
Routine High-Return Human-Competitive Evolvable Hardware

John R. Koza
Stanford University
Stanford, California

koza@stanford.edu

Martin A. Keane
Econometrics Inc.
Chicago, Illinois

mak@sportsmrkt.com

Matthew J. Streeter
Genetic Programming Inc.
Mountain View, California
matts@cs.cmu.edu

Abstract

This paper reviews the use of genetic programming
as an automated invention machine for the synthesis
of both the topology and sizing of analog electrical
circuits. The paper focuses on the importance of the
developmental representation in this process. The
paper makes the point that genetic programming now
routinely delivers high-return human-competitive
machine intelligence. It also makes the point that
genetic programming has delivered a progression of
qualitatively more substantial results in synchrony
with five approximately order-of-magnitude
increases in the expenditure of computer time. The
paper shows six examples where genetic
programming has synthesized a circuit that
duplicates the functionality or infringes a 21st-
century patented electrical circuit. Finally, the paper
discusses how genetic programming can be enhanced
in order to potentially enable it to deliver more
complex industrial-strength results.

1 Introduction

Genetic programming is an extension of the genetic
algorithm (Holland 1975) into the arena of computer
programs. Genetic programming starts from a high-
level statement of what needs to be done and
automatically creates a computer program to solve
the problem. Genetic programming uses the
Darwinian principle of natural selection and analogs
of recombination (crossover), mutation, gene
duplication, gene deletion, and certain mechanisms of
developmental biology to progressively breed an
improved population over a series of many
generations (Koza 1992; Koza 1994; Koza, Bennett,
Andre, and Keane 1999; Koza, Keane, Streeter,
Mydlowec, Yu, and Lanza 2003; Banzhaf, Nordin,
Keller, and Francone 1998; Langdon and Poli 2002).

Section 2 of this paper describes how genetic
programming can be used to automatically synthesize
the topology and sizing of analog electrical circuits
and focuses on the importance of the developmental
representation in this process.

Section 3 provides evidence that genetic
programming now routinely delivers high-return
human-competitive machine intelligence and
evolvable hardware.

Section 4 discusses the progression of qualitatively
more substantial results produced in synchrony with
increasing computer power and asserts that genetic
programming is able to take advantage of the
exponentially increasing computational power made
available by iterations of Moore’s law.

Section 5 shows six human-competitive examples
of evolvable hardware involving 21st-century
patented inventions.

Section 6 discusses the commercial practicality of
genetic programming for automated circuit synthesis,
with emphasis on ways of improving the efficiency
of runs to yield more complex industrial-strength
results.

Section 7 is the conclusion.

2 The Importance of the
Developmental Representation in the
Automatic Synthesis of Circuits

The design process for electrical circuits begins with
a high-level description of the circuit’s desired
behavior and characteristics. The process entails
creation of both the topology and the sizing of a
satisfactory circuit.

The topology of a circuit comprises
• the total number of components in the circuit,
• the type of each component (e.g., resistor,
capacitor, transistor) at each location in the
circuit,
• a list of the connections between the leads of
the circuit’s components, input ports, output
ports, power sources, and ground.

The sizing of a circuit consists of the component
value(s), if any, associated with each component. The
sizing of a component is usually numerical.

Genetic programming was first used to
automatically synthesize both the topology and sizing
of analog electrical circuits in 1995 (Koza, Bennett,
Andre, Keane 1996). Numerous examples of the
automatic synthesis of analog electrical circuits
composed of transistors, capacitors, resistors,
inductors, and other components are found in Koza,
Bennett, Andre, and Keane 1999 and Koza, Keane,
Streeter, Mydlowec, Yu, and Lanza 2003.

Our approach to the problem of automatically
creating both the topology and sizing of an electrical
circuit involves

(1) establishing a developmental representation
for electrical circuits involving program trees, and
(2) defining a fitness measure that measures how
well the behavior and characteristics of a
candidate circuit satisfy the problem’s high-level
design requirements.

During the run, the evaluation of the fitness of
each individual in the population involves

(1) converting each individual program tree in the
population into a netlist for an electrical circuit,
(2) obtaining the circuit’s behavior and
characteristics, and
(3) using the circuit’s behavior and characteristics
to calculate fitness.

Electrical circuits are ordinarily represented as
labeled graphical structures with cycles (circuit
diagrams). However, the program trees used in
genetic programming are acyclic graphs. Our
approach to the automatic synthesis of circuits using
genetic programming employs a developmental
process to overcome this representational difference.
This approach is inspired by the principles of
developmental biology, the innovative work of
Kitano (1990) on using developmental genetic
algorithms to evolve neural networks, the creative
and innovative work of Gruau (1992) on using
developmental genetic programming (cellular
encoding) to evolve neural networks, and early work
on evolving Lindenmayer rules for creating
structures (Koza 1993). The reader is also referred to
ontogenetic programming (Spector and Stoffel 1996).

The developmental process transforms a program
tree (an acyclic graph) into a fully developed
electrical circuit (a graphical structure with cycles).
The developmental process entails the execution of
functions in a circuit-constructing program tree. The
circuit-constructing program tree may contain
component-creating functions, topology-modifying
functions, development-controlling functions,
arithmetic-performing functions, and automatically
defined functions (ADFs).

The starting point for our developmental process
consists of an initial circuit. The initial circuit
consists of an embryo and a test fixture. The initial
circuit is typically very simple. The embryo contains
at least one modifiable wire. All development
originates from the embryo’s modifiable wire(s).

An electrical circuit is developed by progressively
applying the functions in a circuit-constructing
program tree to the modifiable wires of the original
embryo and, as the circuit grows, to the modifiable
wires and modifiable components that sprout from it.
The execution of the functions in the program tree

transforms the initial circuit into a fully developed
circuit. That is, the functions in the circuit-
constructing program tree progressively side-effect
the embryo and its successor structures until a fully
developed circuit eventually emerges.

A test fixture (external to the entity that is being
automatically created) facilitates measurement of the
performance and characteristics of the fully
developed circuit. The test fixture is a hard-wired
structure composed of nonmodifiable wires and
nonmodifiable electrical components. The test fixture
feeds external input(s) into the circuit that is being
evaluated. It also enables the circuit’s output(s) to be
probed. The test fixture supplies the measurements
that enable the fitness measure to assign a single
numerical value of fitness to the behavior and
characteristics of the fully developed circuit.

The functions in the circuit-constructing program
trees are divided into five categories:

• component-creating functions that insert
components (e.g., resistors, capacitors,
transistors) into the developing circuit,
• topology-modifying functions (e.g., series
division, parallel division, cut, via) that modify
the topology of the developing circuit,
• development-controlling functions that control
the developmental process by which the embryo
and its successor structures are converted into a
fully developed circuit (e.g., the development-
ending function),
• arithmetic-performing functions (e.g., addition,
subtraction) that may appear in a value-setting
subtree that is an argument to a component-
creating function and that specifies the numerical
value of the component, and
• automatically defined functions (ADFs) that
enable certain substructures to be reused
(including parameterized reuse).

The component-creating functions generally have
a value-setting subtree that establishes the value of
the component (e.g., the capacitance of a capacitor).

