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The goal of this thesis is to develop and implement an algorithm to automatically 

detect and classify cracks from pavement images using digital image processing 

techniques. The proposed method uses a pavement distress image enhancement algorithm 

to correct the non-uniform background illumination by calculating the multiplicative 

factors that eliminate the background lighting variations. To extract the linear features 

such as surface cracks from the pavement images, the image is partitioned into small 

windows and a beamlet transform based-algorithm is applied. The crack segments are 

then linked together and classified into four types, vertical, horizontal, transversal, and 

block types. Simulation results show the method is effective and robust in the extraction 

of cracks on a variety of pavement images. 
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Chapter 1  

Introduction 

1.1 Background  

Statistics data published by the Federal Highway Administration indicate that 

maintenance and rehabilitation of highway pavements in the United States require over 

$17 billion a year [1]. Conventional visual and manual pavement distress analysis 

approaches, where the inspectors traverse the roads and measure the distressed objects 

when they are found, are very costly, time-consuming, dangerous, labor-intensive, 

tedious, and subjective. They also have a high degree of variability which means they are 

unable to provide meaningful quantitative information and almost always lead to 

inconsistencies in distress detail over space and across evaluations [3]. 

With the development of technology of electronic sensors and computer systems, 

various systems, named Pavement Imaging Systems (PIS), have been developed. They 

are used for automated pavement data collection and distress detection.   

Figure 1-1 and 1-2 show the global view of the pavement distress detection and 

classification system. There are two major steps in automated pavement evaluation: the 

distress data acquisition and the distress data analysis. The equipment needed for image 

acquisition is comprised of cameras, lenses, and computer hardware for the digitization. 

This step includes the recording of the pavement distress data by a moving vehicle. The 
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distress data analysis includes the digital image processing and the image interpretation 

[2].  

 

Fig. 1-1 Block diagram of pavement distress classification system [3] 

 

Fig. 1-2 The automatic pavement inspection system [19] 
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1.2 Introduction of Pavement Image Processing 

After pavement images have been obtained, the pavement images are processed to 

extract the crack information. Figure 1-3 shows four steps that are needed for the 

pavement distress detection.  

 

Fig. 1-3 Steps of pavement image processing 

 Image Enhancement 

Pavement images are composed of background, noise, and cracks. The 

noises on the image, objects on the road, the pavement patterns, and the non-

uniform background cause difficulties for crack detection and even fail the 

threshold process. In order to recognize distress with fidelity on the road surfaces, 
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many algorithms have been developed to eliminate noises and normalize the 

background.  

 

 Thresholding 

Thresholding is a technique used to separate objects from the background. 

Since cracks are always darker than the surroundings, the threshold value should 

be a relatively low value. Fuzzy thresholding is a thresholding technique that is 

implemented by defining a fuzzy function and projects the pavement image into a 

fuzzy crack domain between 0 and 1.  

 

 Crack Connection 

The binary images extracted from pavement images are usually noisy. The 

cracks in the binary images are discontinuous. In order to get the dimensional 

information of cracks, the discrete crack points need to be connected. Also, by 

setting a threshold to the crack size, noises can be eliminated.  

 

 Classification 

According to length, width, and orientations, cracks are classified into four 

categories, horizontal, vertical, diagonal, and block. The different types of 

pavement distress are shown in figure 1-4.  
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(a). vertical cracks    (b). horizontal cracks 

       

 (c). diagonal cracks    (d). block cracks 

 Fig. 1-4 Different types of cracks 

1.3 Outline of Thesis 

The remainder of the thesis is organized as follows. Chapter 2 is literature review. 

Chapter 3 proposes a non-uniform background improvement algorithm. In Chapter 4, a 

beamlet transform based technique is introduced and the process for extension check is 

explained. In Chapter 5, several test cases for different types of cracks are processed and 

the results are presented. Finally, conclusions and future works are presented in Chapter 6. 
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Chapter 2  

Literature Review 

The need for a fast, objective, and relatively inexpensive automated road 

inspection system is highly desirable. Video technologies and image processing 

techniques used as tools for inspection, monitoring, and diagnosis have long been adopted 

by various fields, most notably by medicine and remote sensing.  However, its use in 

transportation is still not widespread.  The reason is that the amount of data to be 

processed could be very large and repetitive, while the accuracy requirements may not be 

as strict as in, say, medical diagnosis. Conventional visual and manual pavement distress 

analysis approaches in which the inspectors traverse the roads and stop and measure the 

distress objects are very costly, time-consuming, labor-intensive, and unstable. Therefore, 

automated analysis and pattern recognition is highly desirable for pavement inspection.  In 

general, the desired approach is to capture pavement images using video cameras 

mounted on a moving vehicle and then to use a computer to recognize and quantify the 

pavement distresses from these video images.  

