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Abstract 

This paper reviews the use of genetic programming 
as an automated invention machine for the synthesis 
of both the topology and sizing of analog electrical 
circuits. The paper focuses on the importance of the 
developmental representation in this process. The 
paper makes the point that genetic programming now 
routinely delivers high-return human-competitive 
machine intelligence. It also makes the point that 
genetic programming has delivered a progression of 
qualitatively more substantial results in synchrony 
with five approximately order-of-magnitude 
increases in the expenditure of computer time. The 
paper shows six examples where genetic 
programming has synthesized a circuit that 
duplicates the functionality or infringes a 21st-
century patented electrical circuit. Finally, the paper 
discusses how genetic programming can be enhanced 
in order to potentially enable it to deliver more 
complex industrial-strength  results. 

 

1 Introduction 

Genetic programming is an extension of the genetic 
algorithm (Holland 1975) into the arena of computer 
programs. Genetic programming starts from a high-
level statement of what needs to be done and 
automatically creates a computer program to solve 
the problem. Genetic programming uses the 
Darwinian principle of natural selection and analogs 
of recombination (crossover), mutation, gene 
duplication, gene deletion, and certain mechanisms of 
developmental biology to progressively breed an 
improved population over a series of many 
generations (Koza 1992; Koza 1994; Koza, Bennett, 
Andre, and Keane 1999; Koza, Keane, Streeter, 
Mydlowec, Yu, and Lanza 2003; Banzhaf, Nordin, 
Keller, and Francone 1998; Langdon and Poli 2002).  

Section 2 of this paper describes how genetic 
programming can be used to automatically synthesize 
the topology and sizing of analog electrical circuits 
and focuses on the importance of the developmental 
representation in this process. 

Section 3 provides evidence that genetic 
programming now routinely delivers high-return 
human-competitive machine intelligence and 
evolvable hardware. 

Section 4 discusses the progression of qualitatively 
more substantial results produced in synchrony with 
increasing computer power and asserts that genetic 
programming is able to take advantage of the 
exponentially increasing computational power made 
available by iterations of Moore’s law.  

Section 5 shows six human-competitive examples 
of evolvable hardware involving 21st-century 
patented inventions. 

Section 6 discusses the commercial practicality of 
genetic programming for automated circuit synthesis, 
with emphasis on ways of improving the efficiency 
of runs to yield more complex industrial-strength 
results. 

Section 7 is the conclusion.  

2 The Importance of the 
Developmental Representation in the 
Automatic Synthesis of Circuits 

The design process for electrical circuits begins with 
a high-level description of the circuit’s desired 
behavior and characteristics. The process entails 
creation of both the topology and the sizing of a 
satisfactory circuit.  

The topology of a circuit comprises  
• the total number of components in the circuit,  
• the type of each component (e.g., resistor, 
capacitor, transistor) at each location in the 
circuit,  
• a list of the connections between the leads of 
the circuit’s components, input ports, output 
ports, power sources, and ground.  

The sizing of a circuit consists of the component 
value(s), if any, associated with each component. The 
sizing of a component is usually numerical.  

Genetic programming was first used to 
automatically synthesize both the topology and sizing 
of analog electrical circuits in 1995 (Koza, Bennett, 
Andre, Keane 1996). Numerous examples of the 
automatic synthesis of analog electrical circuits 
composed of transistors, capacitors, resistors, 
inductors, and other components are found in Koza, 
Bennett, Andre, and Keane 1999 and Koza, Keane, 
Streeter, Mydlowec, Yu, and Lanza 2003.  



Our approach to the problem of automatically 
creating both the topology and sizing of an electrical 
circuit involves 

(1) establishing a developmental representation 
for electrical circuits involving program trees, and  
(2) defining a fitness measure that measures how 
well the behavior and characteristics of a 
candidate circuit satisfy the problem’s high-level 
design requirements.  

During the run, the evaluation of the fitness of 
each individual in the population involves  

(1) converting each individual program tree in the 
population into a netlist for an electrical circuit,  
(2) obtaining the circuit’s behavior and 
characteristics, and  
(3) using the circuit’s behavior and characteristics 
to calculate fitness.  

Electrical circuits are ordinarily represented as 
labeled graphical structures with cycles (circuit 
diagrams). However, the program trees used in 
genetic programming are acyclic graphs. Our 
approach to the automatic synthesis of circuits using 
genetic programming employs a developmental 
process to overcome this representational difference. 
This approach is inspired by the principles of 
developmental biology, the innovative work of 
Kitano (1990) on using developmental genetic 
algorithms to evolve neural networks, the creative 
and innovative work of Gruau (1992) on using 
developmental genetic programming (cellular 
encoding) to evolve neural networks, and early work 
on evolving Lindenmayer rules for creating 
structures (Koza 1993). The reader is also referred to 
ontogenetic programming (Spector and Stoffel 1996). 

The developmental process transforms a program 
tree (an acyclic graph) into a fully developed 
electrical circuit (a graphical structure with cycles). 
The developmental process entails the execution of 
functions in a circuit-constructing program tree. The 
circuit-constructing program tree may contain 
component-creating functions, topology-modifying 
functions, development-controlling functions, 
arithmetic-performing functions, and automatically 
defined functions (ADFs).  

The starting point for our developmental process 
consists of an initial circuit. The initial circuit 
consists of an embryo and a test fixture. The initial 
circuit is typically very simple. The embryo contains 
at least one modifiable wire. All development 
originates from the embryo’s modifiable wire(s).  

An electrical circuit is developed by progressively 
applying the functions in a circuit-constructing 
program tree to the modifiable wires of the original 
embryo and, as the circuit grows, to the modifiable 
wires and modifiable components that sprout from it. 
The execution of the functions in the program tree 

transforms the initial circuit into a fully developed 
circuit. That is, the functions in the circuit-
constructing program tree progressively side-effect 
the embryo and its successor structures until a fully 
developed circuit eventually emerges.  

A test fixture (external to the entity that is being 
automatically created) facilitates measurement of the 
performance and characteristics of the fully 
developed circuit. The test fixture is a hard-wired 
structure composed of nonmodifiable wires and 
nonmodifiable electrical components. The test fixture 
feeds external input(s) into the circuit that is being 
evaluated. It also enables the circuit’s output(s) to be 
probed. The test fixture supplies the measurements 
that enable the fitness measure to assign a single 
numerical value of fitness to the behavior and 
characteristics of the fully developed circuit.  