Most of the component-creating and topology-
modifying functions possess one or more
construction-continuing subtrees.

The terminals in the circuit-constructing program
trees may include

• constant numerical values,
• perturbable numerical values,
• externally supplied free variables,
• symbolic values (e.g., discrete alternative types
for certain components), and
• zero-argument functions (e.g., the development-
ending function, zero-argument automatically
defined functions).

In a run of genetic programming, all the individual
program trees created in generation 0 of the
population are syntactically valid executable
programs. All the genetic operations of genetic
programming (i.e., crossover, mutation, reproduction,
and the architecture-altering operations) operate so as
to create syntactically valid executable programs
from syntactically valid executable programs. Thus,
all the individuals encountered during the run
(including, in particular, the best-of-run individual)
are syntactically valid executable programs.

Each circuit-constructing program tree is created
in accordance with a constrained syntactic structure
(strong typing) that imposes grammatical limits on
how the available functions and terminals may be
combined. For example, a value-setting subtree
establishing the numerical value of a capacitor may
only appear as a particular argument of the capacitor-
creating function. All the individuals in the initial
random population (generation 0) of a run of genetic
programming for automatic circuit synthesis comply
with the constrained syntactic structure. All the
genetic operations that are performed during the run
operate so as to preserve the constrained syntactic
structure. Thus, all the individuals encountered
during the run comply with the constrained syntactic
structure.

The developmental approach is far more than just
a mechanism for mapping an acyclic graph (the
circuit-constructing program tree) into a graphical
structure with cycles (the fully developed circuit).

For one thing, the developmental process has the
advantage of preserving electrical connectivity.
There are no unconnected leads in the initial circuit.
Each component-creating, topology-modifying, and
development-controlling function preserves electrical
connectivity at each stage of the developmental
process. Thus, there are no unconnected leads in the
fully developed circuit.

More importantly, the developmental approach has
the advantage of preserving locality. Most of the
component-creating, topology-modifying, and
development-controlling functions intentionally
operate on a small local area of the circuit. Subtrees
within the overall program tree therefore tend to
represent a small local area. The crossover operation
(the main workhorse of genetic programming and
genetic algorithms) transplants subtrees. Thus, the
crossover operation (in conjunction with the
developmental process) tends to preserve locality.
The mutation operation and architecture-altering
operations similarly work in conjunction with the
developmental process to preserve locality.

In addition to preserving locality, the
developmental approach enables useful parts of a
circuit-constructing program tree to be reused. Real-
world circuits are replete with reuse. Reuse

eliminates the need to “reinvent the wheel” on each
occasion when a particular structure may be useful.
Reuse makes it possible to exploit a problem’s
modularities, symmetries, parallelism, and
regularities and thereby accelerate the problem-
solving process. See Koza, Keane, and Streeter 2003
for a detailed discussion of the importance of reuse in
automated circuit synthesis.

The efficiency of developmental genetic
programming in the domain of automatic circuit
synthesis stems from the combined effects of the

• preservation of syntactic validity,
• preservation of executablity of the circuit-
constructing program trees,
• preservation of constrained syntactic structure,
• preservation of electrical connectivity,
• preservation of locality during crossover (and
other operations), and
• the facilitation of reuse.

3 Genetic Programming Now Routinely
Delivers High-Return Human-
Competitive Machine Intelligence

We begin by defining what we mean by “human-
competitive,” “high-return,” and “routine.”

3.1 Definition of “Human-Competitive”

In attempting to evaluate an automated problem-
solving method, the question arises as to whether
there is any real substance to the demonstrative
problems that are published in connection with the
method. Demonstrative problems in the fields of
artificial intelligence and machine learning are often
contrived toy problems that circulate exclusively
inside academic groups that study a particular
methodology. These problems typically have little
relevance to any issues pursued by any scientist or
engineer outside the fields of artificial intelligence
and machine learning. To make the idea of human-
competitiveness concrete, we say that a result is
“human-competitive” if it satisfies one or more of
eight criteria enumerated in Koza, Keane, Streeter,
Mydlowec, Yu, and Lanza 2003. One of the eight
criteria (and the one most relevant to this paper) is

“The result was patented as an invention
in the past, is an improvement over a
patented invention, or would qualify
today as a patentable new invention.”

In any event, all eight criteria have the desirable
attribute of being at arms-length from the fields of
artificial intelligence, machine learning, and genetic
programming.

Table 1 Twenty-one previously patented inventions reinvented by genetic programming
Invention Date Inventor Institution Patent

Darlington emitter-follower
section

1953 Sidney Darlington Bell Telephone Laboratories 2,663,806

Ladder filter 1917 George Campbell American Telephone and
Telegraph

1,227,113

Crossover filter 1925 Otto Julius Zobel American Telephone and
Telegraph

1,538,964

“M-derived half section” filter 1925 Otto Julius Zobel American Telephone and
Telegraph

1,538,964

Cauer (elliptic) topology for
filters

1934–
1936

Wilhelm Cauer University of Gottingen 1,958,742,
1,989,545

Sorting network 1962 Daniel G. O’Connor and
Raymond J. Nelson

General Precision, Inc. 3,029,413

Computational circuits NA Numerous Numerous Numerous
Electronic thermometer NA Numerous Numerous Numerous

Voltage reference circuit NA Numerous Numerous Numerous
60 dB and 96 dB amplifiers NA Numerous Numerous Numerous

Second-derivative controller 1942 Harry Jones Brown Instrument Company 2,282,726
Philbrick circuit 1956 George Philbrick George A. Philbrick Researches 2,730,679

NAND circuit 1971 David H. Chung and Bill H.
Terrell

Texas Instruments Incorporated 3,560,760

PID (proportional, integrative,
and derivative) controller

1939 Albert Callender and Allan
Stevenson

Imperial Chemical Limited 2,175,985

Negative feedback 1937 Harold S. Black American Telephone and
Telegraph

2,102,671

Low-voltage balun circuit 2001 Sang Gug Lee Information and
Communications University

6,265,908

Mixed analog-digital variable
capacitor circuit

2000 Turgut Sefket Aytur Lucent Technologies Inc. 6,013,958

High-current load circuit 2001 Timothy Daun-Lindberg and
Michael Miller

International Business Machines
Corporation

6,211,726

Voltage-current conversion
circuit

2000 Akira Ikeuchi and Naoshi
Tokuda

Mitsumi Electric Co., Ltd. 6,166,529

Cubic function generator 2000 Stefano Cipriani and Anthony A.
Takeshian

Conexant Systems, Inc. 6,160,427

Tunable integrated active filter 2001 Robert Irvine and Bernd Kolb Infineon Technologies AG 6,225,859

That is, a result cannot acquire the rating of “human-

competitive” merely because it is considered interesting
by researchers inside the specialized fields of artificial
intelligence, machine learning, and genetic
programming. Instead, a result produced by an
automated method must earn the rating of “human-
competitive” independent of the fact that it was
generated by an automated method.