There has been a significant amount of research during the past two decades in 

developing automated pavement inspection. Xu and Huang developed a customized image 

processing algorithm for pavement cracking inspection in which an image is divided into 

small cells and a cell is classified as either crack or non-crack seeds based on its local 

characteristics [1].  After verification, a cluster of seeds is identified as a real crack.  Maser 
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[2] used histogram equalization to improve the contrast of the images, and proposed a 

threshold-based segmentation.  Li [3] used Sobel edge detectors and modified the 

automatic threshold determination method suggested by Kittler and Illingworth, in order 

to connect the crack segments to form a continuous cluster of object pixels. They relied on 

the assumption, that noise clusters had a perimeter of less than twenty pixels.  

Koutsopoulos et al. [4] proposed a lighting variations compensation method by 

subtracting an average of a few non-distress images from the same series. For 

segmentation, instead of using ordinary binary segmentation that assigns a value of one to 

object pixels and a value of zero to background pixels, resulting in a binary image, a 

different approach is suggested, and it assigns values from 0 to 3 to each pixel, based on 

its probability of being an object pixel. Background pixels are drawn from the Gaussian 

distribution. Object pixels are drawn from a similar distribution with a lower mean and a 

higher variance.  The threshold that meets various criteria can be obtained from these two 

distributions. Chou et al. [5] used moment invariants from different types of distress to 

obtain the features, and then used a back propagation neural network to classify the 

features. Georgopoulos et al. [6] proposed a method in which the distress can be 

represented by a set of vectors, approximating the cracks composing the distress. Then the 

direction vectors are grouped into two categories, horizontal and vertical, and the cracks 

are classified based on their presence.  

Cheng et al. [7] proposed an approach based on fuzzy set theory. This method 

compares the darkness of the pixels and their neighbors by deciding the brightness 

membership function for gray levels in the difference image. Second, the fuzzified image 

is mapped into the crack domain by finding the crack membership values of the pixels. 
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Third, the connectivity of the darker pixels is checked to eliminate the pixels lacking in 

connectivity. Finally, an image projection algorithm is employed to classify the cracks.  

The use of a discrete wavelet transform (DWT) has also been explored for crack 

image analysis. Using a fast wavelet transform, a pavement image can be decomposed into 

different frequency sub-bands. The magnitude of the wavelet coefficients represents the 

level of distress [8-10].  Javidi et al. [11] defined two wavelets which are, respectively, the 

partial derivatives along x and y of a two-dimensional smoothing cubic spline wavelet 

function. By measuring the evolution across scales of the wavelet transform maxima, the 

background noise can be separated from the important cracks. Then the crack map images 

are projected into the Hough transform domain to quantify the number of dominant cracks 

in a given image. 

After cracks are segmented from the background, there is much work that needs to 

be done in order to keep the crack connectivity and classify the cracks. For example, H. D. 

Cheng and M. Miyojim [3] used a skeleton structure to check the connectivity of cracks. 

However, checking and connecting cracks pixel by pixel is a time-consuming work, 

especially with large size images.  

In this thesis, an image enhancement algorithm is introduced, and then a method 

based on the beamlet transform is proposed to extract and classify the crack features from 

the images of the pavement.  After cracks are segmented from the background, there is 

much work that needs to be done in order to keep the crack connectivity and classify the 

cracks. For example, Cheng, H. D., and Miyojim, M.[12] used a skeleton structure to 

check the connectivity of cracks. However, checking and connecting cracks pixel by pixel 

is a time-consuming work, especially with big size images.  
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First an image enhancement algorithm is introduced. The algorithm is developed 

based on Cheng H. D.‟s proposed multiply factor method. Then the beamlet transform is 

introduced. Beamlet transform is proposed by Donoho, D. L. and Huo, Xiaoming [18]. 