The functions in the circuit-constructing program 
trees are divided into five categories:  

• component-creating functions that insert 
components (e.g., resistors, capacitors, 
transistors) into the developing circuit,  
• topology-modifying functions (e.g., series 
division, parallel division, cut, via) that modify 
the topology of the developing circuit,  
• development-controlling functions that control 
the developmental process by which the embryo 
and its successor structures are converted into a 
fully developed circuit (e.g., the development-
ending function),  
• arithmetic-performing functions (e.g., addition, 
subtraction) that may appear in a value-setting 
subtree that is an argument to a component-
creating function and that specifies the numerical 
value of the component, and  
• automatically defined functions (ADFs) that 
enable certain substructures to be reused 
(including parameterized reuse). 

The component-creating functions generally have 
a value-setting subtree that establishes the value of 
the component (e.g., the capacitance of a capacitor).  

Most of the component-creating and topology-
modifying functions possess one or more 
construction-continuing subtrees.  

The terminals in the circuit-constructing program 
trees may include  

• constant numerical values,  
• perturbable numerical values,  
• externally supplied free variables,  
• symbolic values (e.g., discrete alternative types 
for certain components), and  
• zero-argument functions (e.g., the development-
ending function, zero-argument automatically 
defined functions). 



In a run of genetic programming, all the individual 
program trees created in generation 0 of the 
population are syntactically valid executable 
programs. All the genetic operations of genetic 
programming (i.e., crossover, mutation, reproduction, 
and the architecture-altering operations) operate so as 
to create syntactically valid executable programs 
from syntactically valid executable programs. Thus, 
all the individuals encountered during the run 
(including, in particular, the best-of-run individual) 
are syntactically valid executable programs.  

Each circuit-constructing program tree is created 
in accordance with a constrained syntactic structure 
(strong typing) that imposes grammatical limits on 
how the available functions and terminals may be 
combined. For example, a value-setting subtree 
establishing the numerical value of a capacitor may 
only appear as a particular argument of the capacitor-
creating function. All the individuals in the initial 
random population (generation 0) of a run of genetic 
programming for automatic circuit synthesis comply 
with the constrained syntactic structure. All the 
genetic operations that are performed during the run 
operate so as to preserve the constrained syntactic 
structure. Thus, all the individuals encountered 
during the run comply with the constrained syntactic 
structure. 

The developmental approach is far more than just 
a mechanism for mapping an acyclic graph (the 
circuit-constructing program tree) into a graphical 
structure with cycles (the fully developed circuit).  

For one thing, the developmental process has the 
advantage of preserving electrical connectivity. 
There are no unconnected leads in the initial circuit. 
Each component-creating, topology-modifying, and 
development-controlling function preserves electrical 
connectivity at each stage of the developmental 
process. Thus, there are no unconnected leads in the 
fully developed circuit.  

More importantly, the developmental approach has 
the advantage of preserving locality. Most of the 
component-creating, topology-modifying, and 
development-controlling functions intentionally 
operate on a small local area of the circuit. Subtrees 
within the overall program tree therefore tend to 
represent a small local area. The crossover operation 
(the main workhorse of genetic programming and 
genetic algorithms) transplants subtrees. Thus, the 
crossover operation (in conjunction with the 
developmental process) tends to preserve locality. 
The mutation operation and architecture-altering 
operations similarly work in conjunction with the 
developmental process to preserve locality.  

In addition to preserving locality, the 
developmental approach enables useful parts of a 
circuit-constructing program tree to be reused. Real-
world circuits are replete with reuse. Reuse 

eliminates the need to “reinvent the wheel” on each 
occasion when a particular structure may be useful. 
Reuse makes it possible to exploit a problem’s 
modularities, symmetries, parallelism, and 
regularities and thereby accelerate the problem-
solving process. See Koza, Keane, and Streeter 2003 
for a detailed discussion of the importance of reuse in 
automated circuit synthesis.  

The efficiency of developmental genetic 
programming in the domain of automatic circuit 
synthesis stems from the combined effects of the 

• preservation of syntactic validity, 
• preservation of executablity of the circuit-
constructing program trees, 
• preservation of constrained syntactic structure,  
• preservation of electrical connectivity,  
• preservation of locality during crossover (and 
other operations), and  
• the facilitation of reuse.  

3 Genetic Programming Now Routinely 
Delivers High-Return Human-
Competitive Machine Intelligence 

We begin by defining what we mean by “human-
competitive,” “high-return,” and “routine.” 

3.1 Definition of “Human-Competitive”  

In attempting to evaluate an automated problem-
solving method, the question arises as to whether 
there is any real substance to the demonstrative 
problems that are published in connection with the 
method. Demonstrative problems in the fields of 
artificial intelligence and machine learning are often 
contrived toy problems that circulate exclusively 
inside academic groups that study a particular 
methodology. These problems typically have little 
relevance to any issues pursued by any scientist or 
engineer outside the fields of artificial intelligence 
and machine learning. To make the idea of human-
competitiveness concrete, we say that a result is 
“human-competitive” if it satisfies one or more of 
eight criteria enumerated in Koza, Keane, Streeter, 
Mydlowec, Yu, and Lanza 2003. One of the eight 
criteria (and the one most relevant to this paper) is  

“The result was patented as an invention 
in the past, is an improvement over a 
patented invention, or would qualify 
today as a patentable new invention.” 

In any event, all eight criteria have the desirable 
attribute of being at arms-length from the fields of 
artificial intelligence, machine learning, and genetic 
programming.  



Table 1 Twenty-one previously patented inventions reinvented by genetic programming  
Invention Date Inventor Institution Patent 

Darlington emitter-follower 
section 

1953 Sidney Darlington Bell Telephone Laboratories 2,663,806 

Ladder filter 1917 George Campbell American Telephone and 
Telegraph 

1,227,113 

Crossover filter  1925 Otto Julius Zobel American Telephone and 
Telegraph 

1,538,964 

“M-derived half section” filter 1925 Otto Julius Zobel American Telephone and 
Telegraph 

1,538,964 

Cauer (elliptic) topology for 
filters 

1934–
1936 

Wilhelm Cauer University of Gottingen 1,958,742, 
1,989,545 

Sorting network 1962 Daniel G. O’Connor and 
Raymond J. Nelson 

General Precision, Inc. 3,029,413 

Computational circuits NA Numerous Numerous Numerous 
Electronic thermometer NA Numerous Numerous Numerous 

Voltage reference circuit NA Numerous Numerous Numerous 
60 dB and 96 dB amplifiers NA Numerous Numerous Numerous 

Second-derivative controller 1942 Harry Jones Brown Instrument Company 2,282,726 
Philbrick circuit 1956 George Philbrick George A. Philbrick Researches 2,730,679 