Based on this definition, there are now 37 instances
where genetic programming has produced a human-
competitive result, of which 21 (table 1) are previously
patented inventions of electrical circuits, networks, or
controllers. In addition to these 21 instances, there are
two instances where genetic programming has created a
patentable new invention (Keane, Koza, and Streeter
2002) and there are 14 other instances of human-
competitive results that are not patent-related, including
the design of an X-Band Antenna for NASA's Space
Technology 5 Mission (Lohn, Hornby, Kraus, Linden,
Rodriguez, and Seufert 2003).

3.2 Definition of “High-Return”

What is delivered by the actual automated operation of
an artificial method in comparison to the amount of
knowledge, information, analysis, and intelligence that
is pre-supplied by the human employing the method?

We define the AI ratio (the “artificial-to-
intelligence” ratio) of a problem-solving method as the
ratio of that which is delivered by the automated
operation of the artificial method to the amount of
intelligence that is supplied by the human applying the
method to a particular problem.

The AI ratio is especially pertinent to methods for
getting computers to automatically solve problems
because it measures the value added by the artificial
problem-solving method. Manifestly, the aim of the
fields of artificial intelligence and machine learning is
to generate human-competitive results with a high AI
ratio.

Ascertaining the return of a problem-solving method
requires measuring the amount of “A” that is delivered
by the method in relation to the amount of “I” that is
supplied by the human user.

Because each of the results in table 1 is a human-
competitive result, it is reasonable to say that genetic
programming delivered a high amount of “A” for each
of them.

The question thus arises as to how much “I” was
supplied by the human user in order to produce these
human-competitive results. Answering this question
requires the discipline of carefully identifying the
amount of analysis, intelligence, information, and
knowledge that was supplied by the intelligent human
user prior to launching the run of genetic programming.

To do this, we make a clear distinction between the
problem-specific preparatory steps and the problem-
independent executional steps of a run of genetic
programming.

The preparatory steps are the problem-specific and
domain-specific steps that are performed by the human
user prior to launching a run of the problem-solving
method. The preparatory steps establish the “I”
component (i.e., the denominator) of the AI ratio.

The executional steps are the problem-independent
and domain-independent steps that are automatically
executed during a run of the problem-solving method.
The executional steps of genetic programming include
(1) generating the initial population of programs; (2)
iteratively performing a main generational loop of
executing each program, assigning a fitness value to
each program, and creating the next generation of the
population by applying genetic operations to
program(s) selected from the population with a
probability based on fitness, and (3) terminating the
main generational loop and designating the individual
with the best fitness as the result of the run. The result
provides the “A” component (i.e., the numerator) of the
AI ratio.

The five major preparatory steps for genetic
programming require the human user to specify

(1) the set of terminals (e.g., the independent
variables of the problem, zero-argument functions,
and random constants) for each branch of the to-be-
evolved computer program,
(2) the set of primitive functions for each branch of
the to-be-evolved computer program,
(3) the fitness measure (for explicitly or implicitly
measuring the fitness of candidate individuals),
(4) various parameters for controlling the run, and
(5) a termination criterion and method for
designating the result of the run.

In practice, only a de minimus amount of “I” is
contained in the primitive ingredients of the to-be-
created computer program (the first and second
preparatory steps), the problem’s fitness measure (the
third preparatory step containing the high-level
statement of what needs to be done), and the run’s
control parameters and termination procedures (the
fourth and fifth preparatory steps).

In any event, the amount of “I” required by genetic
programming is certainly not greater than that required
by any other method of artificial intelligence and
machine learning of which we are aware. Indeed, we
know of no other problem-solving method (automated
or human) that does not start with primitive elements of
some kind, does not incorporate some method for
specifying what needs to be done to guide the method’s
operation, does not employ parameters of some kind,
and does not contain a termination criterion of some
kind.

In view of the high amount of “A” in the numerator
and the small amount of “I” in the denominator, we can
see that the AI ratio is high for the results in table 1
produced by genetic programming..

3.3 Definition of “Routine”

Generality is a precondition to what we mean when we
say that an automated problem-solving method is
“routine.” Once the generality of a method is
established, “routineness” means that relatively little
human effort is required to get the method to
successfully handle new problems within a particular
domain and to successfully handle new problems from
a different domain.

For example, virtually all controllers are built from
the same primitive ingredients (e.g., integrators,
differentiators, gains, adders, subtractors, and signals
representing the plant output and the reference signal).
Once these primitive ingredients are identified, new
problems of controller synthesis can be handled merely
by changing the statement of what needs to be
donethat is, the fitness measure. Thus, after solving
one problem of controller synthesis (say, the controller
in table 1 patented by Callender and Stevenson in 1939
shown), the transition to each new problem of
controller synthesis (say, the controller in table 1
patented by Jones in 1942) merely involves providing
genetic programming with a different fitness measure.
In other words, relatively little effort is required to
make the required intra-domain transition.

Similarly, the vast majority of present-day electrical
circuits on silicon chips are composed of transistors,
capacitors, and resistors. Once the primitive ingredients
are identified, new problems of circuit synthesis can be
handled merely by changing the fitness measure.

In making the transition from problems involving,
say, the automatic synthesis of controllers to problems
involving, say, circuit synthesis, the primitive
ingredients change from integrators, differentiators,
gains, and the like to transistors, resistors, capacitors,
and the like. The fitness measure changes from one
involving, say, the controller’s integral of time-
weighted absolute error, overshoot, and disturbance
rejection to a fitness measure that is based on, say, the
circuit’s amplification, suppression or passage of a
signal, elimination of distortion, power supply rejection
ratio, and the like. That is, relatively little effort is
required to make an inter-domain transition.

Table 2 Human-competitive results produced by genetic programming with five computer systems
System Period Petacycles

(1015cycles
) per day

for system

Speed-
up over

previous
row

Speed-up
over first

system
in this

table

Used for work in Human-competitive
results

Serial Texas
Instruments LISP

machine

1987–
1994

0.00216 1 (base) 1 (base) Genetic Programming I
and Genetic Programming

II

0

64-node Transtech
transputer parallel

machine

1994–
1997

0.02 9 9 A few problems in
Genetic Programming III

2

64-node Parsytec
parallel machine

1995–
2000

0.44 22 204 Most problems in Genetic
Programming III

12

70-node Alpha parallel
machine

1999–
2001

3.2 7.3 1,481 A minority (8) of
problems in Genetic

Programming IV

2

1,000-node Pentium II
parallel machine

2000–
2002

30.0 9.4 13,900 A majority (28) of the
problems in Genetic

Programming IV

12

4 Progression of Qualitatively More

Substantial Results Produced in
Synchrony with Increasing Computer
Power

Numerous questions naturally arise in connection
with any proposed approach to machine intelligence
(including, specifically, genetic programming).

• Is the method formulated with sufficient
precision to enable it to be implemented (or is it
vagueware)?
• Has the method been successfully demonstrated
on a specific single problem (or is it
promiseware)?
• Has the method been applied to a difficult
demonstrative problem (or is it toyware)?
• Did the method top out after succeeding on a
single demonstrative problem?

• Has the method solved multiple problems (or is
it soloware)?
• Are the multiple problems difficult?
• Did the method top out at this stage?

• Has the method solved problems from multiple
domains (or is it nicheware)?
• Are the domains difficult?
• Did the method top out at this stage?

