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Abstract— The Panama Papers is a collection of 11.5 million 
leaked records that contain information for more than 214,488 
offshore entities. This collection is growing rapidly as more 
leaked records become available online. In this paper, we present 
a work in progress on a web browser plugin that detects 
company names from the Panama Papers and alerts the user by 
means of unobtrusive visual cues. We matched a random sample 
of company names from the Public Works and Government 
Services Canada registry against the Panama Papers using three 
different string matching techniques. Monge-Elkan is found to 
provide the best matching results but at increased computational 
cost. Levenshtein-based approach is found to provide the best 
tradeoff between matching and computational cost, while 
Jacquard index like approach is found to be less sensitive to 
slight textual change. 

Index terms— Corruption; string matching; Panama Papers 

I.  INTRODUCTION  
Offshore tax heavens enable corruption and economic 

crime, and have a tremendous negative impact on European 
economy [1]. Law enforcement officers and journalists have 
various toolkits at their disposal for investigating economic 
crimes [2,3]. However, existing tools and methods are limited 
by: (1) offline processing and firewalls, (2) low customization, 
(3) poor search engine integration, (4) high technical expertise 
required, and (5) digital amnesia. As a result, end-users who 
make extensive use of open-source intelligence through online 
search engines cannot effectively leverage tacit knowledge 
accumulated from past investigations [2]. To address this lack 
of tools, we have developed Catchem, an online approximate 
string matching browser plugin that can unobtrusive flag out 
entities of interest while browsing a webpage. We run a 
computationally expensive brute-force method to compare 
company names from the Public Works and Government 
Services Canada (PWGSC) [4] against the Panama Papers [5] 
and successfully detected numerous exact matches. Especially, 
we compared three different approximate string matching 
algorithms to see which one would be the best for 
implementing a string matching plugin in Google chrome. The 
plugin would be used for detecting names, addresses, and 
company names that appear in the Panama Papers. The 
solution we are putting forward has three technical 
specifications: (1) string matching has to be tolerant to spelling 
mistakes or other fraudulent changes in the names, (2) the 

matching has to be fast to run swiftly on a browser, and (3) 
data customisation. 

II. STRING MATCHING: CONCEPTS & APPLICATIONS 
The problem of the approximate string-matching can be 

framed as follows. Given the query string (long pattern) P = 
p1p2…pm and the short text string T = t1t2…tn in alphabet Σ of 
size σ, find a substring T(i..j) = ti…tj which has the smallest 
Edit distance to the query string P [6]. The approximate 
occurrence of substring P in T is defined as the k edits 
(insertions, deletions, substitutions) in order to convert p1 to t1. 
Approximate string matching has been used in numerous 
criminological applications against identity fraud, phishing, 
economic fraud, and plagiarism [7]. Here we focus on a web-
browser integration that could improve investigators’ ability to 
use tacit knowledge in their work.  

III. CONTEXT OF THE STUDY  
The Panama Papers database is a collection of 11.5 million 

leaked documents that hold information about financial and 
attorney-client matters attained from Mossack Fonseca. 
Reporters have found out that some of the Mossack Fonseca 
shell corporations were used for illegal purposes, such as fraud, 
tax evasion, and avoiding international sanctions. For these 
reasons companies and people associated with the “Panama 
Papers” are more likely to be associated with criminal actions 
and corruption than average [5]. 

Catchem would be useful for journalists, law enforcement 
officers, government officials, and other parties that are likely 
to go through large amounts of open-source intelligence aiming 
to find possible criminal connections. For example, a journalist 
investigating corruption within government circles, would find 
it easing to not go through all the documents by hand. That 
said, the findings of this application should not be regarded as 
hard evidence. Instead this application should be thought as a 
guide, to help investigators commit resources in right direction. 
Moreover, a browser plugin was chosen as the means of 
implementing this application for a couple of reasons. First, the 
web is a vast source of information and harnessing that 
information brings great benefits. Second, installing and using 
browser plugins is very easy.  