NAND circuit 1971 David H. Chung and Bill H. 
Terrell 

Texas Instruments Incorporated 3,560,760 

PID (proportional, integrative, 
and derivative) controller 

1939 Albert Callender and Allan 
Stevenson 

Imperial Chemical Limited 2,175,985 

Negative feedback 1937 Harold S. Black American Telephone and 
Telegraph 

2,102,671 

Low-voltage balun circuit 2001 Sang Gug Lee Information and 
Communications University 

6,265,908 

Mixed analog-digital variable 
capacitor circuit 

2000 Turgut Sefket Aytur Lucent Technologies Inc. 6,013,958 

High-current load circuit 2001 Timothy Daun-Lindberg and 
Michael Miller 

International Business Machines 
Corporation 

6,211,726 

Voltage-current conversion 
circuit 

2000 Akira Ikeuchi and Naoshi 
Tokuda 

Mitsumi Electric Co., Ltd. 6,166,529 

Cubic function generator 2000 Stefano Cipriani and Anthony A. 
Takeshian 

Conexant Systems, Inc. 6,160,427 

Tunable integrated active filter 2001 Robert Irvine and Bernd Kolb Infineon Technologies AG 6,225,859 
 
 
 
That is, a result cannot acquire the rating of “human-

competitive” merely because it is considered interesting 
by researchers inside the specialized fields of artificial 
intelligence, machine learning, and genetic 
programming. Instead, a result produced by an 
automated method must earn the rating of “human-
competitive” independent of the fact that it was 
generated by an automated method.  

Based on this definition, there are now 37 instances 
where genetic programming has produced a human-
competitive result, of which 21 (table 1) are previously 
patented inventions of electrical circuits, networks, or 
controllers. In addition to these 21 instances, there are 
two instances where genetic programming has created a 
patentable new invention (Keane, Koza, and Streeter 
2002) and there are 14 other instances of human-
competitive results that are not patent-related, including 
the design of an X-Band Antenna for NASA's Space 
Technology 5 Mission (Lohn, Hornby, Kraus, Linden, 
Rodriguez, and Seufert 2003).  

3.2 Definition of “High-Return”  

What is delivered by the actual automated operation of 
an artificial method in comparison to the amount of 
knowledge, information, analysis, and intelligence that 
is pre-supplied by the human employing the method?  

We define the AI ratio (the “artificial-to-
intelligence” ratio) of a problem-solving method as the 
ratio of that which is delivered by the automated 
operation of the artificial method to the amount of 
intelligence that is supplied by the human applying the 
method to a particular problem.  

The AI ratio is especially pertinent to methods for 
getting computers to automatically solve problems 
because it measures the value added by the artificial 
problem-solving method. Manifestly, the aim of the 
fields of artificial intelligence and machine learning is 
to generate human-competitive results with a high AI 
ratio.  



Ascertaining the return of a problem-solving method 
requires measuring the amount of “A” that is delivered 
by the method in relation to the amount of “I” that is 
supplied by the human user.  

Because each of the results in table 1 is a human-
competitive result, it is reasonable to say that genetic 
programming delivered a high amount of “A” for each 
of them.  

The question thus arises as to how much “I” was 
supplied by the human user in order to produce these 
human-competitive results. Answering this question 
requires the discipline of carefully identifying the 
amount of analysis, intelligence, information, and 
knowledge that was supplied by the intelligent human 
user prior to launching the run of genetic programming.  

To do this, we make a clear distinction between the 
problem-specific preparatory steps and the problem-
independent executional steps of a run of genetic 
programming.  

The preparatory steps are the problem-specific and 
domain-specific steps that are performed by the human 
user prior to launching a run of the problem-solving 
method. The preparatory steps establish the “I” 
component  (i.e., the denominator) of the AI ratio. 

The executional steps are the problem-independent 
and domain-independent steps that are automatically 
executed during a run of the problem-solving method. 
The executional steps of genetic programming include 
(1) generating the initial population of programs; (2) 
iteratively performing a main generational loop of 
executing each program, assigning a fitness value to 
each program, and creating the next generation of the 
population by applying genetic operations to 
program(s) selected from the population with a 
probability based on fitness, and (3) terminating the 
main generational loop and designating the individual 
with the best fitness as the result of the run. The result 
provides the “A” component (i.e., the numerator) of the 
AI ratio.  

The five major preparatory steps for genetic 
programming require the human user to specify  

(1) the set of terminals (e.g., the independent 
variables of the problem, zero-argument functions, 
and random constants) for each branch of the to-be-
evolved computer program, 
(2) the set of primitive functions for each branch of 
the to-be-evolved computer program,  
(3) the fitness measure (for explicitly or implicitly 
measuring the fitness of candidate individuals), 
(4) various parameters for controlling the run, and 
(5) a termination criterion and method for 
designating the result of the run.  

In practice, only a de minimus amount of “I” is 
contained in the primitive ingredients of the to-be-
created computer program (the first and second 
preparatory steps), the problem’s fitness measure (the 
third preparatory step containing the high-level 
statement of what needs to be done), and the run’s 
control parameters and termination procedures (the 
fourth and fifth preparatory steps).  

In any event, the amount of “I” required by genetic 
programming is certainly not greater than that required 
by any other method of artificial intelligence and 
machine learning of which we are aware. Indeed, we 
know of no other problem-solving method (automated 
or human) that does not start with primitive elements of 
some kind, does not incorporate some method for 
specifying what needs to be done to guide the method’s 
operation, does not employ parameters of some kind, 
and does not contain a termination criterion of some 
kind.  

In view of the high amount of “A” in the numerator 
and the small amount of “I” in the denominator, we can 
see that the AI ratio is high for the results in table 1 
produced by genetic programming.. 

3.3 Definition of “Routine”  

Generality is a precondition to what we mean when we 
say that an automated problem-solving method is 
“routine.” Once the generality of a method is 
established, “routineness” means that relatively little 
human effort is required to get the method to 
successfully handle new problems within a particular 
domain and to successfully handle new problems from 
a different domain.  

For example, virtually all controllers are built from 
the same primitive ingredients (e.g., integrators, 
differentiators, gains, adders, subtractors, and signals 
representing the plant output and the reference signal). 
Once these primitive ingredients are identified, new 
problems of controller synthesis can be handled merely 
by changing the statement of what needs to be 
donethat is, the fitness measure. Thus, after solving 
one problem of controller synthesis (say, the controller 
in table 1 patented by Callender and Stevenson in 1939 
shown), the transition to each new problem of 
controller synthesis (say, the controller in table 1 
patented by Jones in 1942) merely involves providing 
genetic programming with a different fitness measure. 
In other words, relatively little effort is required to 
make the required intra-domain transition.  