• Were the results human-competitive—the
bottom line of machine intelligence?
• Can the method profitably take advantage of the
increased computational power available by
means of parallel processing (or is it serialware)?
• Or, is the method Mooreware—able to take
advantage of the exponentially increasing

computational power made available by the
relentless iteration of Moore’s law?

Genetic Programming: On the Programming of
Computers by Means of Natural Selection (Koza
1992a) demonstrated that genetic programming is not
vagueware, promiseware, soloware, or nicheware.

The numerous human-competitive results
produced by genetic programming (e.g., those in
table 1) demonstrate that genetic programming is not
toyware.

The final two questions in the above list address
the issue of whether the proposed approach to
machine intelligence has significant future potential.

Table 2 lists the five computer systems used to
produce our group’s reported work on genetic
programming in the 15-year period between 1987
and 2002. Column 7 shows the number of human-
competitive results generated by each computer
system.

The first entry in table 2 is a serial computer. The
four subsequent entries are parallel computer
systems. The presence of four increasingly powerful
parallel computer systems in the table reflects the fact
that genetic programming has successfully taken
advantage of the increased computational power
available by means of parallel processing (thereby
avoiding a pitfall that often constrains other proposed
approaches to machine intelligence). In other words,
genetic programming is not serialware.

Table 2 shows the following:
• There is an order-of-magnitude speed-up
(column 4) between each successive computer
system in the table. Note that, according to
Moore’s law, exponential increases in computer
power correspond approximately to constant
periods of time.

• There is a 13,900-to-1 speed-up (column 5)
between the fastest and most recent machine (the
1,000-node parallel computer system) and the
slowest and earliest computer system in the table
(the serial LISP machine).
• The slower early machines generated few or no
human-competitive results, whereas the faster
more recent machines have generated numerous
human-competitive results (column 7).

An additional order-of-magnitude increase
(beyond the four shown in table 2) was achieved by
making extraordinarily long runs on the 1,000-node
Pentium® II parallel machine. The length of the run
that produced the genetically evolved controller
(Keane, Koza, and Streeter 2002) was 28.8 days—
almost an order-of-magnitude increase (9.3 times)
over the 3.4-day average for runs that our group has
made in recent years. Counting this 9.3-to-1 increase
as an additional speed-up, the overall speed-up
between the first and last entries in the table is
130,660-to-1—five orders of magnitude.

Table 3 shows the progression of qualitatively
more substantial results produced by genetic
programming in terms of these five order-of-
magnitude increases in computational resources:

• Toy problems: The LISP machine produced
solutions to several dozen toy problems of the
1980s and early 1990s from the fields of artificial
intelligence and machine learning.

• Human-competitive results not related to
patented inventions: The 9-to-1 increase in
computer power associated with the 64-node
transputer parallel machine yielded two human-
competitive results that were not patent-related.
• 20th-century patented inventions: The 22-to-1
increase in computer power associated with the
64-node 80-MHz Parsytec parallel machine
yielded numerous human-competitive results
involving 20th-century patented inventions.
• 21st-century patented inventions: The
combined 69-to-1 increase in computer power
associated with the next two computer systems
(the 70-node 533-MHz Alpha parallel machine
and 1,000-node 350-MHz Pentium II parallel
machine) yielded numerous human-competitive
results involving 21st-century patented inventions.
• Patentable new inventions: The 9-to-1
increase in computer power resulting from
running the 1,000-Pentium II machine for 28.8
days yielded one of the controllers claimed as a
new invention in a 2002 patent application
(Keane, Koza, and Streeter 2002).

This progression demonstrates that genetic
programming is able to take advantage of the
exponentially increasing computational power made
available by the relentless iteration of Moore’s law.
That is, genetic programming is Mooreware.

Table 3 Progression of qualitatively more substantial results produced by genetic programming

System Period Speed-
up over

previous

Qualitative nature of the results produced by genetic programming

Serial Texas Instruments
LISP machine

1987–
1994

1 (base) • Toy problems of the 1980s and early 1990s from the fields of artificial
intelligence and machine learning

64-node Transtech transputer
parallel machine

1994–
1997

9 •Two human-competitive results involving one-dimensional discrete data
(not patent-related)

64-node Parsytec parallel
machine

1995–
2000

22 • One human-competitive result involving two-dimensional discrete data
• Numerous human-competitive results involving continuous signals
analyzed in the frequency domain
• Numerous human-competitive results involving 20th-century patented
inventions

70-node Alpha parallel
machine

1999–
2001

7.3 • One human-competitive result involving continuous signals analyzed in
the time domain
• Circuit synthesis extended from topology and sizing to include routing
and placement (layout)

1,000-node Pentium II
parallel machine

2000–
2002

9.4 • Numerous human-competitive results involving continuous signals
analyzed in the time domain
• Numerous general solutions to problems in the form of parameterized
topologies
• Six human-competitive results duplicating the functionality of 21st-
century patented inventions

Long (4-week) runs of 1,000-
node Pentium II parallel

machine

2002 9.3 • Generation of two patentable new inventions

5 Routine High-Return Human-
Competitive Evolvable Hardware

There are now 21 instances where genetic
programming has duplicated the functionality of a
previously patented invention (including infringing a
previously issued patent). Specifically, there are 15
instances where genetic programming has created an
entity that either infringes or duplicates the
functionality of a previously patented 20th-century
invention and six instances where genetic
programming has done the same with respect to a
previously patented 21st-century invention.

To make the foregoing point concrete, this section
presents the six post-2000 instances where genetic
programming automatically created both the
topology (graphical structure) and sizing (numerical
component values) for patented analog electrical
circuits composed of transistors, capacitors, and
resistors. The six inventions are the six inventions in
table 1 that are dated 2000 or 2001. In each instance,
genetic programming started from a high-level
statement of a circuit’s desired behavior and
characteristics (e.g., its desired output given its
input). In producing results, genetic programming
used only de minimus knowledge about analog
circuits. Specifically, genetic programming employed
a circuit simulator (e.g., SPICE) for the analysis of
candidate circuits, but did not use any deep
knowledge or expertise about the synthesis of
circuits.

The function and terminal sets for all six problems
permit the construction of any circuit composed of
transistors, resistors, and capacitors.

The main difference among the runs of genetic
programming for the six problems (briefly described
below) is that we supplied a different fitness measure
for each problem. Construction of a fitness measure
requires translating the problem’s high-level
requirements into a precise computation. We read the
patent document to find the performance that the
invention was supposed to achieve. We then created
a fitness measure reflecting the invention’s
performance and characteristics. The fitness measure
specifies the time-domain output value(s) that is
desired given various time-domain input value(s).
For each problem, a test fixture consisting of certain
fixed components (such as a source resistor, a load
resistor) is connected to the desired input port(s) and
the desired output port(s). Circuits are simulated
using SPICE.

We supplied models for transistors appropriate to
the problem. We used the commercially common
2N3904 (npn) and 2N3906 (pnp) transistor models
unless the patent document called for a different

model. We used 5-Volt power supplies unless the
patent specified otherwise.

The control parameters and termination criterion
were the same for all six problems, except that we
used different population sizes to approximately
equalize each run’s estimated elapsed time per
generation.

