pass it to Z, while asserting its C
output to Z. Cell X then feeds data into Y, which passes it
on as configuration information for Z. Hence cell X is able
to reconfigure cell Z, even though there is no direct
connection between cells X and Z. This is possible
because cell Y is first the object of a configuration step,
and then becomes the controller of Z’s configuration, all
under the control of cell X. This interchangeability of
controllers and controlled-devices is sometimes refereed to
as “Code/Data Duality.” This duality is not merely an
incidental consequence of the PIG’s design. It derives
directly from the original motivating problem behind the
PIG, which was to write a software program which outputs
its own source code. The software solution was
reformulated in hardware, and the result was the first PIG
cell.

Note that there is nothing special about cells X, Y or Z.
They are identical to each other and to every other cell
within the PIG.

 Since any cell can configure any neighboring cell, as
well as non-neighboring cells, the task of reconfiguring
cells can be distributed throughout the grid, with multiple
reconfigurations occurring simultaneously. Hence the PIG
is quite capable of parallel self-reconfiguration. This
internally-controlled reconfigurability, combined with the
code/data duality, has been used to realize many
interesting and powerful functions, including cell
replication, dynamic path construction for control of non-
adjacent cells, dynamic circuit analysis and synthesis, and
the creation of self-replicating circuits.

While a small cMOS PIG has been built and
successfully tested (see Section 5), most PIG work has
been done on simulators. In addition to providing a higher
cell count than currently possible with their physical
counterparts, simulators offer direct access to interior PIG
cells, which aids the development and debugging process.

Full details of the PIG’s circuit design, timing diagrams
for its programming, and other details can be found in the
patent, which can be found online at [4].

DNCNDNCN

DSCSDSCS

DW

CW

DW

CW

DE

CE

DE

CE

DNCNDNCN

DSCSDSCS

DW

CW

DW

CW

DE

CE

DE

CE

DNCNDNCN

DSCSDSCS

DW

CW

DW

CW

DE

CE

DE

CE

DNCNDNCN

DSCSDSCS

DW

CW

DW

CW

DE

CE

DE

CE

DNCNDNCN

DSCSDSCS

DW

CW

DW

CW

DE

CE

DE

CE

DNCNDNCN

DSCSDSCS

DW

CW

DW

CW

DE

CE

DE

CE

DNCNDNCN

DSCSDSCS

DW

CW

DW

CW

DE

CE

DE

CE

DNCNDNCN

DSCSDSCS

DW

CW

DW

CW

DE

CE

DE

CE

DNCNDNCN

DSCSDSCS

DW

CW

DW

CW

DE

CE

DE

CE

Figure 2. Sample two-dimensional 3x3 grid of PIG
cells. Each cell is directly connected only to its
immediate neighbors, and exchanges two inputs and
two outputs with each neighbor. Sides are designated
N, S, W and E for convenience.



3 Sample PIG circuits

Most of the development work on the PIG has dealt
with foundational tasks, such as how to analyze and
configure circuits from within the grid. While these lower-
level tasks do not represent complete applications in
themselves, they deal with more PIG-specific features of
the system, and as such, are illustrative of the unique
nature of the PIG. Section 4 will describe a specific
higher-order application involving evolvable hardware.

Some of the foundational circuits developed for the
PIG include:

1. A cell replicator, which non-destructively reads the
configuration of one adjacent cell, and uses it to configure
another adjacent cell identically. This circuit requires only
a single cell, and executes in 128 clock cycles.

2. A remote cell copier, which performs the above cell
replication on non-adjacent cells. This circuit requires a
single cell, plus pathways to the source and destination
cells. These pathways are two cells wide.

3. A cell library, which contains an archive of fixed
cells, any of which can be selected and replicated at some
target location. A 2n-cell library requires 2nx(n+2) cells for
storing and selecting the desired cell, one cell for
performing the replication, plus a two-cell-wide pathway
to the target cell.

4. A general wire building circuit, which combines the
above circuits to build the structures necessary to access
remote cells, without having any pre-existing access
paths to those remote cells. The basic wire structure is
still only two cells wide. The sequence of operations to
extend the wire a single cell  requires 512 clock cycles.
One simple control circuit for this process can be built
using 11x17 cells, though numerous configurations are
possible.