Similarly, the vast majority of present-day electrical 
circuits on silicon chips are composed of transistors, 
capacitors, and resistors. Once the primitive ingredients 
are identified, new problems of circuit synthesis can be 
handled merely by changing the fitness measure.  

In making the transition from problems involving, 
say, the automatic synthesis of controllers to problems 
involving, say, circuit synthesis, the primitive 
ingredients change from integrators, differentiators, 
gains, and the like to transistors, resistors, capacitors, 
and the like. The fitness measure changes from one 
involving, say, the controller’s integral of time-
weighted absolute error, overshoot, and disturbance 
rejection to a fitness measure that is based on, say, the 
circuit’s amplification, suppression or passage of a 
signal, elimination of distortion, power supply rejection 
ratio, and the like. That is, relatively little effort is 
required to make an inter-domain transition.  



Table 2 Human-competitive results produced by genetic programming with five computer systems  
System Period Petacycles 

(1015cycles
) per day 

for system 

Speed-
up over 

previous 
row 

Speed-up 
over first 

system 
in this 

table 

Used for work in Human-competitive 
results 

Serial Texas 
Instruments LISP 

machine 

1987–
1994 

0.00216 1 (base) 1 (base) Genetic Programming I 
and Genetic Programming 

II 

0 

64-node Transtech 
transputer parallel 

machine 

1994–
1997 

0.02 9 9 A few problems in 
Genetic Programming III 

2 

64-node Parsytec 
parallel machine 

1995–
2000 

0.44 22 204 Most problems in Genetic 
Programming III 

12 

70-node Alpha parallel 
machine 

1999–
2001 

3.2 7.3 1,481 A minority (8) of 
problems in Genetic 

Programming IV 

2 

1,000-node Pentium II 
parallel machine 

2000–
2002 

30.0 9.4 13,900 A majority (28) of the 
problems in Genetic 

Programming IV 

12 

 
4 Progression of Qualitatively More 

Substantial Results Produced in 
Synchrony with Increasing Computer 
Power 

Numerous questions naturally arise in connection 
with any proposed approach to machine intelligence 
(including, specifically, genetic programming).  

• Is the method formulated with sufficient 
precision to enable it to be implemented (or is it 
vagueware)?  
• Has the method been successfully demonstrated 
on a specific single problem (or is it 
promiseware)?  
• Has the method been applied to a difficult 
demonstrative problem (or is it toyware)? 
• Did the method top out after succeeding on a 
single demonstrative problem? 

• Has the method solved multiple problems (or is 
it soloware)? 
• Are the multiple problems difficult? 
• Did the method top out at this stage? 

• Has the method solved problems from multiple 
domains (or is it nicheware)? 
• Are the domains difficult? 
• Did the method top out at this stage? 

• Were the results human-competitive—the 
bottom line of machine intelligence? 
• Can the method profitably take advantage of the 
increased computational power available by 
means of parallel processing (or is it serialware)? 
• Or, is the method Mooreware—able to take 
advantage of the exponentially increasing 

computational power made available by the 
relentless iteration of Moore’s law? 

Genetic Programming: On the Programming of 
Computers by Means of Natural Selection (Koza 
1992a) demonstrated that genetic programming is not 
vagueware, promiseware, soloware, or nicheware.  

The numerous human-competitive results 
produced by genetic programming (e.g., those in 
table 1) demonstrate that genetic programming is not 
toyware.  

The final two questions in the above list address 
the issue of whether the proposed approach to 
machine intelligence has significant future potential.  

Table 2 lists the five computer systems used to 
produce our group’s reported work on genetic 
programming in the 15-year period between 1987 
and 2002. Column 7 shows the number of human-
competitive results generated by each computer 
system.  

The first entry in table 2 is a serial computer. The 
four subsequent entries are parallel computer 
systems. The presence of four increasingly powerful 
parallel computer systems in the table reflects the fact 
that genetic programming has successfully taken 
advantage of the increased computational power 
available by means of parallel processing (thereby 
avoiding a pitfall that often constrains other proposed 
approaches to machine intelligence). In other words, 
genetic programming is not serialware.  

Table 2 shows the following:  
• There is an order-of-magnitude speed-up 
(column 4) between each successive computer 
system in the table. Note that, according to 
Moore’s law, exponential increases in computer 
power correspond approximately to constant 
periods of time.  



• There is a 13,900-to-1 speed-up (column 5) 
between the fastest and most recent machine (the 
1,000-node parallel computer system) and the 
slowest and earliest computer system in the table 
(the serial LISP machine).  
• The slower early machines generated few or no 
human-competitive results, whereas the faster 
more recent machines have generated numerous 
human-competitive results (column 7).  

An additional order-of-magnitude increase 
(beyond the four shown in table 2) was achieved by 
making extraordinarily long runs on the 1,000-node 
Pentium® II parallel machine. The length of the run 
that produced the genetically evolved controller 
(Keane, Koza, and Streeter 2002) was 28.8 days—
almost an order-of-magnitude increase (9.3 times) 
over the 3.4-day average for runs that our group has 
made in recent years. Counting this 9.3-to-1 increase 
as an additional speed-up, the overall speed-up 
between the first and last entries in the table is 
130,660-to-1—five orders of magnitude.  

Table 3 shows the progression of qualitatively 
more substantial results produced by genetic 
programming in terms of these five order-of-
magnitude increases in computational resources:  

• Toy problems: The LISP machine produced 
solutions to several dozen toy problems of the 
1980s and early 1990s from the fields of artificial 
intelligence and machine learning.  

• Human-competitive results not related to 
patented inventions: The 9-to-1 increase in 
computer power associated with the 64-node 
transputer parallel machine yielded two human-
competitive results that were not patent-related.  
• 20th-century patented inventions: The 22-to-1 
increase in computer power associated with the 
64-node 80-MHz Parsytec parallel machine 
yielded numerous human-competitive results 
involving 20th-century patented inventions.  
• 21st-century patented inventions: The 
combined 69-to-1 increase in computer power 
associated with the next two computer systems 
(the 70-node 533-MHz Alpha parallel machine 
and 1,000-node 350-MHz Pentium II parallel 
machine) yielded numerous human-competitive 
results involving 21st-century patented inventions. 
• Patentable new inventions: The 9-to-1 
increase in computer power resulting from 
running the 1,000-Pentium II machine for 28.8 
days yielded one of the controllers claimed as a 
new invention in a 2002 patent application 
(Keane, Koza, and Streeter 2002).  