Additional details are in Koza, Keane, Streeter,
Mydlowec, Yu, and Lanza 2003.

We now describe the six fitness measures.

5.1 Fitness Measures for the Six Problems

5.1.1 Low-Voltage Balun Circuit
The purpose of a balun (balance/unbalance) circuit is
to produce two outputs from a single input, each
output having half the amplitude of the input, one
output being in phase with the input while the other
is 180 degrees out of phase with the input, with both
outputs having the same DC offset. The patented
balun circuit uses a power supply of only 1 Volt. The
fitness measure consisted of (1) a frequency sweep
analysis designed to ensure the correct magnitude
and phase at the two outputs of the circuit and (2) a
Fourier analysis designed to penalize harmonic
distortion.
5.1.2 Mixed Analog-Digital Register-

Controlled Variable Capacitor
This mixed analog-digital circuit has a capacitance
that is controlled by the value stored in a digital
register. The fitness measure employed 16 time-
domain fitness cases. The 16 fitness cases ranged
over all eight possible values of a 3-bit digital
register for two different analog input signals.
5.1.3 Voltage-Current Conversion Circuit
The purpose of the voltage-current conversion circuit
is to take two voltages as input and to produce a
stable current whose magnitude is proportional to the
difference of the voltages. We employed four time-
domain input signals (fitness cases) in the fitness
measure. We included a time-varying voltage source
beneath the output probe point to ensure that the
output current produced by the circuit was stable
with respect to any subsequent circuitry to which the
output of the circuit might be attached.
5.1.4 High-Current Load Circuit
The patent covers a circuit designed to sink a time-
varying amount of current in response to a control
signal. The patented circuit employs a number of
FET transistors arranged in parallel, each of which
sinks a small amount of the desired current. The
fitness measure consisted of two time-domain
simulations, each representing a different control
signal.

5.1.5 Low-Voltage Cubic Signal Generator
The patent covers an analog computational circuit
that produces the cube of an input signal as its
output. The circuit is “compact” in that it contains a
voltage drop across no more than two transistors.

The fitness measure consisted of four time-domain
fitness cases using various input signals and time
scales. The compactness constraint was enforced by
providing only a 2-Volt power supply.
5.1.6 Tunable Integrated Active Filter
The patent covers a tunable integrated active filter
that performs the function of a lowpass filter whose
passband boundary is dynamically specified by a
control signal. The circuit has two inputs: a to-be-
filtered incoming signal and a control signal.

The fitness measure consisted of a performance
penalty and a parsimony penalty. The passband
boundary, f, ranges over nine values between 441 and
4,414 Hz. The performance penalty is a weighted
sum, over 61 frequencies for each of the nine values
of f, of the absolute weighted deviation between the
output of the individual candidate circuit at its probe
point and the target output. The parsimony penalty is
equal to the number of components in the circuit.

5.2 Results for the Six Post-2000 Problems

5.2.1 Low-Voltage Balun Circuit
Genetic programming automatically created the
circuit shown in figure 1. This best-of-run evolved
circuit was produced in generation 97 and has a
fitness of 0.429. The patented circuit has a fitness of
1.72. That is, the evolved circuit is roughly a fourfold
improvement (less being better) over the patented
circuit in terms of our fitness measure. The evolved
circuit is superior to the patented circuit both in terms
of its frequency response and its harmonic distortion.

Figure 1 Best-of-run balun circuit

In the patent documents, Lee (2001) shows a
previously known conventional (prior art) balun
circuit. This prior art circuit is shown as figure 2.

Figure 2 Prior art balun circuit shown in

U.S. patent 6,265,908
Lee’s patented low-voltage balun circuit is shown

in figure 3 of this paper. Lee (2001) states that the
essential difference between the prior art and his
invention is a coupling capacitor C2 located between
the base and the collector of the transistor Q2. Lee
explains the essence of his invention as follows:

“The structure of the inventive balun
circuit shown in [Figure 3] is identical to
that of [Figure 2] except that a capacitor
C2 are further provided thereto. The
capacitor C2 is a coupling capacitor
disposed between the base and the
collector of the transistor Q2 and serves
to block DC components which may be
fed to the base of the transistor Q2 from
the collector of the transistor Q2.”

As can be seen, the best-of-run genetically evolved
circuit (figure 1) possesses the very feature that Lee
identifies as the essence of his invention, namely the
coupling capacitor that is called “C302” in figure 1
and that is called “C2” in figure 3.

Figure 3 Lee’s low voltage balun circuit

shown in patent 6,265,908

The genetically evolved circuit also reads on three
additional elements of claim 1 of Lee’s 2001 patent.
However, as it happens, the genetically evolved
circuit does not infringe Lee’s patent because it does
not read on other elements enumerated in claim 1.
5.2.2 Mixed Analog-Digital Register-

Controlled Variable Capacitor
Over our 16 fitness cases, the patented circuit has an
average error of 0.803 millivolts. In generation 95, a
circuit emerged with average error of 0.808
millivolts, or approximately 100.6% of the average
error of the patented circuit. During the course of this
run, we harvested the smallest individuals produced
on each processing node with a certain maximum
level of error. Examination of these harvested
individuals revealed a circuit from generation 98
(figure 4) that approximately matches the topology of
the patented circuit (without infringing). The
genetically evolved circuit reads on all but one of the
elements of claim 1 of the patented circuit (and hence
does not infringe the patent).

Figure 4 Evolved compliant register-

controlled capacitor circuit

5.2.3 Voltage-Current Conversion Circuit
A circuit emerged on generation 109 of our run of
this problem with a fitness of 0.619. That is, the
evolved circuit has 62% of the average error of the
patented circuit. The evolved circuit was
subsequently tested on unseen fitness cases that were
not part of the fitness measure and outperformed the
patented circuit on these new fitness cases. The best-
of-run circuit solves the problem in a different
manner than the patented circuit.
5.2.4 High-Current Load Circuit
On generation 114, a circuit emerged that duplicated
Daun-Lindberg and Miller’s parallel FET transistor
structure. The evolved circuit has 182% of the error
for the patented circuit.

The genetically evolved circuit shares the
following features found in claim 1 of U.S. patent
6,211,726:

“A variable, high-current, low-voltage,
load circuit for testing a voltage source,
comprising: …
“a plurality of high-current transistors
having source-to-drain paths connected
in parallel between a pair of terminals
and a test load.”

However, the remaining elements of claim 1 in
U.S. patent 6,211,726 are very specific and the
genetically evolved circuit does not read on these
remaining elements. In fact, the remaining elements
of the genetically evolved circuit bear hardly any
resemblance to the patented circuit. In this instance,
genetic programming produced a circuit that
duplicates the functionality of the patented circuit
using a different structure.
5.2.5 Low-Voltage Cubic Signal Generator
The best-of-run evolved circuit (figure 5) was
produced in generation 182 and has an average error
of 4.02 millivolts. The patented circuit had an
average error of 6.76 millivolts. That is, the evolved
circuit has approximately 59% of the error of the
patented circuit over our four fitness cases.