This circuit is an example of a more general class of
circuits called “sequence generators.” Sequence generators
create sequences of bits which modulate the C and D
inputs of remote cells to ultimately control the
configuration of other cells. These circuits are key to most
of the interesting circuits developed so far for the PIG.
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Initial State of Cell. All C inputs
are 0, so cell is in D-mode. The
truth table executor uses the D

inputs to look up output values in
truth table TTOLD.

Same Cell Being Reconfigured.
Since CN is 1, the cell is now in C-
mode. The DN input is fed directly
into the cell’s truth table, while the
old truth table is output on the DN

output. All other outputs=0.

Final State of Cell. All C inputs
are again 0, so cell returns to D-
mode. The truth table executor
uses D inputs to look up output

values in the new truth table
TTNEW.

Figure 3. Reconfiguration of a single cell. In figure on left, the cell is processing D inputs based on the TTOLD

truth table. In the middle picture, the cell is being reprogrammed with TTNEW, while its old truth table is
being read. In the picture on the right, the cell has been reprogrammed to use TTNEW for generating outputs.
All C inputs are 0 unless shown otherwise. For simplicity, all inputs are shown on the left and all outputs are
shown on the right.
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5. An expanding 12-bit counter, which responds to an
impending overflow by synthesizing additional stages
beyond the most-significant bit, thereby becoming a 13-bit
counter, or a 14-bit counter, or as large a counter as
necessary. The basic circuit for this requires 37x25 cells
for the control system, plus n x 4 cells for an n-bit counter.
The sequence of steps to extend the counter a single bit
requires 6272 clock cycles.

6. A space filling circuit (SFC), which, from a single
control circuit, can be replicated with time O(√n), i.e., it
will fill a space of size n2 in a time proportional to n. The
space occupied by these SFCs expands outward in all
directions along a wavefront of increasing diameter. At
each step, the control circuit has simultaneous access to all
cells along this wavefront. Additionally, the SFC is
endowed with a dynamic locator circuit, which indicates
where each copy of the SFC resides relative to the central
controller. This positional information can be used to
control configuration of individual cells along the
expanding wavefront. In this way, the SFC can be used to
dynamically construct large circuits. The basic SFC is an
11x11 circuit, and requires approximately 1,280,000 clock
cycles to sweep outward one step. The control circuit for
this system has not been implemented in PIG cells, but has
been simulated in a higher-level “Virtual PIG” simulator.

7. An autonomous self-replicating circuit. This circuit,
once loaded into the PIG, immediately begins making an
exact copy of itself. As soon as that copy is finished being
created, it (the copy) begins making a copy of itself, and
so on. While this circuit is much larger and slower than the
space-filling circuit, there is no need for a central control
circuit, and as such the self-replicator may be more robust
than an array of SFCs. This circuit requires 255x150 cells,
and takes 19,381,504 clock cycles to execute a single
replication sequence.

8. A guard wall, which surrounds a critical circuit and
allows data to pass through the wall, but prohibits the cells
inside from being reconfigured. If a cell tries to
reconfigure one of the guard wall’s cells, that section of
the guard wall is effectively shut down, and any exchange
through that cell becomes impossible. A single piece of
this wall is only 2x2 cells.

These are only some of the interesting circuits one can
implement on the PIG. Again, in all these examples, there
is no special hardware involved, other than a uniform array
of homogeneous PIG cells which operate as described
above.

The circuits described above are part of a growing set
of building blocks which can be assembled into large self-
reconfigurable circuits for executing parallel algorithms
which require self-modification.

4 Application areas

While all of the above circuits have been thoroughly
designed, simulated and studied on PIG simulators, they
are really intended as building blocks for higher-level
applications. One such application which has been studied
is a highly parallel genetic algorithm for evolving digital
circuits on the PIG. A new type of genetic algorithm called
a Ringed GA (RGA) was developed to allow an O(1)
evolutionary cycle, e.g., the  time for each cycle of
evaluation, selection and mating is independent of the
population size. Execution of the RGA on a PIG was
simulated for the evolution of a parity generator, 4-1
multiplexer and 3-bit counter. In each case, the algorithm
was able to evolve a perfect circuit. Full details of the
RGA and the experimental setup are available in [5].