This progression demonstrates that genetic 
programming is able to take advantage of the 
exponentially increasing computational power made 
available by the relentless iteration of Moore’s law. 
That is, genetic programming is Mooreware.  

 
Table 3 Progression of qualitatively more substantial results produced by genetic programming 

System Period Speed-
up over 

previous 

Qualitative nature of the results produced by genetic programming 

Serial Texas Instruments 
LISP machine 

1987–
1994 

1 (base) • Toy problems of the 1980s and early 1990s from the fields of artificial 
intelligence and machine learning  

64-node Transtech transputer 
parallel machine 

1994–
1997 

9 •Two human-competitive results involving one-dimensional discrete data 
(not patent-related) 

64-node Parsytec parallel 
machine 

1995–
2000 

22 • One human-competitive result involving two-dimensional discrete data  
• Numerous human-competitive results involving continuous signals 
analyzed in the frequency domain 
• Numerous human-competitive results involving 20th-century patented 
inventions 

70-node Alpha parallel 
machine 

1999–
2001 

7.3 • One human-competitive result involving continuous signals analyzed in 
the time domain 
• Circuit synthesis extended from topology and sizing to include routing 
and placement (layout) 

1,000-node Pentium II 
parallel machine 

2000–
2002 

9.4 • Numerous human-competitive results involving continuous signals 
analyzed in the time domain 
• Numerous general solutions to problems in the form of parameterized 
topologies 
• Six human-competitive results duplicating the functionality of 21st-
century patented inventions 

Long (4-week) runs of 1,000-
node Pentium II parallel 

machine 

2002 9.3 • Generation of two patentable new inventions 



5 Routine High-Return Human-
Competitive Evolvable Hardware 

There are now 21 instances where genetic 
programming has duplicated the functionality of a 
previously patented invention (including infringing a 
previously issued patent). Specifically, there are 15 
instances where genetic programming has created an 
entity that either infringes or duplicates the 
functionality of a previously patented 20th-century 
invention and six instances where genetic 
programming has done the same with respect to a 
previously patented 21st-century invention.  

To make the foregoing point concrete, this section 
presents the six post-2000 instances where genetic 
programming automatically created both the 
topology (graphical structure) and sizing (numerical 
component values) for patented analog electrical 
circuits composed of transistors, capacitors, and 
resistors. The six inventions are the six inventions in 
table 1 that are dated 2000 or 2001. In each instance, 
genetic programming started from a high-level 
statement of a circuit’s desired behavior and 
characteristics (e.g., its desired output given its 
input). In producing results, genetic programming 
used only de minimus knowledge about analog 
circuits. Specifically, genetic programming employed 
a circuit simulator (e.g., SPICE) for the analysis of 
candidate circuits, but did not use any deep 
knowledge or expertise about the synthesis of 
circuits.  

The function and terminal sets for all six problems 
permit the construction of any circuit composed of 
transistors, resistors, and capacitors.  

The main difference among the runs of genetic 
programming for the six problems (briefly described 
below) is that we supplied a different fitness measure 
for each problem. Construction of a fitness measure 
requires translating the problem’s high-level 
requirements into a precise computation. We read the 
patent document to find the performance that the 
invention was supposed to achieve. We then created 
a fitness measure reflecting the invention’s 
performance and characteristics. The fitness measure 
specifies the time-domain output value(s) that is 
desired given various time-domain input value(s). 
For each problem, a test fixture consisting of certain 
fixed components (such as a source resistor, a load 
resistor) is connected to the desired input port(s) and 
the desired output port(s). Circuits are simulated 
using SPICE.  

We supplied models for transistors appropriate to 
the problem. We used the commercially common 
2N3904 (npn) and 2N3906 (pnp) transistor models 
unless the patent document called for a different 

model. We used 5-Volt power supplies unless the 
patent specified otherwise.  

The control parameters and termination criterion 
were the same for all six problems, except that we 
used different population sizes to approximately 
equalize each run’s estimated elapsed time per 
generation.  

Additional details are in Koza, Keane, Streeter, 
Mydlowec, Yu, and Lanza 2003. 

We now describe the six fitness measures.  

5.1 Fitness Measures for the Six Problems 

5.1.1 Low-Voltage Balun Circuit 
The purpose of a balun (balance/unbalance) circuit is 
to produce two outputs from a single input, each 
output having half the amplitude of the input, one 
output being in phase with the input while the other 
is 180 degrees out of phase with the input, with both 
outputs having the same DC offset. The patented 
balun circuit uses a power supply of only 1 Volt. The 
fitness measure consisted of (1) a frequency sweep 
analysis designed to ensure the correct magnitude 
and phase at the two outputs of the circuit and (2) a 
Fourier analysis designed to penalize harmonic 
distortion.  
5.1.2 Mixed Analog-Digital Register-

Controlled Variable Capacitor 
This mixed analog-digital circuit has a capacitance 
that is controlled by the value stored in a digital 
register. The fitness measure employed 16 time-
domain fitness cases. The 16 fitness cases ranged 
over all eight possible values of a 3-bit digital 
register for two different analog input signals.  
5.1.3 Voltage-Current Conversion Circuit 
The purpose of the voltage-current conversion circuit 
is to take two voltages as input and to produce a 
stable current whose magnitude is proportional to the 
difference of the voltages. We employed four time-
domain input signals (fitness cases) in the fitness 
measure. We included a time-varying voltage source 
beneath the output probe point to ensure that the 
output current produced by the circuit was stable 
with respect to any subsequent circuitry to which the 
output of the circuit might be attached.  
5.1.4 High-Current Load Circuit 
The patent covers a circuit designed to sink a time-
varying amount of current in response to a control 
signal. The patented circuit employs a number of 
FET transistors arranged in parallel, each of which 
sinks a small amount of the desired current. The 
fitness measure consisted of two time-domain 
simulations, each representing a different control 
signal.  



5.1.5 Low-Voltage Cubic Signal Generator 
The patent covers an analog computational circuit 
that produces the cube of an input signal as its 
output. The circuit is “compact” in that it contains a 
voltage drop across no more than two transistors. 

The fitness measure consisted of four time-domain 
fitness cases using various input signals and time 
scales. The compactness constraint was enforced by 
providing only a 2-Volt power supply. 
5.1.6 Tunable Integrated Active Filter 
The patent covers a tunable integrated active filter 
that performs the function of a lowpass filter whose 
passband boundary is dynamically specified by a 
control signal. The circuit has two inputs: a to-be-
filtered incoming signal and a control signal.  