Figure 5 Best-of-run cubic signal
generation circuit

The claims in U.S. patent 6,160,427 amount to a
very specific description of the patented circuit. The
genetically evolved circuit does not read on these
claims and, in fact, bears hardly any resemblance to
the patented circuit. In this instance, genetic
programming produced a circuit that duplicates the
functionality of the patented circuit and does so using
a very different structure.
5.2.6 Tunable Integrated Active Filter
Averaged over the nine values of frequency, the best-
of-run circuit from generation 50 (figure 6) has 72.7
millivolts average absolute error for frequencies in

the passband and 0.39 dB average absolute error for
other frequencies.

The best-of-run genetically evolved circuit reads
on every element of claim 1 of U.S. patent 6,225,859
and therefore infringes the patent.

Figure 6 Best-of-run circuit for the tunable

integrated active filter

6 Commercial Practicality of Genetic
Programming for Automated Circuit
Synthesis

The previous section demonstrates that genetic
programming can automatically synthesize analog
circuits that duplicate the functionality of six circuits
that were patented after January 1, 2000.

Table 4 Computer time consumed by 11 runs

of the six problems involving post-2000
patented inventions

Run M*(i +1) Hours
Low-voltage balun circuit 490,000,000 25
Mixed analog-digital variable
capacitor 198,000,000 88
High-current load circuit–1st run 230,000,000 134
High-current load circuit–2nd run 432,000,000 67
Voltage-current conversion circuit 550,000,000 83
Cubic function generator–1st run 915,000,000 206
Cubic function generator–2nd run 654,000,000 135
Tunable integrated active filter–1st run 142,000,000 23
Tunable integrated active filter–2nd run 102,000,000 14
Tunable integrated active filter–3rd run 78,000,000 12
Tunable integrated active filter–4th run 56,000,000 6

Table 4 tallies the computer time consumed by the

11 runs of the six post-2000 patented circuits.
Column 2 of this table shows the product of the total
population size, M, and the number of generations
(i+1) run before the best-of-run individual was
encountered. Column 3 shows the length of the run in
hours.

As can be seen from table 4, the average number
of hours for runs involving each of the six post-2000
patented circuits is 25, 88, 99, 83, 170, and 14,
respectively. The average of these averages is 80
hours (3.3 days). (We use the average of the averages
here because this table contains four runs of the
problem that took the least computer time).

All six problems were run on a home-built parallel
computer system consisting of 1,000 350-MHz
Pentium II processors (appearing as the last row of
table 2). This system operates at an overall rate of 3.5
× 1011 Hz. A 3.3-day (80-hour) run represents about
1017 cycles (i.e., 100 petacycles).

The relentless iteration of Moore’s law promises
increased availability of computational resources in
future years. If available computer capacity continues
to double approximately every 18 months over the
next decade, a computation requiring 80 hours will
require only about 1% as much computer time (i.e.,
about 48 minutes) a decade from now.

The question arises as to whether existing methods
of genetic programming can be extended to deliver
industrial-strength automated design of analog
electrical circuits.

There are six promising factors suggesting that the
previous results can be extended to deliver industrial-
strength automated design of analog circuits and
there are two countervailing factors that impede
progress in that direction.

One promising factor is that multiple runs of a
probabilistic algorithm are often necessary to solve a
problem. We made 11 runs involving the post-2000
patented circuits (ignoring partial runs used for
debugging purposes). All 11 runs produced a
satisfactory solution. A success rate of 100% is
unusual with a probabilistic algorithm. This high rate
suggests that we are currently nowhere near the limit
of the capability of the current techniques used to
reinvent the six 21st-century patented circuits.

A second promising factor is that the previous
work involving the six post-2000 patented circuits
intentionally ignored numerous elementary and
platitudinous pieces of domain knowledge about
analog circuits. For example, previous runs did not
cull egregiously flawed circuits, such as those
drawing enormous amounts of current or those that
were not connected to the circuit’s incoming signals
or output ports. Instead, the six problems were
approached with a highly “clean hands”
orientation—using as little problem-specific human-
supplied domain knowledge about electrical circuits
as possible. This “clean hands” orientation is, of
course, entirely irrelevant to a practicing engineer
interested in extending existing techniques to yield
more complex industrial-strength results. The
incorporation of such elementary and platitudinous
domain knowledge thus creates considerable upside

potential in the ability to automatically synthesize
circuits.

A third promising factor is that the previous work
intentionally ignored opportunities to employ
elementary knowledge about the specific to-be-
designed circuit. For example, the starting point for
circuit development in previous runs consisted of a
single modifiable wire and genetic programming was
expected to automatically create the entire circuit
from “nothing.” However, a practicing engineer does
not start each new assignment from first principles.
Instead, the starting point is likely to incorporate one
(and perhaps more) core subcircuits that are known
to provide a good head start. For example, the search
for a high-performance amplifier might begin with an
embryo containing a balanced voltage gain stage and
one or more modifiable wires as the starting point (as
opposed to merely a single modifiable wire).

A fourth promising factor is that the previous
work was intentionally uniform (and hence
inefficient) in terms of genetic programming
technique. For example, even when the problem had
manifest parallelism, regularity, symmetry, and
modularity, we intentionally did not permit the use of
automatically defined functions (subroutines).
However, a practicing engineer would recognize that
reuse is highly relevant in at least two of the six
problems involving the six post-2000 patented
circuits in section 5 (namely the mixed analog-digital
integrated circuit for variable capacitance and the
low-voltage high-current transistor circuit for testing
a voltage source). The benefits of using automatically
defined functions in problems having parallelism,
regularity, symmetry, and modularity are
considerable (Koza 1990, Koza and Rice 1991, Koza
1992, Koza 1994). The removal of the previously
enforced uniformity creates considerable additional
upside potential in the ability to automatically
synthesize circuits.

A fifth promising factor is that considerable work
has been done in recent years to accelerate the
convergence characteristics and general efficiency of
circuit simulators. We used a version of the SPICE3
simulator (Quarles, Newton, Pederson, and
Sangiovanni-Vincentelli 1994) that we modified in
various ways (as described in Koza, Bennett, Andre,
and Keane 1999). There are numerous commercially
available simulators that are considerably more
efficient than the version of the SPICE simulator that
we used for the runs of the previous work involving
the six post-2000 patented circuits. Speedups of up to
10-to-1 are reportedly possible today.

A sixth promising factor (already discussed in
section 4) is that genetic programming has
historically demonstrated the ability to profitably
exploit the relentless increase in computer power
suggested by Moore’s law. The historical ability of

genetic programming to yield progressively more
substantial results with increased computer power
suggests that even more substantial results will be
possible in the future. Thus, the passage of time
creates additional upside potential in the ability to
automatically synthesize circuits.

There are, however, two countervailing factors
that impede progress toward industrial-strength
automated design of analog circuits.

