
Catchem: A Browser Plugin for the Panama Papers
using Approximate String Matching

Panos Kostakos, Miika Moilanen, Arttu Niemelä, Mourad Oussalah
Center for Ubiquitous Computing

University of Oulu
Oulu, Finland

Email: panos.kostakos@oulu.fi, miika.moilanen@student.oulu.fi, arttu.niemela@oulu.fi, mourad.oussalah@oulu.fi

Abstract— The Panama Papers is a collection of 11.5 million
leaked records that contain information for more than 214,488
offshore entities. This collection is growing rapidly as more
leaked records become available online. In this paper, we present
a work in progress on a web browser plugin that detects
company names from the Panama Papers and alerts the user by
means of unobtrusive visual cues. We matched a random sample
of company names from the Public Works and Government
Services Canada registry against the Panama Papers using three
different string matching techniques. Monge-Elkan is found to
provide the best matching results but at increased computational
cost. Levenshtein-based approach is found to provide the best
tradeoff between matching and computational cost, while
Jacquard index like approach is found to be less sensitive to
slight textual change.

Index terms— Corruption; string matching; Panama Papers

I. INTRODUCTION
Offshore tax heavens enable corruption and economic

crime, and have a tremendous negative impact on European
economy [1]. Law enforcement officers and journalists have
various toolkits at their disposal for investigating economic
crimes [2,3]. However, existing tools and methods are limited
by: (1) offline processing and firewalls, (2) low customization,
(3) poor search engine integration, (4) high technical expertise
required, and (5) digital amnesia. As a result, end-users who
make extensive use of open-source intelligence through online
search engines cannot effectively leverage tacit knowledge
accumulated from past investigations [2]. To address this lack
of tools, we have developed Catchem, an online approximate
string matching browser plugin that can unobtrusive flag out
entities of interest while browsing a webpage. We run a
computationally expensive brute-force method to compare
company names from the Public Works and Government
Services Canada (PWGSC) [4] against the Panama Papers [5]
and successfully detected numerous exact matches. Especially,
we compared three different approximate string matching
algorithms to see which one would be the best for
implementing a string matching plugin in Google chrome. The
plugin would be used for detecting names, addresses, and
company names that appear in the Panama Papers. The
solution we are putting forward has three technical
specifications: (1) string matching has to be tolerant to spelling
mistakes or other fraudulent changes in the names, (2) the

matching has to be fast to run swiftly on a browser, and (3)
data customisation.

II. STRING MATCHING: CONCEPTS & APPLICATIONS
The problem of the approximate string-matching can be

framed as follows. Given the query string (long pattern) P =
p1p2…pm and the short text string T = t1t2…tn in alphabet Σ of
size σ, find a substring T(i..j) = ti…tj which has the smallest
Edit distance to the query string P [6]. The approximate
occurrence of substring P in T is defined as the k edits
(insertions, deletions, substitutions) in order to convert p1 to t1.
Approximate string matching has been used in numerous
criminological applications against identity fraud, phishing,
economic fraud, and plagiarism [7]. Here we focus on a web-
browser integration that could improve investigators’ ability to
use tacit knowledge in their work.

III. CONTEXT OF THE STUDY
The Panama Papers database is a collection of 11.5 million

leaked documents that hold information about financial and
attorney-client matters attained from Mossack Fonseca.
Reporters have found out that some of the Mossack Fonseca
shell corporations were used for illegal purposes, such as fraud,
tax evasion, and avoiding international sanctions. For these
reasons companies and people associated with the “Panama
Papers” are more likely to be associated with criminal actions
and corruption than average [5].

Catchem would be useful for journalists, law enforcement
officers, government officials, and other parties that are likely
to go through large amounts of open-source intelligence aiming
to find possible criminal connections. For example, a journalist
investigating corruption within government circles, would find
it easing to not go through all the documents by hand. That
said, the findings of this application should not be regarded as
hard evidence. Instead this application should be thought as a
guide, to help investigators commit resources in right direction.
Moreover, a browser plugin was chosen as the means of
implementing this application for a couple of reasons. First, the
web is a vast source of information and harnessing that
information brings great benefits. Second, installing and using
browser plugins is very easy.