The fitness measure consisted of a performance 
penalty and a parsimony penalty. The passband 
boundary, f, ranges over nine values between 441 and 
4,414 Hz. The performance penalty is a weighted 
sum, over 61 frequencies for each of the nine values 
of f, of the absolute weighted deviation between the 
output of the individual candidate circuit at its probe 
point and the target output. The parsimony penalty is 
equal to the number of components in the circuit. 

5.2 Results for the Six Post-2000 Problems 

5.2.1 Low-Voltage Balun Circuit 
Genetic programming automatically created the 
circuit shown in figure 1. This best-of-run evolved 
circuit was produced in generation 97 and has a 
fitness of 0.429. The patented circuit has a fitness of 
1.72. That is, the evolved circuit is roughly a fourfold 
improvement (less being better) over the patented 
circuit in terms of our fitness measure. The evolved 
circuit is superior to the patented circuit both in terms 
of its frequency response and its harmonic distortion.  

 
Figure 1 Best-of-run balun circuit   

In the patent documents, Lee (2001) shows a 
previously known conventional (prior art) balun 
circuit. This prior art circuit is shown as figure 2.  

 

 
Figure 2 Prior art balun circuit shown in 

U.S. patent 6,265,908   
Lee’s patented low-voltage balun circuit is shown 

in figure 3 of this paper. Lee (2001) states that the 
essential difference between the prior art and his 
invention is a coupling capacitor C2 located between 
the base and the collector of the transistor Q2. Lee 
explains the essence of his invention as follows:  

“The structure of the inventive balun 
circuit shown in [Figure 3] is identical to 
that of [Figure 2] except that a capacitor 
C2 are further provided thereto. The 
capacitor C2 is a coupling capacitor 
disposed between the base and the 
collector of the transistor Q2 and serves 
to block DC components which may be 
fed to the base of the transistor Q2 from 
the collector of the transistor Q2.”  

As can be seen, the best-of-run genetically evolved 
circuit (figure 1) possesses the very feature that Lee 
identifies as the essence of his invention, namely the 
coupling capacitor that is called “C302” in figure 1 
and that is called “C2” in figure 3.  

 

 
Figure 3 Lee’s low voltage balun circuit 

shown in patent 6,265,908   



The genetically evolved circuit also reads on three 
additional elements of claim 1 of Lee’s 2001 patent. 
However, as it happens, the genetically evolved 
circuit does not infringe Lee’s patent because it does 
not read on other elements enumerated in claim 1.  
5.2.2 Mixed Analog-Digital Register-

Controlled Variable Capacitor 
Over our 16 fitness cases, the patented circuit has an 
average error of 0.803 millivolts. In generation 95, a 
circuit emerged with average error of 0.808 
millivolts, or approximately 100.6% of the average 
error of the patented circuit. During the course of this 
run, we harvested the smallest individuals produced 
on each processing node with a certain maximum 
level of error. Examination of these harvested 
individuals revealed a circuit from generation 98 
(figure 4) that approximately matches the topology of 
the patented circuit (without infringing). The 
genetically evolved circuit reads on all but one of the 
elements of claim 1 of the patented circuit (and hence 
does not infringe the patent).  
 

 
Figure 4 Evolved compliant register-

controlled capacitor circuit   
 

5.2.3 Voltage-Current Conversion Circuit 
A circuit emerged on generation 109 of our run of 
this problem with a fitness of 0.619. That is, the 
evolved circuit has 62% of the average error of the 
patented circuit. The evolved circuit was 
subsequently tested on unseen fitness cases that were 
not part of the fitness measure and outperformed the 
patented circuit on these new fitness cases. The best-
of-run circuit solves the problem in a different 
manner than the patented circuit.  
5.2.4 High-Current Load Circuit 
On generation 114, a circuit emerged that duplicated 
Daun-Lindberg and Miller’s parallel FET transistor 
structure. The evolved circuit has 182% of the error 
for the patented circuit.  

The genetically evolved circuit shares the 
following features found in claim 1 of U.S. patent 
6,211,726:  

“A variable, high-current, low-voltage, 
load circuit for testing a voltage source, 
comprising: …  
“a plurality of high-current transistors 
having source-to-drain paths connected 
in parallel between a pair of terminals 
and a test load.”  

However, the remaining elements of claim 1 in 
U.S. patent 6,211,726 are very specific and the 
genetically evolved circuit does not read on these 
remaining elements. In fact, the remaining elements 
of the genetically evolved circuit bear hardly any 
resemblance to the patented circuit. In this instance, 
genetic programming produced a circuit that 
duplicates the functionality of the patented circuit 
using a different structure.  
5.2.5 Low-Voltage Cubic Signal Generator 
The best-of-run evolved circuit (figure 5) was 
produced in generation 182 and has an average error 
of 4.02 millivolts. The patented circuit had an 
average error of 6.76 millivolts. That is, the evolved 
circuit has approximately 59% of the error of the 
patented circuit over our four fitness cases.  

 

 
 

Figure 5 Best-of-run cubic signal 
generation circuit   

The claims in U.S. patent 6,160,427 amount to a 
very specific description of the patented circuit. The 
genetically evolved circuit does not read on these 
claims and, in fact, bears hardly any resemblance to 
the patented circuit. In this instance, genetic 
programming produced a circuit that duplicates the 
functionality of the patented circuit and does so using 
a very different structure.  
5.2.6 Tunable Integrated Active Filter 
Averaged over the nine values of frequency, the best-
of-run circuit from generation 50 (figure 6) has 72.7 
millivolts average absolute error for frequencies in 



the passband and 0.39 dB average absolute error for 
other frequencies.  

The best-of-run genetically evolved circuit reads 
on every element of claim 1 of U.S. patent 6,225,859 
and therefore infringes the patent.  

 

 
Figure 6 Best-of-run circuit for the tunable 

integrated active filter   

6 Commercial Practicality of Genetic 
Programming for Automated Circuit 
Synthesis 

The previous section demonstrates that genetic 
programming can automatically synthesize analog 
circuits that duplicate the functionality of six circuits 
that were patented after January 1, 2000.  
 
Table 4 Computer time consumed by 11 runs 

of the six problems involving post-2000 
patented inventions  

Run M*(i +1) Hours
Low-voltage balun circuit 490,000,000 25
Mixed analog-digital variable 
capacitor  198,000,000 88
High-current load circuit–1st run 230,000,000 134
High-current load circuit–2nd run 432,000,000 67
Voltage-current conversion circuit 550,000,000 83
Cubic function generator–1st run 915,000,000 206
Cubic function generator–2nd run 654,000,000 135
Tunable integrated active filter–1st run  142,000,000 23
Tunable integrated active filter–2nd run 102,000,000 14
Tunable integrated active filter–3rd run  78,000,000 12
Tunable integrated active filter–4th run 56,000,000 6

 
Table 4 tallies the computer time consumed by the 

11 runs of the six post-2000 patented circuits. 
Column 2 of this table shows the product of the total 
population size, M, and the number of generations 
(i+1) run before the best-of-run individual was 
encountered. Column 3 shows the length of the run in 
hours.  