Catchem is a click-to-play plugin that could be activated by 
clicking a button on the top right of the browser, right next to 

2017 European Intelligence and Security Informatics Conference

978-1-5386-2385-5/17 $31.00 © 2017 IEEE

DOI 10.1109/EISIC.2017.28

2017 European Intelligence and Security Informatics Conference

978-1-5386-2385-5/17 $31.00 © 2017 IEEE

DOI 10.1109/EISIC.2017.28

2017 European Intelligence and Security Informatics Conference

978-1-5386-2385-5/17 $31.00 © 2017 IEEE

DOI 10.1109/EISIC.2017.28

2017 European Intelligence and Security Informatics Conference2017 European Intelligence and Security Informatics Conference



the address bar. By highlighting correct matches, the plugin 
makes it easy to quickly browse through HTML documents to 
see if names or addresses in the documents are connected to the 
Panama Papers. However, building the application for 
browsers imposes some limitations and disadvantages. While 
the browser becomes faster by the day, it is not the most 
powerful computational resource available. As a result, our 
approach limits the use of vast amounts of memory. This 
means that the plugin should be lean and fast, in terms of 
computer clock cycles and memory consumption. Evidently, 
the approximate string matching is a key bottleneck to 
overcome.  

The remaining of the paper provides results for the following 
three algorithms: (1) Levenshtein distance algorithm, (2) 
Monge-Elkan, and (3) Jaccard distance algorithm, also known 
as the Bag distance algorithm. We compared these three 
algorithms using three different measures: (1) time 
consumption, (2) memory consumption, and (3) quality of 
matches. These measures will be given a detailed description in 
the following sections.  

IV. METHOD 

A. Implementation and Metrics 
The programming language of choice used to implement 

the software for testing the three algorithms was Python 3.6.1. 
Python offers a wide variety of libraries for natural language 
processing and data visualization, and has a comprehensive 
library for natural language processing called NLTK. Also, 
Python is a free and open source language, so it adds no 
financial load and allows for improvement of the language if 
needed. 

In addition to the large variety of natural language 
processing tools, NLTK has a great documentation and free 
online resources for learning the conventional uses of the tools 
it provides. We used NTLK.metrics for measurement metrics 
and NTLK.word_tokenize for word tokenization. Another 
important tool we used was the Python library 
py_stringmatching. This Python package provided us with the 
three approximate string matching algorithms Levenshtein, 
Monge-Elkan, and Jaccard. For memory consumption 
measurements, we used a Python package named 
memory_profiler. It can be used to measure the memory 
consumption of single Python functions or whole Python 
programs. This package was the only memory profiling tool we 
could find that offered us the functionality we needed. Time 
module, that ships with Python, was deployed for time 
measurements. 

We used a test dataset with over 35000 names to check 
against the Panama Papers. We measured the time it took to 
match one name from the dataset against all the names in the 
Panama Papers by calling the time method of the time module 
before and after the matching and saving those times into 
variables t0 and t1, where t0 would be the time in seconds 
before matching and time in seconds after matching. The 
difference between t1 and t0 is the time spent on finding a 
match for a single name. We used the same method for 

measuring the time it took to go through a whole list of names 
of a given size. 

Memory profiling was done with the memory_profiler 
package. It is used by attaching a decorator to a function and 
the package would then profile the memory usage 
automatically and print a report in a file. Respectively, to 
measure the quality of the matches we categorized them in four 
groups: (1) over 99% matches, (2) over 90% matches, (3) over 
70% matches, (4) over 50% matches, and (5) less or equal to 
50% matches. Our approach to cluster the results into these 
categories provides additional value to the overall functionality 
of our plugin as it enables investigators to generate and 
prioritize leads. Thus, in the first category we expect to find 
true positive matches or “smoking gun” cases, whereas in the 
lower bands we expect to capture company names that are 
either misspelled or tempered to avoid detection.  

B. Data Sources 
Two sets of data were chosen for testing the string 

matching algorithms. The first data set is the openly available 
Panama Papers that provides information on companies, 
entities and individuals, of which some are implicated in illegal 
financial activities [5]. The other data set is the Public Works 
and Government Services Canada, a database maintained by 
the Canadian government, holding identifying information on 
companies and entities operating and having contracts in 
Canada, and which are also openly available [6]. 

The Panama Papers are available as a collection of .csv files 
(comma separated values). The collection includes single files 
for legal entities, intermediaries, officers, and addresses. The 
legal entities were used as they hold mostly names of 
companies and organizations. Overall, the entities file holds 
495,039 lines of entities, although some of the entries are about 
the same company name. All data is in string format, the entity 
names being in capital letters.  

The Public Works and Government Services Canada 
database is also available via an official web portal. The data 
that was used in this paper is contract data, which holds 
information on contracts awarded to companies and other 
suppliers by Public Works and Government Services Canada, 
that were over 10,000$ in value. The data is available since 
2009 for every fiscal year. The database can be searched 
through its web portal, but raw data can also be downloaded as 
.csv files. For this project, .csv file for fiscal year 2016-2017 
was used. Each line provides a ‘supplier standardized name’, 
the name of the company that the contract was awarded for, 
which were used as the list of names to match. Data was in 
string format, with the supplier names being capitalized.. 

