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Abstract

Autonomous space vehicles need adaptive control strate-
gies that can accommodate unanticipated environmental
conditions. The evaluation of new strategies can often be
done only by actually trying them out in the real physical
environment. Consequently, a candidate control strategy
must be deemed safe—i.e., it won’t damage any systems—
prior to being tested online. How to do this efficiently has
been a challenging problem.

We propose using evolutionary programming in con-
junction with a formal verification technique (called model
checking) to evolve candidate control strategies that are
guaranteed to be safe for implementation and evaluation.

1. Introduction

Control strategies are critical ingredients of a space mis-
sion because they indicate what actions are to be taken by
the spacecraft in response to environmental conditions. Un-
fortunately, control strategies defined at the beginning ofa
mission may have to be modified later on. The need for this
modification may be due to system failures that reduce func-
tionality or because the spacecraft has encountered unantic-
ipated environmental conditions.

An appealing method for dealing with these undesirable
situations is to use areconfigurable system, which can adopt
a different functionality. For example, a reconfigurable sys-
tem eliminates the need for redundant hardware—which
consumes precious space and weight—by simply modify-
ing the existing hardware to compensate for the failure.
However, despite the enormous advantages of reconfigu-
ration, reconfiguration information originating from Earth
will probably not arrive in time to do any good.

The real solution lies withadaptive systems—i.e., sys-
tems capable of self-reconfiguration in response to faults or
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a changing operational environment [1]. This adaption is
performedin-situ (in place), thereby removing any reliance
on Earth-bound resources for reconfiguration information.

In this paper we propose a method for evolving new con-
trol strategies in a way guaranteed to be safe during the re-
configuration process. Our method fully supportsin-situ
adaption of the strategies.

2. Discussion

Control strategies can be evolvedextrinsically, where
each strategy is simulated, but only the best one is actually
implemented, orintrinsically, where each candidate strat-
egy is downloaded into the system and exercised in the real
physical environment.In-situ extrinsic evolution may be
problematic because some closed-form objective function
is necessary to assess efficacy, but it may not always be
possible to define a suitable one. Thus, in most cases in-
trinsic evolution may be the only thing that makes sense.
It is therefore absolutely essential that the control strategy
be safe—i.e., it does no harm to the controller itself nor to
any other system. This safety check must be made prior to
testing the new strategy online.

Our approach is to evolve a series of deterministicfinite
state machines(FSMs), each encoding a potential new con-
trol strategy.Evolutionary programming(EP) [5] is used to
evolve these FSMs. The suitability of each strategy will be
assessed by actually trying it in the real physical environ-
ment. However, only control strategies that pass a safety
check will be downloaded for evaluation. We will borrow
automatic formal verification methods to assess this safety.
These methods use mathematically provable techniques to
characterize a system without conducting exhaustive simu-
lation or testing. Specifically, we will rely onmodel check-
ing (MC) techniques [3] to verify the safety of candidate
FSMs generated by EP. Although model checking has been
extensively used in hardware design and software verifica-
tion, to the best of our knowledge no prior research effort
in formal methods has attempted the problem we consider
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here.
MC is a formal method that verifies if a system, mod-

elled as a FSM, adheres to a specified property. The prop-
erties of interest are encoded as temporal logic expressions,
which expresses properties that change over time [4]. There
are many different kinds of temporal logic butcomputation
tree logic(CTL) is the most widely used with model check-
ers. The basic idea is a safety property is expressed in ordi-
nary Boolean logic, and then special temporal operators are
added for describing future events.

MC has been used to verify properties in systems with
hundreds of thousands of states. In practice, control strate-
gies tend to have orders of magnitude fewer states. The MC
algorithm complexity is linear in the size of the FSM and
in the length of the CTL expression [2], so the safety of a
control strategy can be quickly verified. A graphical repre-
sentation of the MC algorithm is shown in Figure 1.
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Figure 1. A graphical depiction of the model
checking algorithm. The control strategy is
described by a FSM. I is the set of all FSM
initial states and Y0 is the set of FSM states
that violates a safety property. The algorithm
recursively computes Yi+1 = Pre(Yi)

⋃
Yi for

i = 0, 1, 2, . . . n − 1 where Pre( Yi) is the preim-
age of the set Yi. Yn then represents the set
of all FSM states that can reach an error state.
The system is safe if Yn

⋂
I = ∅. This check

can be done in linear time.

Several important issues concerning using MC to check
safeness of control strategies are worth highlighting:

• The large number of states in physical systems often
forces one to use a reduced FSM model where some de-
tails are abstracted out. Model checking cannot guar-
antee safety under these circumstances.

In our approach the EP algorithm renders FSMs which
are complete in the sense that everyaspect of the con-
trol strategy is explicitly described in the FSM struc-
ture. No details are abstracted out or reduced so the
safety check results are guaranteed.

• Model checkers typically provide trace information to
help pinpoint where the safety property failed.

We will not use this feature. In fact, we treat the en-
tire safety issue as a decision problem—i.e., either the
strategy is safe or it is not. Unsafe control strategies
are immediately discarded, so there is no need to know
why it is unsafe.

• Model checkers are used to verify functional specifica-
tions and other properties, e.g., liveness.

In our approach model checking only verifies safety.
All other performance criteria are assessed by trying
out the control strategy in the physical environment.

3. Implementation Details

Our method can be summarized as follows:

• Control strategies are encoded with FSMs.

• An EP algorithm generates candidate control strategies
by evolving FSMs. EP is ideally suited for this task [5].

• Safety properties are encoded as CTL expressions.

• A symbolic model checker accepts the FSM and CTL
expressions as input, and quickly checks to see if the
control strategy is safe. The correctness of the safety
check is guaranteed.

• Safe control strategies are evaluated in the physical en-
vironment whereas unsafe strategies are discarded.

• The EP algorithm runs a fixed number of generations
or terminates sooner if a suitable control strategy is
found. The best performing FSM is implemented as
the new control strategy.
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Fogel, T. Michalewicz (Eds), IOP Publish., 2000.