Catchem is a click-to-play plugin that could be activated by
clicking a button on the top right of the browser, right next to

2017 European Intelligence and Security Informatics Conference

978-1-5386-2385-5/17 $31.00 © 2017 IEEE

DOI 10.1109/EISIC.2017.28

2017 European Intelligence and Security Informatics Conference

978-1-5386-2385-5/17 $31.00 © 2017 IEEE

DOI 10.1109/EISIC.2017.28

2017 European Intelligence and Security Informatics Conference

978-1-5386-2385-5/17 $31.00 © 2017 IEEE

DOI 10.1109/EISIC.2017.28

2017 European Intelligence and Security Informatics Conference2017 European Intelligence and Security Informatics Conference

the address bar. By highlighting correct matches, the plugin
makes it easy to quickly browse through HTML documents to
see if names or addresses in the documents are connected to the
Panama Papers. However, building the application for
browsers imposes some limitations and disadvantages. While
the browser becomes faster by the day, it is not the most
powerful computational resource available. As a result, our
approach limits the use of vast amounts of memory. This
means that the plugin should be lean and fast, in terms of
computer clock cycles and memory consumption. Evidently,
the approximate string matching is a key bottleneck to
overcome.

The remaining of the paper provides results for the following
three algorithms: (1) Levenshtein distance algorithm, (2)
Monge-Elkan, and (3) Jaccard distance algorithm, also known
as the Bag distance algorithm. We compared these three
algorithms using three different measures: (1) time
consumption, (2) memory consumption, and (3) quality of
matches. These measures will be given a detailed description in
the following sections.

IV. METHOD

A. Implementation and Metrics
The programming language of choice used to implement

the software for testing the three algorithms was Python 3.6.1.
Python offers a wide variety of libraries for natural language
processing and data visualization, and has a comprehensive
library for natural language processing called NLTK. Also,
Python is a free and open source language, so it adds no
financial load and allows for improvement of the language if
needed.

In addition to the large variety of natural language
processing tools, NLTK has a great documentation and free
online resources for learning the conventional uses of the tools
it provides. We used NTLK.metrics for measurement metrics
and NTLK.word_tokenize for word tokenization. Another
important tool we used was the Python library
py_stringmatching. This Python package provided us with the
three approximate string matching algorithms Levenshtein,
Monge-Elkan, and Jaccard. For memory consumption
measurements, we used a Python package named
memory_profiler. It can be used to measure the memory
consumption of single Python functions or whole Python
programs. This package was the only memory profiling tool we
could find that offered us the functionality we needed. Time
module, that ships with Python, was deployed for time
measurements.

We used a test dataset with over 35000 names to check
against the Panama Papers. We measured the time it took to
match one name from the dataset against all the names in the
Panama Papers by calling the time method of the time module
before and after the matching and saving those times into
variables t0 and t1, where t0 would be the time in seconds
before matching and time in seconds after matching. The
difference between t1 and t0 is the time spent on finding a
match for a single name. We used the same method for

measuring the time it took to go through a whole list of names
of a given size.

Memory profiling was done with the memory_profiler
package. It is used by attaching a decorator to a function and
the package would then profile the memory usage
automatically and print a report in a file. Respectively, to
measure the quality of the matches we categorized them in four
groups: (1) over 99% matches, (2) over 90% matches, (3) over
70% matches, (4) over 50% matches, and (5) less or equal to
50% matches. Our approach to cluster the results into these
categories provides additional value to the overall functionality
of our plugin as it enables investigators to generate and
prioritize leads. Thus, in the first category we expect to find
true positive matches or “smoking gun” cases, whereas in the
lower bands we expect to capture company names that are
either misspelled or tempered to avoid detection.

B. Data Sources
Two sets of data were chosen for testing the string

matching algorithms. The first data set is the openly available
Panama Papers that provides information on companies,
entities and individuals, of which some are implicated in illegal
financial activities [5]. The other data set is the Public Works
and Government Services Canada, a database maintained by
the Canadian government, holding identifying information on
companies and entities operating and having contracts in
Canada, and which are also openly available [6].

The Panama Papers are available as a collection of .csv files
(comma separated values). The collection includes single files
for legal entities, intermediaries, officers, and addresses. The
legal entities were used as they hold mostly names of
companies and organizations. Overall, the entities file holds
495,039 lines of entities, although some of the entries are about
the same company name. All data is in string format, the entity
names being in capital letters.

The Public Works and Government Services Canada
database is also available via an official web portal. The data
that was used in this paper is contract data, which holds
information on contracts awarded to companies and other
suppliers by Public Works and Government Services Canada,
that were over 10,000$ in value. The data is available since
2009 for every fiscal year. The database can be searched
through its web portal, but raw data can also be downloaded as
.csv files. For this project, .csv file for fiscal year 2016-2017
was used. Each line provides a ‘supplier standardized name’,
the name of the company that the contract was awarded for,
which were used as the list of names to match. Data was in
string format, with the supplier names being capitalized..