C. Data Pre-Processing 
Preprocessing was conducted on the data in a few ways. 

First, the company or entity names were extracted from each 
data set to reduce the amount of unnecessary data. Then, all the 
names were edited to be completely lowercased in order to 
standardize the data. Finally, many companies share common 
identifiers like ‘corporation’, or ‘technologies’, which would 
result in a large number of false positives, especially if the 
common part is much longer than the actual name of the 
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company. Thus, common terms were removed. The removed 
words were chosen so that they were common (included in 
more than 1% of the names) in both of the data sets, or very 
common (included in more than 10% of the names) in one of 
the data sets. By this reasoning, the following 25 stop-words 
were deleted from the names: associates, canada, company, 
consultants, consulting, corp, corporation, development, 
enterprises, group, holding, holdings, inc, incorporated, 
international, investment, investments, limited, ltd, 
management, services, systems, technologies, technology, 
trading.  

After cleaning the data, a total of 481,720 names were left 
in the Panama Papers and 38,864 names in the Canada data set. 
We compared the frequencies of the original data with the 
cleaned data to verify that the removal of commonly used 
words from the lists did not change the overall quality of the 
data. Final testing data set was a total of 400 random names, 
with 200 from each of the two lists. Next, 200 of the names 
were randomly selected from the Panama Papers list, forming 
the list of ‘bad’ companies. Another 180 names were randomly 
selected from the ‘Canada’ list, forming the list of ‘good’ 
companies. The remaining 20 names in the ‘Canada list’ were 
extracted from the Panama Papers list, so that there would be 
100% matches, forming the true positives for evaluation.  

D. Matching Algorithms  
We compared three similarity measurement algorithms that 

associate the likeness between two strings using different 
methods. First, we used the Jaccard distance algorithm, also 
known as the Bag distance algorithm. This algorithm obtains 
the non-common characters of two strings. It does so by 
dividing the characters in strings s1 and s2, and ordering them 
in two charsets X and Y, and corresponding differences X-Y 
and Y-X. Then the largest difference between s1 and s2 is 
computed by: 

               (1) 
The similarity function of Jaccard distance is given by the 

following formula [8]: 

                           (2) 

The second algorithm, Monge-Elkan [9] is a simple method 
for measuring similarity between two strings. The formula is as 
follows: 

      (3) 

Monge-Elkan needs a similarity function to measure the 
similarity, as can be seen from the formula above. The 
similarity function we used in this project was Jaro-Winkler. 

The last algorithm we included in our comparison was the 
Levenshtein algorithm. It allows insertions, deletions and 
replacements in the measured strings [10]. This is 
advantageous since the plugin we are developing cannot be 
fooled by simple manipulations of the strings. Levenshtein 
distance formula is as follows: 

        (4) 

V. PERFORMANCE EVALUATION 
The analysis was implemented using a custom Python 

software. The software takes any given list of strings as input 
and compares them using the chosen algorithms. The algorithm 
is chosen manually from the three included string matching 
algorithms; Monge-Elkan, Jaccard, and Levenshtein. Also, 
desired number of samples from the lists can be defined. The 
software measured time and memory consumption of the 
algorithms in order to compare them. Next, the robustness of 
the algorithms was compared by having them match the lists of 
modified names to the list of original names. The software runs 
the chosen algorithm on the data and saves the match 
percentages and execution times for each individual pair of 
words. Additionally, the memory consumption of the string 
matching function is measured and saved by memory profiling 
Python library called memory_profiler.  

Fig. 1a shows the total execution time of matching all the 
200 names in the Panama-list with the 200 names in the 
Canada-list. This totaled in 40,000 pair of names to match. 
Jaccard and Levenshtein are similarly fast, executing in under 
5 seconds. However, Monge-Elkan is considerably slower, 
being more complex algorithm, and taking almost 60 seconds 
to execute. Fig. 1b illustrates the memory consumption of each 
algorithm. There are no significant differences in the memory 
usage. All the algorithms consume roughly 100 megabytes 
during execution.  

Fig. 2 presents each algorithm’s execution time for each 
individual word matched to all the 200 words in the other list. 
Results show that behavior of Levenshtein and Jaccard are 
similar, as in the total execution times. Both oscillate between 
to similar values. However, Monge-Elkan shows very different 
behavior. Because it is more complex algorithm, the execution 
time varies dramatically between each of the words. 