The first countervailing factor concerns the nature
of the multiobjective fitness measure that is typically
associated with an industrial-strength problem.
Previously published examples of the synthesis of
analog circuits by means of genetic programming or
genetic algorithms typically measure candidate
circuits with a multiobjective fitness measure
consisting of only a small number of different
elements. For example, the fitness measure employed
to synthesize the amplifier in chapter 45 of Genetic
Programming III: Darwinian Invention and Problem
Solving (Koza, Bennett, Andre, and Keane 1999)
considered gain, bias, and distortion. The fitness
measure employed to synthesize the amplifier in
chapter 46 considered gain, bias, and distortion as
well as the circuit’s power supply rejection ratio (i.e.,
the circuit’s ability to perform correctly in the face of
fluctuations in the voltage provided by the circuit’s
external power supply). The fitness employed to
synthesize and layout the amplifier in chapter 5 of
Genetic Programming IV: Routine Human-
Competitive Machine Intelligence (Koza, Keane,
Streeter, Mydlowec, Yu, and Lanza 2003) considered
gain, bias, distortion, as well as the area of the
bounding rectangle after placement and routing on
the substrate. In contrast, commercial circuits are
described by detailed “data sheets” specifying the
circuit’s performance for a dozen or more
characteristics. Each additional element in a fitness
measure generally increases the computer time
required to evaluate the candidate circuit. Moreover,
as the number of elements in the fitness measure
increases, the problem of efficiently combining the
disparate elements (“apples and oranges”) can
become vexatious. In addition, previously published
examples of the synthesis of analog circuits by means
of genetic programming or genetic algorithms
typically measure a candidate circuit with a single
test fixture (test bench). However, the characteristics
found in commercial data sheets are typically so
different that they can only be measured by means of
distinctly different test fixtures. Each different test
fixture generally entails a different type of simulation
(further increasing the total computer time required
to fully evaluate the candidate circuit).

The second countervailing factor arises from the
need to evaluate candidate circuits at the “corners” of
various performance envelopes. For example, a real-

world circuit might be required to operate correctly at
–40° C and +105° C even though room temperature
(27° C) may be the circuit’s nominal ambient
environment. Separate simulations (or, if
reconfigurable hardware is being used, separate test
scenarios) are required to measure the circuit’s
performance at each temperature—thus multiplying
the required computer time by a factor of two (if only
the two extremes are considered), three, or more.
Similarly, a real-world circuit will be expected to
operate correctly in the face of variation in the
circuit’s power supply (e.g., when the battery or
other power supply is providing 4.5 volts or 5.5
volts, instead of a nominal 5.0 volts). Again, separate
simulations are required to measure the circuit’s
performance at each voltage corner. In addition, a
real-world circuit will be expected to operate
correctly in the face of deviations between the
behavior of an actual manufactured component and
the component’s “model” performance. Separate
simulations may then be required, for example, for
the component’s “fast,” “typical,” and “slow”
behavior. Circuits may also be expected to operate
correctly in the face of variations in the load,
variations in input characteristics, or variations in
other characteristics. The combined effect of multiple
independent sets of corners multiplies the required
computer time by at least 2N (where N is the number
of sets of corners).

Thus, the answer to the question as to whether
genetic programming can deliver industrial-strength
automated design of analog electrical circuits
depends on whether the six promising factors
overcome the two countervailing factors.

In addition to the six promising factors mentioned
above, runs of circuit synthesis problems can be
accelerated in various ways.

First, many pieces of elementary knowledge
helpful to the construction of useful circuits were not
made available to the runs of the six problems
involving 21st-century patented circuits. For example,
the initial population of individuals in a run of
genetic programming is typically created at random.
As the run proceeds, new individuals are created by
probabilistic problem-independent operations (e.g.,
crossover, mutation). Consequently, many
individuals in the population represent unrealistic or
impractical electrical circuits. One particularly
egregious characteristic of the circuits that appear in
unrestricted runs of genetic programming is that the
circuit draws preposterously large amounts of
current. To cull circuits of this type from the
population, each circuit in the population can be
examined for the current drawn by the circuit’s
positive power supply and negative power supply. If
the current exceeds a certain generous maximum

(e.g., an absolute value of 250 milliamperes), the
circuit is penalized (or perhaps eliminated).

Second, a threshold requirement for a functioning
circuit is that the circuit connect to all input signals,
all output signals, and all necessary sources of power
(e.g., the positive power supply and the negative
power supply). A circuit can be easily tested for this
characteristic and a high penalty value of fitness can
be assigned to circuits failing this threshold test.

Third, the components that are inserted into a
developing circuit need not be as primitive as a single
transistor, resistor, or capacitor. Instead, the set of
component-creating functions can be expanded to
include numerous frequently-occurring, known-
useful combinations of components. Examples
include current mirrors, voltage gain stages,
Darlington emitter-follower sections, cascodes, three-
ported voltage divider subcircuits composed of two
resistors in series, and three-ported subcircuits
consisting of two resistors (or capacitors) with their
common point connected to power or ground. In this
vein, Graeb, Zizala, Eckmueller, and Antreich (2001)
have identified (for a purpose entirely unrelated to
evolutionary computation) a promising set of
frequently-occurring combinations of transistors that
are known to be useful in a broad range of analog
circuits. For certain problems, the set of primitives
can also be expanded to include higher-level entities,
such as filters, op amps, oscillators, voltage-
controller current sources, multipliers, and phase-
locked loops.

Fourth, it is possible to integrate additional
specific knowledge of electrical engineering into a
run of genetic programming. For example,
Sripramong and Toumazou (2002) combine current-
flow analysis into their runs of genetic programming
for the purpose of automatically synthesizing CMOS
amplifiers.

Fifth, the authors believe that the efficiency of
runs of genetic programming can, in general, be
improved by adapting several of the principles set
forth in The Design of Innovation: Lessons from and
for Competent Genetic Algorithms (Goldberg 2002)
to the domain of genetic programming.

Sixth, because there usually are multiple
competing elements in the fitness measures of most
practical problems of circuit synthesis, we believe
that the efficiency of runs of genetic programming
can be improved by using some of the recently
published new techniques of multiobjective
optimization (Deb 2001; Coello Coello, Van
Veldhuizen, and Lamont 2002; and Zitzler, Deb,
Thiele, Coello Coello, and Corne 2001).

Seventh, we believe that the efficiency of runs can
be improved by adapting some of the innovative
ideas in Efficient and Accurate Parallel Genetic

Algorithms (Cantu-Paz 2000) to the domain of
genetic programming.

Eighth, there has been an outpouring of theoretical
work in the past few years on the theory of genetic
algorithms and genetic programming. In particular,
the authors believe that many of the insights in
Foundations of Genetic Programming (Langdon and
Poli 2002) can be used to improve the efficiency of
runs of genetic programming.

Looking forward, we believe that genetic
programming will be increasingly used to
automatically generate ever-more complex human-
competitive results.

7 Conclusions

As far as we know, genetic programming is, at the
present time, unique among methods of artificial
intelligence and machine learning in terms of its
duplication of numerous previously patented results,
unique in its generation of patentable new results,
unique in the breadth and depth of problems solved,
and unique in its delivery of routine high-return,
human-competitive evolvable hardware.

References

Aytur; Turgut Sefket. 2000. Integrated Circuit with
Variable Capacitor. U. S. patent 6,013,958. Filed
July 23, 1998. Issued January 11, 2000.

Banzhaf, Wolfgang, Nordin, Peter, Keller, Robert E.,
and Francone, Frank D. 1998. Genetic
Programming – An Introduction. San Francisco,
CA: Morgan Kaufmann and Heidelberg: dpunkt.