C. Data Pre-Processing
Preprocessing was conducted on the data in a few ways.

First, the company or entity names were extracted from each
data set to reduce the amount of unnecessary data. Then, all the
names were edited to be completely lowercased in order to
standardize the data. Finally, many companies share common
identifiers like ‘corporation’, or ‘technologies’, which would
result in a large number of false positives, especially if the
common part is much longer than the actual name of the

140140140140140

company. Thus, common terms were removed. The removed
words were chosen so that they were common (included in
more than 1% of the names) in both of the data sets, or very
common (included in more than 10% of the names) in one of
the data sets. By this reasoning, the following 25 stop-words
were deleted from the names: associates, canada, company,
consultants, consulting, corp, corporation, development,
enterprises, group, holding, holdings, inc, incorporated,
international, investment, investments, limited, ltd,
management, services, systems, technologies, technology,
trading.

After cleaning the data, a total of 481,720 names were left
in the Panama Papers and 38,864 names in the Canada data set.
We compared the frequencies of the original data with the
cleaned data to verify that the removal of commonly used
words from the lists did not change the overall quality of the
data. Final testing data set was a total of 400 random names,
with 200 from each of the two lists. Next, 200 of the names
were randomly selected from the Panama Papers list, forming
the list of ‘bad’ companies. Another 180 names were randomly
selected from the ‘Canada’ list, forming the list of ‘good’
companies. The remaining 20 names in the ‘Canada list’ were
extracted from the Panama Papers list, so that there would be
100% matches, forming the true positives for evaluation.

D. Matching Algorithms
We compared three similarity measurement algorithms that

associate the likeness between two strings using different
methods. First, we used the Jaccard distance algorithm, also
known as the Bag distance algorithm. This algorithm obtains
the non-common characters of two strings. It does so by
dividing the characters in strings s1 and s2, and ordering them
in two charsets X and Y, and corresponding differences X-Y
and Y-X. Then the largest difference between s1 and s2 is
computed by:

 (1)
The similarity function of Jaccard distance is given by the

following formula [8]:

 (2)

The second algorithm, Monge-Elkan [9] is a simple method
for measuring similarity between two strings. The formula is as
follows:

 (3)

Monge-Elkan needs a similarity function to measure the
similarity, as can be seen from the formula above. The
similarity function we used in this project was Jaro-Winkler.

The last algorithm we included in our comparison was the
Levenshtein algorithm. It allows insertions, deletions and
replacements in the measured strings [10]. This is
advantageous since the plugin we are developing cannot be
fooled by simple manipulations of the strings. Levenshtein
distance formula is as follows:

 (4)

V. PERFORMANCE EVALUATION
The analysis was implemented using a custom Python

software. The software takes any given list of strings as input
and compares them using the chosen algorithms. The algorithm
is chosen manually from the three included string matching
algorithms; Monge-Elkan, Jaccard, and Levenshtein. Also,
desired number of samples from the lists can be defined. The
software measured time and memory consumption of the
algorithms in order to compare them. Next, the robustness of
the algorithms was compared by having them match the lists of
modified names to the list of original names. The software runs
the chosen algorithm on the data and saves the match
percentages and execution times for each individual pair of
words. Additionally, the memory consumption of the string
matching function is measured and saved by memory profiling
Python library called memory_profiler.

Fig. 1a shows the total execution time of matching all the
200 names in the Panama-list with the 200 names in the
Canada-list. This totaled in 40,000 pair of names to match.
Jaccard and Levenshtein are similarly fast, executing in under
5 seconds. However, Monge-Elkan is considerably slower,
being more complex algorithm, and taking almost 60 seconds
to execute. Fig. 1b illustrates the memory consumption of each
algorithm. There are no significant differences in the memory
usage. All the algorithms consume roughly 100 megabytes
during execution.

Fig. 2 presents each algorithm’s execution time for each
individual word matched to all the 200 words in the other list.
Results show that behavior of Levenshtein and Jaccard are
similar, as in the total execution times. Both oscillate between
to similar values. However, Monge-Elkan shows very different
behavior. Because it is more complex algorithm, the execution
time varies dramatically between each of the words.

 Fig. 3 shows the results of testing the robustness of the
algorithms. Robustness was defined as the ability to detect a
matching pair of names, even if the other name is modified.
Modifying was done as either subtracting letters from the
beginning or the end of the name, or as padding the name with
‘x’-letters. In the figure, ‘orig’ in the middle shows the results
for original names, without modifications. Bars on the left-
wing show results for subtracting 1 to 4 letters and bars on the
right-wing show results for padding 1 to 4 letters. For example,
company name ‘pepsi’ after subtracting 1 letter would be
‘peps’, and after 2 letters ‘eps’. Padding with 1 letter would
make it ‘pepsix’ and padding two letters ‘xpepsix’. As shown
in Fig. 3, Monge-Elkan is the least sensitive to modified names
with average similarity being over 70% even with 4 subtracted
letters. Levenshtein is also quite robust, with the matching
result falling a little faster than Monge-Elkan’s. Jaccard was
very sensitive to name modifications. Its matching result
crashed down to under 20% with only one letter subtracted or
padded.