Note that, the wavelet transforms provide localized information at multi-resolution scales 

for fixed regions of space; however, beamlets transform is specifically designed for 

localized multi-scale dyadically-organized line segments. A method based on the beamlet 

transform is proposed to extract and classify the crack features from the images of the 

pavement.  Beamlet transform, is efficient, robust to noise, and easier to extract linear 

features for the cracks.  The extracted pavement cracks are then classified into four types: 

vertical, horizontal, transversal, and block.  
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Chapter 3 

Non-uniform Background Improvement 

An obstacle to automatic detection and pavement distress classification is that 

road pavement images are usually obtained under non-uniform distributed lighting 

conditions. In order to recognize distress patterns with fidelity on the road surfaces, it is 

necessary to convert all source images to a standardized background lighting condition.  

 

3.1 Introduction 

In general, the product of illumination and surface reflectance determines the 

pixel intensity values in an image. For the automatic pavement crack detection system, 

due to non-uniform lighting conditions, and the pavement‟s reflectance, the background 

usually has different intensities in different areas. Consider a pixel P in a pavement image. 

Its intensity )( pI  can be understood as composed of, 

(1) High-amplitude, low-frequency non-uniform background component )( pI b ; 

(2) High-amplitude, and high-frequency pavement distress or non-distress 

irregularities component )( pI c , and;  

(3). A random, low-to-medium amplitude, high-frequency noise component 

)( pI n , caused by heterogeneous materials and granularity.  
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The formula is shown in equation 3-1.  

)()()()( pIpIpIpI bnc        (3-1) 

Figure 3-1 shows a pavement image without cracks. Plot (b) and (c) are the 

average gray level in the x and y directions of plot (a), respectively. It can be seen that in 

the x direction, the gray level gradually increases from left to right, while in the y 

direction, it decreases from top to bottom.  

 

(a) Pavement image 
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(b) Average gray level plot in x direction 

 

 (c) Average gray level plot in y direction 

Fig. 3-1 Pavement image sample without cracks 

 

The brightness information is the most important part of crack detection. To 

extract the crack features, the pavement image needs to be thresholded. However, the 
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high-amplitude and non-uniform background component )( pI b  may hide the distress 

component )( pI c . The non-uniform background intensity effects must be eliminated so 

that the background has a uniform average intensity, while cracks remain at lower 

intensities. 

Figure 3-2 (a) is a pavement image with a vertical crack. The average gray level 

in the x direction changes at different locations, which means the background illuminant 

changes gradually. In order to extract the distress information with fidelity from the 

original images, it is necessary to convert the background component )( pI b  into a 

constant base intensity B, 

BpI b )('
       (3-2) 

where B is an arbitrary chosen gray-level value.  

 

 

(a) Pavement image  
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(b) Average gray level plot in x direction 

 

(c) Average gray level plot in y direction 

Fig 3-2 Pavement image sample with vertical cracks 

 

Crack area 



15 

 

3.2 Image Enhancement Algorithm 

Most algorithms for removing the non-uniform background use statistical 

properties of the pavement distress images. In 1998, Cheng, H. D. and Miyojim, M. [3] 

proposed a multiply factor method. First of all, pavement image are divided into 

rectangle windows, the mean value of each window is checked, and then a multiplier is 

computed for each window which can transfer the mean value of each window to a target 

value. This method is based on the assumption that the illumination of the pavement 

image is smoothly changed. When there is a sudden drop, the window is considered to 

have cracks, and the mean value of this window is replaced by the average of neighboring 

windows. However, if there are cracks that cross more than one window, this algorithm 

doesn‟t work. In this thesis, based on Cheng, H. D. and Miyojim, M.‟s work [3], a new 

non-uniform background removal method is proposed below.  

Pavement images are partitioned into smaller windows. Considering images 

without cracks or noises, the intensity of the background is considered to be the mean 

value of the intensity of each window. The background can be made uniform by adjusting 

the mean value of each window to a target value B. However, for images that have cracks 

or noises, it is necessary to remove the effect of the cracks and noises. The proposed 

image improvement process for a non-uniform background includes the following steps: 

1)  Partition the image into rectangular windows. The size of the window can vary 

with the size and type of the input images. For example, figure 3-2 (a) is 256 by 

256, and it is partitioned into small windows, 16 by 16 each. As shown in figure 

3-3.  
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2)  For each window, calculate the mean ( meanG ), minimum ( minG ), and the 

maximum ( maxG ) gray level.  