As can be seen from table 4, the average number 
of hours for runs involving each of the six post-2000 
patented circuits is 25, 88, 99, 83, 170, and 14, 
respectively. The average of these averages is 80 
hours (3.3 days). (We use the average of the averages 
here because this table contains four runs of the 
problem that took the least computer time).  

All six problems were run on a home-built parallel 
computer system consisting of 1,000 350-MHz 
Pentium II processors (appearing as the last row of 
table 2). This system operates at an overall rate of 3.5 
× 1011 Hz. A 3.3-day (80-hour) run represents about 
1017 cycles (i.e., 100 petacycles).  

The relentless iteration of Moore’s law promises 
increased availability of computational resources in 
future years. If available computer capacity continues 
to double approximately every 18 months over the 
next decade, a computation requiring 80 hours will 
require only about 1% as much computer time (i.e., 
about 48 minutes) a decade from now.  

The question arises as to whether existing methods 
of genetic programming can be extended to deliver 
industrial-strength automated design of analog 
electrical circuits.  

There are six promising factors suggesting that the 
previous results can be extended to deliver industrial-
strength automated design of analog circuits and 
there are two countervailing factors that impede 
progress in that direction. 

One promising factor is that multiple runs of a 
probabilistic algorithm are often necessary to solve a 
problem. We made 11 runs involving the post-2000 
patented circuits (ignoring partial runs used for 
debugging purposes). All 11 runs produced a 
satisfactory solution. A success rate of 100% is 
unusual with a probabilistic algorithm. This high rate 
suggests that we are currently nowhere near the limit 
of the capability of the current techniques used to 
reinvent the six 21st-century patented circuits.  

A second promising factor is that the previous 
work involving the six post-2000 patented circuits 
intentionally ignored numerous elementary and 
platitudinous pieces of domain knowledge about 
analog circuits. For example, previous runs did not 
cull egregiously flawed circuits, such as those 
drawing enormous amounts of current or those that 
were not connected to the circuit’s incoming signals 
or output ports. Instead, the six problems were 
approached with a highly “clean hands” 
orientation—using as little problem-specific human-
supplied domain knowledge about electrical circuits 
as possible. This “clean hands” orientation is, of 
course, entirely irrelevant to a practicing engineer 
interested in extending existing techniques to yield 
more complex industrial-strength results. The 
incorporation of such elementary and platitudinous 
domain knowledge thus creates considerable upside 



potential in the ability to automatically synthesize 
circuits.  

A third promising factor is that the previous work 
intentionally ignored opportunities to employ 
elementary knowledge about the specific to-be-
designed circuit. For example, the starting point for 
circuit development in previous runs consisted of a 
single modifiable wire and genetic programming was 
expected to automatically create the entire circuit 
from “nothing.” However, a practicing engineer does 
not start each new assignment from first principles. 
Instead, the starting point is likely to incorporate one 
(and perhaps more) core subcircuits that are known 
to provide a good head start. For example, the search 
for a high-performance amplifier might begin with an 
embryo containing a balanced voltage gain stage and 
one or more modifiable wires as the starting point (as 
opposed to merely a single modifiable wire).  

A fourth promising factor is that the previous 
work was intentionally uniform (and hence 
inefficient) in terms of genetic programming 
technique. For example, even when the problem had 
manifest parallelism, regularity, symmetry, and 
modularity, we intentionally did not permit the use of 
automatically defined functions (subroutines). 
However, a practicing engineer would recognize that 
reuse is highly relevant in at least two of the six 
problems involving the six post-2000 patented 
circuits in section 5 (namely the mixed analog-digital 
integrated circuit for variable capacitance and the 
low-voltage high-current transistor circuit for testing 
a voltage source). The benefits of using automatically 
defined functions in problems having parallelism, 
regularity, symmetry, and modularity are 
considerable (Koza 1990, Koza and Rice 1991, Koza 
1992, Koza 1994). The removal of the previously 
enforced uniformity creates considerable additional 
upside potential in the ability to automatically 
synthesize circuits.  

A fifth promising factor is that considerable work 
has been done in recent years to accelerate the 
convergence characteristics and general efficiency of 
circuit simulators. We used a version of the SPICE3 
simulator (Quarles, Newton, Pederson, and 
Sangiovanni-Vincentelli 1994) that we modified in 
various ways (as described in Koza, Bennett, Andre, 
and Keane 1999). There are numerous commercially 
available simulators that are considerably more 
efficient than the version of the SPICE simulator that 
we used for the runs of the previous work involving 
the six post-2000 patented circuits. Speedups of up to 
10-to-1 are reportedly possible today.  

A sixth promising factor (already discussed in 
section 4) is that genetic programming has 
historically demonstrated the ability to profitably 
exploit the relentless increase in computer power 
suggested by Moore’s law. The historical ability of 

genetic programming to yield progressively more 
substantial results with increased computer power 
suggests that even more substantial results will be 
possible in the future. Thus, the passage of time 
creates additional upside potential in the ability to 
automatically synthesize circuits.  

There are, however, two countervailing factors 
that impede progress toward industrial-strength 
automated design of analog circuits.  

The first countervailing factor concerns the nature 
of the multiobjective fitness measure that is typically 
associated with an industrial-strength problem. 
Previously published examples of the synthesis of 
analog circuits by means of genetic programming or 
genetic algorithms typically measure candidate 
circuits with a multiobjective fitness measure 
consisting of only a small number of different 
elements. For example, the fitness measure employed 
to synthesize the amplifier in chapter 45 of Genetic 
Programming III: Darwinian Invention and Problem 
Solving (Koza, Bennett, Andre, and Keane 1999) 
considered gain, bias, and distortion. The fitness 
measure employed to synthesize the amplifier in 
chapter 46 considered gain, bias, and distortion as 
well as the circuit’s power supply rejection ratio (i.e., 
the circuit’s ability to perform correctly in the face of 
fluctuations in the voltage provided by the circuit’s 
external power supply). The fitness employed to 
synthesize and layout the amplifier in chapter 5 of 
Genetic Programming IV: Routine Human-
Competitive Machine Intelligence (Koza, Keane, 
Streeter, Mydlowec, Yu, and Lanza 2003) considered 
gain, bias, distortion, as well as the area of the 
bounding rectangle after placement and routing on 
the substrate. In contrast, commercial circuits are 
described by detailed “data sheets” specifying the 
circuit’s performance for a dozen or more 
characteristics. Each additional element in a fitness 
measure generally increases the computer time 
required to evaluate the candidate circuit. Moreover, 
as the number of elements in the fitness measure 
increases, the problem of efficiently combining the 
disparate elements (“apples and oranges”) can 
become vexatious. In addition, previously published 
examples of the synthesis of analog circuits by means 
of genetic programming or genetic algorithms 
typically measure a candidate circuit with a single 
test fixture (test bench). However, the characteristics 
found in commercial data sheets are typically so 
different that they can only be measured by means of 
distinctly different test fixtures. Each different test 
fixture generally entails a different type of simulation 
(further increasing the total computer time required 
to fully evaluate the candidate circuit).  