 Fig. 3 shows the results of testing the robustness of the 
algorithms. Robustness was defined as the ability to detect a 
matching pair of names, even if the other name is modified. 
Modifying was done as either subtracting letters from the 
beginning or the end of the name, or as padding the name with 
‘x’-letters. In the figure, ‘orig’ in the middle shows the results 
for original names, without modifications. Bars on the left-
wing show results for subtracting 1 to 4 letters and bars on the 
right-wing show results for padding 1 to 4 letters. For example, 
company name ‘pepsi’ after subtracting 1 letter would be 
‘peps’, and after 2 letters ‘eps’. Padding with 1 letter would 
make it ‘pepsix’ and padding two letters ‘xpepsix’. As shown 
in Fig. 3, Monge-Elkan is the least sensitive to modified names 
with average similarity being over 70% even with 4 subtracted 
letters. Levenshtein is also quite robust, with the matching 
result falling a little faster than Monge-Elkan’s. Jaccard was 
very sensitive to name modifications. Its matching result 
crashed down to under 20% with only one letter subtracted or 
padded.  

Table 1 presents the complete raw matching results for the 
three algorithms. Results are categorized by which percentile 
their match result belonged. 
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TABLE I. RAW MATCHING RESULTS 
Alg. Total (sec) Mem. >99% >90% >70% >50%   =<50% 

Me 18.99339628 109MB 20 2 870 19170     19938 

Lev 11.30473184 105MB 20 0 4 109         39867 

Jac 9.571173906 107MB 20 0 0 1             39979 
Columns contain the following information: (Alg) Name of the algorithm; (Total) Total number of 
seconds it takes to complete the string matching for each algorithm; (Mem.) Total memory used by the 
function including loading of raw data, modules, and function decorator; (>99%) Number of matches 
between the two lists with a ratio greater than 99%. Given that we have manually injected 20 perfect 
matches, this column represents true positive matches. In real-life situation these are “smoking gun” 
cases; (>90%) Number of matches between the two lists with a ratio greater than 90%. These cases are 
potential false positives, and in real-life situations these are considered to be leads that investigators 
might want to follow-up; (>70%) Number of matches between the two lists with a ratio greater than 
70%; (>50%) Number of matches between the two lists with a ratio greater than 50%.  (=<50%) 
Number of matches between the two lists with a ratio less or equal to 50%. Matches below the 90% ratio 
threshold provide very few actual leads. 

 

VI. CONCLUSION & RESULTS 
The long-term objective is to build a plugin that could 

highlight persons and entities of interest while browsing open 
source intelligence on the internet. In this paper, we tackle the 
largest bottleneck of our objective, namely understanding how 
different approximate string matching algorithm respond to a 
specific lexical domain. 

By using the methods, tools and data described in detail 
above we were able to come in to a conclusion that, for the 
purposes of the proposed plugin, the best algorithm to use 
would be the Levenshtein distance algorithm. Levenshtein 
distance was not the fastest algorithm, nor did it give us the 
best matches, but the tradeoffs it imposes were in the best 
balance. Compared to Monge-Elkan the matching was not 
quite as good, but Levenshtein did produce less false positives. 
Levenshtein was not as fast as Jaccard distance but it came 
very close. In terms of memory consumption all the algorithms 
were neck to neck. Our proposed approach has a number of 
limitations that future work might seek to address.    

First, to improve the preprocessing of company names 
more robust tools are required that will focus on extracting 
lexical features from the specific domain while controlling for 
the overall quality of the data. Second, the scope covered in the 
paper can expand to include more algorithms along with 
custom-made programs that deal with the memory 
consumption more systematically. Third, there is a large 
number of company databases that can be used to improve the 
detection capabilities of the algorithms.  

Finally, further work would include conducting user studies 
that measure the effectiveness of our tool, and making the 
plugin even faster by adopting big data processing techniques, 
such as hash maps and multiple core processing. The plugin 
would also benefit if the data could be inserted in to a 
distributed database as this would allow custom datasets to be 
utilized by law enforcement and journalists.  
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Fig. 3. Effects of modifications. Positive numbers indicate addition of 
letters; negative numbers indicate subtraction of letters; and “orig” 
indicates two identical strings. 

 
Fig. 2. Individual string matching times Monge-Elkan (ME), Levenshtein 
(LEV), and Jaccard (JAC). 

 
Fig. 1. 1a) Memory usage of each algorithm. 1b) Total execution times of 
each algorithm. 
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