While the RGA can not be implemented on a standard
FPGA or other externally-controlled reconfigurable device
(internal control is required to keep the mating time
independent of population size), it uses only one of the
building blocks described above (remote cell replication).

Other possible applications abound. For example, the
expanding counter can also be made to contract after the
higher-order bits are no longer needed. Expanding
multipliers and dividers have been designed though not
simulated. Together, these could be combined into a
hardware management system, which dynamically adapts
its circuits to changing problems. The space filling circuit
is useful for fault handling and path finding, as well as
bootstrapping a grid via external control. The self-
replicating circuit is useful for autonomous bootstrapping,
where a single seed is loaded into the grid, which then
replicates and differentiates according to a global grid
map. Guard walls have obvious potential for fault tolerant
processing. It is hoped that work on specific applications,
such as evolvable hardware, will lead to a better
understanding of how to apply the PIG to other areas.

5 Conclusions and future work

While specialized massively parallel systems exist for
solving specific types of problems, there is need for a truly
general purpose massively parallel system. To be general
purpose, such a system needs to be controllable at a very
fine-grained level, suggesting the use of reconfigurable
hardware. The need for massively parallel reconfiguration
leads to the goal of having a self-reconfigurable system.
Manufacturing and fault handling considerations impose
the further requirement of an infinitely scalable
architecture.

The PIG is a general purpose massively parallel
system. While it is not intended as a replacement for
traditional von Neumann systems, its capacity for self-



reconfiguration, and its code/data duality make it well
suited to a variety of tasks fundamentally different from
those which a von Neumann machine does best.

 While a PIG can be configured to solve a wide range
of specific problems, one of its most important
applications is for the general exploration of new concepts
involving self-reconfigurability. Because of the PIG’s
distributed configuration control, it can be used to study
not only parallel execution of algorithms in hardware, but
parallel reconfiguration of hardware. Moreover, the
PIG can implement circuits which create new circuits,
which themselves create and modify other circuits. This is
an extremely powerful capability which is not currently
available to most algorithms. The RGA is one example of
the use of this capability to execute an algorithm extremely
efficiently.

 A very small physical PIG has been built in cMOS and
successfully tested. While fabrication errors rendered
particular PIG cells unusable, the remaining cells and the
overall grid generally remained fully functional,
illustrating the inherent fault tolerance of the PIG’s
scalable architecture. A single-cell replication such as
described above was successfully carried out on the
physical system. Various other small circuits such as
adders were also successfully tested on the system.

Most of the circuits which have been discussed are too
large to run on this physical PIG, and as such, have been
developed and tested on simulators. Unfortunately, such
simulators are necessarily slower than a physical PIG, and
as the amount of parallelism in a PIG circuit increases, this
slowdown becomes greater. Hence the extremely parallel
circuits which are best suited to the PIG are the hardest to
study using simulators. This motivates the goal of
constructing a large-scale physical PIG.

While the prototype PIG was built in silicon, it appears
that building a very large (say one trillion cell) PIG would
be prohibitively expensive, both in size and cost.

In contrast, there are emerging technologies such as
nanotechnology [6] and molecular computing [7], which
deal with densities many orders of magnitude beyond what
can be achieved in silicon. Practitioners of these
disciplines don’t ask “How do we construct 1016 identical
circuits in a small low-energy system?” but rather “What
can we do with these kinds of circuit densities?” To utilize
such densities, systems built with these technologies would
probably be composed of large numbers of relatively
simple circuits assembled into regular two- or three-
dimensional arrays. This is precisely the kind of
manufacturing required for the PIG.

If a large PIG can be built, it will be possible to work
with larger circuits, and more ambitious applications can
be explored. Some applications of interest include self-
repairing systems, systems for evolving complex circuits,
multi-modal systems which switch between multiple

circuit configurations, and learning systems which analyze
an algorithm’s execution and synthesize hardware to
capture its functionality.

Finally, we must note that the applications we’ve
explored so far barely scratch the surface of the PIG’s
capabilities. The PIG represents a fundamentally different
programming paradigm, and the types of problems it can
efficiently solve are quite different from those we are used
to thinking about in the von Neumann world. Until we
have more experience working in the PIG paradigm, we
cannot imagine most of the PIG’s possible applications.
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