The second countervailing factor arises from the 
need to evaluate candidate circuits at the “corners” of 
various performance envelopes. For example, a real-



world circuit might be required to operate correctly at 
–40° C and +105° C even though room temperature 
(27° C) may be the circuit’s nominal ambient 
environment. Separate simulations (or, if 
reconfigurable hardware is being used, separate test 
scenarios) are required to measure the circuit’s 
performance at each temperature—thus multiplying 
the required computer time by a factor of two (if only 
the two extremes are considered), three, or more. 
Similarly, a real-world circuit will be expected to 
operate correctly in the face of variation in the 
circuit’s power supply (e.g., when the battery or 
other power supply is providing 4.5 volts or 5.5 
volts, instead of a nominal 5.0 volts). Again, separate 
simulations are required to measure the circuit’s 
performance at each voltage corner. In addition, a 
real-world circuit will be expected to operate 
correctly in the face of deviations between the 
behavior of an actual manufactured component and 
the component’s “model” performance. Separate 
simulations may then be required, for example, for 
the component’s “fast,” “typical,” and “slow” 
behavior. Circuits may also be expected to operate 
correctly in the face of variations in the load, 
variations in input characteristics, or variations in 
other characteristics. The combined effect of multiple 
independent sets of corners multiplies the required 
computer time by at least 2N (where N is the number 
of sets of corners).  

Thus, the answer to the question as to whether 
genetic programming can deliver industrial-strength 
automated design of analog electrical circuits 
depends on whether the six promising factors 
overcome the two countervailing factors.  

In addition to the six promising factors mentioned 
above, runs of circuit synthesis problems can be 
accelerated in various ways.  

First, many pieces of elementary knowledge 
helpful to the construction of useful circuits were not 
made available to the runs of the six problems 
involving 21st-century patented circuits. For example, 
the initial population of individuals in a run of 
genetic programming is typically created at random. 
As the run proceeds, new individuals are created by 
probabilistic problem-independent operations (e.g., 
crossover, mutation). Consequently, many 
individuals in the population represent unrealistic or 
impractical electrical circuits. One particularly 
egregious characteristic of the circuits that appear in 
unrestricted runs of genetic programming is that the 
circuit draws preposterously large amounts of 
current. To cull circuits of this type from the 
population, each circuit in the population can be 
examined for the current drawn by the circuit’s 
positive power supply and negative power supply. If 
the current exceeds a certain generous maximum 

(e.g., an absolute value of 250 milliamperes), the 
circuit is penalized (or perhaps eliminated). 

Second, a threshold requirement for a functioning 
circuit is that the circuit connect to all input signals, 
all output signals, and all necessary sources of power 
(e.g., the positive power supply and the negative 
power supply). A circuit can be easily tested for this 
characteristic and a high penalty value of fitness can 
be assigned to circuits failing this threshold test.  

Third, the components that are inserted into a 
developing circuit need not be as primitive as a single 
transistor, resistor, or capacitor. Instead, the set of 
component-creating functions can be expanded to 
include numerous frequently-occurring, known-
useful combinations of components. Examples 
include current mirrors, voltage gain stages, 
Darlington emitter-follower sections, cascodes, three-
ported voltage divider subcircuits composed of two 
resistors in series, and three-ported subcircuits 
consisting of two resistors (or capacitors) with their 
common point connected to power or ground. In this 
vein, Graeb, Zizala, Eckmueller, and Antreich (2001) 
have identified (for a purpose entirely unrelated to 
evolutionary computation) a promising set of 
frequently-occurring combinations of transistors that 
are known to be useful in a broad range of analog 
circuits. For certain problems, the set of primitives 
can also be expanded to include higher-level entities, 
such as filters, op amps, oscillators, voltage-
controller current sources, multipliers, and phase-
locked loops.  

Fourth, it is possible to integrate additional 
specific knowledge of electrical engineering into a 
run of genetic programming. For example, 
Sripramong and Toumazou (2002) combine current-
flow analysis into their runs of genetic programming 
for the purpose of automatically synthesizing CMOS 
amplifiers.  

Fifth, the authors believe that the efficiency of 
runs of genetic programming can, in general, be 
improved by adapting several of the principles set 
forth in The Design of Innovation: Lessons from and 
for Competent Genetic Algorithms (Goldberg 2002) 
to the domain of genetic programming.  

Sixth, because there usually are multiple 
competing elements in the fitness measures of most 
practical problems of circuit synthesis, we believe 
that the efficiency of runs of genetic programming 
can be improved by using some of the recently 
published new techniques of multiobjective 
optimization (Deb 2001; Coello Coello, Van 
Veldhuizen, and Lamont 2002; and Zitzler, Deb, 
Thiele, Coello Coello, and Corne 2001).  

Seventh, we believe that the efficiency of runs can 
be improved by adapting some of the innovative 
ideas in Efficient and Accurate Parallel Genetic 



Algorithms (Cantu-Paz 2000) to the domain of 
genetic programming.  

Eighth, there has been an outpouring of theoretical 
work in the past few years on the theory of genetic 
algorithms and genetic programming. In particular, 
the authors believe that many of the insights in 
Foundations of Genetic Programming (Langdon and 
Poli 2002) can be used to improve the efficiency of 
runs of genetic programming. 

Looking forward, we believe that genetic 
programming will be increasingly used to 
automatically generate ever-more complex human-
competitive results.  

7 Conclusions 

As far as we know, genetic programming is, at the 
present time, unique among methods of artificial 
intelligence and machine learning in terms of its 
duplication of numerous previously patented results, 
unique in its generation of patentable new results, 
unique in the breadth and depth of problems solved, 
and unique in its delivery of routine high-return, 
human-competitive evolvable hardware.  
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