Cantu-Paz, Erick. 2000. Efficient and Accurate
Parallel Genetic Algorithms. Boston: Kluwer
Academic Publishers.

Cipriani, Stefano and Takeshian, Anthony A. 2000.
Compact cubic function generator. U. S. patent
6,160,427. Filed September 4, 1998. Issued
December 12, 2000.

Coello Coello, Carlos A., Van Veldhuizen, David A.,
and Lamont, Gary B. 2002. Evolutionary
Algorithms for Solving Multi-Objective Problems.
Boston: Kluwer Academic Publishers.

Daun-Lindberg, Timothy Charles and Miller;
Michael Lee. 2000. Low Voltage High-Current
Electronic Load. U. S. patent 6,211,726. Filed
June 28, 1999. Issued April 3, 2001.

Deb, Kalyanmoy. 2001. Multi-Objective
Optimization using Evolutionary Algorithms.
Boston: Kluwer Academic Publishers.

Goldberg, David E. 2002. The Design of Innovation:
Lessons from and for Competent Genetic
Algorithms. Boston: Kluwer Academic Publishers.

Graeb, Helmut E., Zizala, S., Eckmueller, J., and
Antreich, K. 2001. The sizing rules method for

analog circuit design. Proceedings of the
IEEE/ACM International Conference on Computer
Aided Design. Piscataway, NJ: IEEE Press. Pages
343-349.

Gruau, Frederic. 1992a. Genetic synthesis of Boolean
neural networks with a cell rewriting
developmental process. In Schaffer, J. D. and
Whitley, Darrell (editors). Proceedings of the
Workshop on Combinations of Genetic Algorithms
and Neural Networks 1992. Los Alamitos, CA:
The IEEE Computer Society Press.

Holland, John H. 1975. Adaptation in Natural and
Artificial Systems. Ann Arbor, MI: University of
Michigan Press.

Ikeuchi, Akira and Tokuda, Naoshi. 2000. Voltage-
Current Conversion Circuit. U. S. patent
6,166,529. Filed February 24, 2000 in U. S..
Issued December 26, 2000 in U. S.. Filed March
10, 1999 in Japan.

Irvine, Robert and Kolb, Bernd. 2001. Integrated
Low-Pass Filter. U.S. patent 6,225,859. Filed
September 14, 1998. Issued May 1, 2001.

Keane, Martin A., Koza, John R., and Streeter,
Matthew J. 2002. Automatic synthesis using
genetic programming of an improved general-
purpose controller for industrially representative
plants. In Stoica, Adrian, Lohn, Jason, Katz, Rich,
Keymeulen, Didier, and Zebulum, Ricardo
(editors) 2002. Proceedings of 2002 NASA/DoD
Conference on Evolvable Hardware. Los
Alamitos, CA: IEEE Computer Society. Pages
113-122.

Kitano, Hiroaki. 1990. Designing neural networks
using genetic algorithms with graph generation
system. Complex Systems. 4(1990) 461–476.

Koza, John R. 1990. Genetic Programming: A
Paradigm for Genetically Breeding Populations of
Computer Programs to Solve Problems. Stanford
University Computer Science Department
technical report STAN-CS-90-1314. June 1990.

Koza, John R., and Rice, James P. 1991. Genetic
generation of both the weights and architecture for
a neural network. In Proceedings of International
Joint Conference on Neural Networks, Seattle,
July 1991. Los Alamitos, CA: IEEE Press.
Volume II. Pages 397-404.

Koza, John R. 1992. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Cambridge, MA: MIT Press.

Koza, John R. 1993. Discovery of rewrite rules in
Lindenmayer systems and state transition rules in
cellular automata via genetic programming.
Symposium on Pattern Formation (SPF-93),
Claremont, California. February 13, 1993.

Koza, John R. 1994. Genetic Programming II:
Automatic Discovery of Reusable Programs.
Cambridge, MA: MIT Press.

Koza, John R., Bennett III, Forrest H, Andre, David,
and Keane, Martin A. 1996. Automated design of
both the topology and sizing of analog electrical
circuits using genetic programming. In Gero, John
S. and Sudweeks, Fay (editors). Artificial
Intelligence in Design '96. Dordrecht: Kluwer
Academic Publishers. Pages 151-170.

Koza, John R., Bennett III, Forrest H, Andre, David,
and Keane, Martin A. 1999. Genetic Programming
III: Darwinian Invention and Problem Solving.
San Francisco, CA: Morgan Kaufmann.

Koza, John R., Keane, Martin A., and Streeter,
Matthew J. 2003. The importance of reuse and
development in evolvable hardware. In Lohn,
Jason, Zebulum, Ricardo, Steincamp, James,
Keymeulen, Didier, Stoica, Adrian, and Ferguson,
Michael I. (editors). 2003. Proceedings of 2003
NASA/DoD Conference on Evolvable Hardware.
Los Alamitos, CA: IEEE Computer Society. Pages
33–42.

Koza, John R., Keane, Martin A., Streeter, Matthew
J., Mydlowec, William, Yu, Jessen, and Lanza,
Guido. 2003. Genetic Programming IV. Routine
Human-Competitive Machine Intelligence. Kluwer
Academic Publishers.

Langdon, William B. and Poli, Riccardo. 2002.
Foundations of Genetic Programming. Berlin:
Springer-Verlag.

Lee, Sang Gug. 2001. Low Voltage Balun Circuit. U.
S. patent 6,265,908. Filed December 15, 1999.
Issued July 24, 2001.

Lohn, Jason, Hornby, G., Kraus, W., Linden, Derek,.
Rodriguez, A., and Seufert, S. 2003. Presentation
at the 2003 NASA/DoD Conference on Evolvable
Hardware entitled, “Evolutionary Design of an X-
Band Antenna for NASA's Space Technology 5
Mission,” Chicago, July, 2003.

Quarles, Thomas, Newton, A. R., Pederson, D. O.,
and Sangiovanni-Vincentelli, A. 1994. SPICE 3
Version 3F5 User’s Manual. Department of
Electrical Engineering and Computer Science,
University of California. Berkeley, CA. March
1994.

Sripramong, Thanwa and Toumazou, Christofer.
2002. The invention of CMOS amplifiers using
genetic programming and current-flow analysis.
IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems. 21(11).
November 2002. Pages 1237–1252.

Spector, Lee and Stoffel, Kilian. 1996. Ontogenetic
programming. In Koza, John R., Goldberg, David
E., Fogel, David B., and Riolo, Rick L. (editors).
1996. Genetic Programming 1996: Proceedings of
the First Annual Conference, July 28-31, 1996,
Stanford University. Cambridge, MA: MIT Press.
Pages 394–399.

Zitzler, Eckart, Deb, Kalyanmoy, Thiele, Lothar,
Coello Coello, Carlos A., and Corne, David
(editors). 2001. Evolutionary Multi-Criterion
Optimization, First International Conference,
EMO 2001, Zurich, Switzerland, March 2001,
Proceedings. Lecture Notes in Computer Science.
Volume 1993. Berlin, Germany: Springer-Verlag.