Table 1 presents the complete raw matching results for the
three algorithms. Results are categorized by which percentile
their match result belonged.

141141141141141141

TABLE I. RAW MATCHING RESULTS
Alg. Total (sec) Mem. >99% >90% >70% >50% =<50%

Me 18.99339628 109MB 20 2 870 19170 19938

Lev 11.30473184 105MB 20 0 4 109 39867

Jac 9.571173906 107MB 20 0 0 1 39979
Columns contain the following information: (Alg) Name of the algorithm; (Total) Total number of
seconds it takes to complete the string matching for each algorithm; (Mem.) Total memory used by the
function including loading of raw data, modules, and function decorator; (>99%) Number of matches
between the two lists with a ratio greater than 99%. Given that we have manually injected 20 perfect
matches, this column represents true positive matches. In real-life situation these are “smoking gun”
cases; (>90%) Number of matches between the two lists with a ratio greater than 90%. These cases are
potential false positives, and in real-life situations these are considered to be leads that investigators
might want to follow-up; (>70%) Number of matches between the two lists with a ratio greater than
70%; (>50%) Number of matches between the two lists with a ratio greater than 50%. (=<50%)
Number of matches between the two lists with a ratio less or equal to 50%. Matches below the 90% ratio
threshold provide very few actual leads.

VI. CONCLUSION & RESULTS
The long-term objective is to build a plugin that could

highlight persons and entities of interest while browsing open
source intelligence on the internet. In this paper, we tackle the
largest bottleneck of our objective, namely understanding how
different approximate string matching algorithm respond to a
specific lexical domain.

By using the methods, tools and data described in detail
above we were able to come in to a conclusion that, for the
purposes of the proposed plugin, the best algorithm to use
would be the Levenshtein distance algorithm. Levenshtein
distance was not the fastest algorithm, nor did it give us the
best matches, but the tradeoffs it imposes were in the best
balance. Compared to Monge-Elkan the matching was not
quite as good, but Levenshtein did produce less false positives.
Levenshtein was not as fast as Jaccard distance but it came
very close. In terms of memory consumption all the algorithms
were neck to neck. Our proposed approach has a number of
limitations that future work might seek to address.

First, to improve the preprocessing of company names
more robust tools are required that will focus on extracting
lexical features from the specific domain while controlling for
the overall quality of the data. Second, the scope covered in the
paper can expand to include more algorithms along with
custom-made programs that deal with the memory
consumption more systematically. Third, there is a large
number of company databases that can be used to improve the
detection capabilities of the algorithms.

Finally, further work would include conducting user studies
that measure the effectiveness of our tool, and making the
plugin even faster by adopting big data processing techniques,
such as hash maps and multiple core processing. The plugin
would also benefit if the data could be inserted in to a
distributed database as this would allow custom datasets to be
utilized by law enforcement and journalists.

REFERENCES
[1] European Commission, EU Anti-Corruption Report, Brussels, 3.2.2014,

COM(2014) 38 final, 2014.
[2] P. Gottschalk, Knowledge Management Systems in Law Enforcement:

Technologies and Techniques. London: Idea Group Publishing, 2007.
[3] U.S. Department of Justice, Investigative Uses of Technology: Devices,

Tools, and Techniques. Washington: U.S. Department of Justice Office
of Justice Programs, October 2007.

[4] Government of Canada, Public Works and Government Services Canada
(PWGSC), http://open.canada.ca/data/en/dataset/53753f06-8b28-42d7-
89f7-04cd014323b0

[5] Offshore Leaks Database, https://offshoreleaks.icij.org/
[6] G. Navarro, “Approximate string matching,” Encyclopaedia of

Algorithms, pp: 1-5, 2014.
[7] G. Wang, H. Chen, H. Atabakhsh, “Automatically detecting deceptive

criminal identities,” Communications of the ACM, vol 47, 2004.
[8] P. Angeles and L.F. Perez-Franco, “Analysis of String Comparison

Methods During De-Duplication Process,” ICIEV Proceedings, 2015
[9] A. Monge and C. Elkan, “An efficient domain-independent algorithm

for detecting approximately duplicate database records,” SIGMOD
workshop, 1997.

[10] G. Navarro, “A guided tour to approximate string matching,” ACM
computing surveys (CSUR), vol: 33, 2001.

Fig. 3. Effects of modifications. Positive numbers indicate addition of
letters; negative numbers indicate subtraction of letters; and “orig”
indicates two identical strings.

Fig. 2. Individual string matching times Monge-Elkan (ME), Levenshtein
(LEV), and Jaccard (JAC).

Fig. 1. 1a) Memory usage of each algorithm. 1b) Total execution times of
each algorithm.

142142