3)  For each window, set an upper limit (rh) and a lower limit (rl) for which the points 

with gray levels outside the limits are considered as suspicious points for noise, 

crack pixels, or other objects on the road.  The range [ lr , hr ] is determined by 

the following equations 3-3 and 3-4: 

fGGGr meanmeanh *)( max                                       (3-3) 

fGGGr meanmeanl *)( min                                         (3-4) 

where f  is the limiting factor. It can be varied for different images. From 

experiments, we set the limiting factor to be 60%.   

     

Fig 3-3 Pavement image with horizontal cracks partitioned into small windows 
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4)  With the exemption of the suspicious points, recalculate the mean value of the 

gray level meanG ' .  Note that meanG '  is the updated mean value of each window, 

without the factors of noises and crack pixels.  

5)  The amplitude correction factor is calculated as, meanGBf  , where B is the 

target background value, and in experiments, the mean value of the original 

image is used as B. Then the modified picture is obtained by multiplying the 

factor to each point of the original picture,  

fII '       (3-5) 

where, 'I  is the improved image. The image after enhancement gives a uniform 

background in both x and y directions. However, if there are many crack pixels 

in a window, the intensity of the non-crack pixels may increase. Thus, for the 

pixels whose intensity values are higher than B, their original values either 

remain unchanged or are replaced by the value B. 

 

In figure 3-4, the improved image of figure 3-2 is shown. Figure 3-4 (a) is the 

improved pavement image, plots (b) and (c) show the average image intensity in the x 

and y direction, respectively. From analyzing plots (b) and (c), it can be easily seen that 

the illumination of image after improvement has a uniform distribution along both 

directions.  
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 (a) Improved image 

 

(b) Average gray level plot in x direction of the improved image 
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 (c) Average gray level plot in y direction of the improved image 

Fig 3-4 Improved pavement image from figure 3-1. 

 

3.3 Enhancement Examples 

In this section, several examples of background enhancement are presented.  

Figure 3-5 (a) shows a pavement image with a non-uniform background. The 

intensity in the right bottom corner is much higher than that of the rest area of the image. 

There are two horizontal cracks in the image. The results of non-uniform background 

removal are shown in figure 3-5 (b).   
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(a) Original Image 

 

(b) Improved image     

Fig 3-5 Comparison of pavement image improvement after non-uniform enhancement 

 

Figure 3-6 (a) shows an example of an image with a prominent shadow. The 

results after non-uniform improvement with a window size of 16 x 16 and 4 x 4 are 
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shown in figure 3-6 (b) and (c), respectively.  It is shown that the smaller window size 

provides smoother results. However, this algorithm does not work for pavement defects 

with large areas, e.g., a pot hole whose area covers the entire window. Thus, smaller 

windows are more likely to cause errors.  

From the examples, the proposed new algorithm is proved to be able to correct the 

illumination of the background to make faithful thresholding of a wide variety of 

pavement distress source images feasible. However, this algorithm cannot work for 

pavement defects that cover a large area. For example, a pot hole whose area covers the 

whole window can fail the algorithm. After removing the non-uniform background 

information, the threshold method is applied to separate the background and the features. 

With uniform background images, it makes it possible to use an identical threshold to 

extract the crack images from original images.  

 

 

 (a) Original pavement image with shadow and cracks.  
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 (b) Improved image after eliminating the non-uniform background with window size 16 

by 16.  
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 (c) Improved image after eliminating the non-uniform background with window size 4 

by 4. 

Fig 3-6 Compare of pavement image improvement from different window size 

3.4 Thresholding  

Thresholding is the simplest method of image segmentation. From the pavement 

gray scale image, thresholding can be used to create binary crack images. For pavement 

images, since crack pixels are always darker than the nearby pixels, if a pixel has an 

intensity value that is less than the threshold value, the corresponding pixel in the 

resultant image is considered as a crack seed, otherwise, it is considered as background or 

other non-crack information.   

 

Fig. 3-7 Histogram of figure 3-5 

min 

Threshold 

Mean 
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Figure 3-7 is the histogram of figure 3-5. The selection of threshold varies for 

different pictures. For figure 3-5, the threshold is selected as, 

%50min)(  meanmeanT      (3-6) 

The thresholded result is shown in figure 3-8. In figure 3-8, there are many noise 

points, and the cracks are discontinuous. With traditional pixel based algorithms, it is 

hard to eliminate these noises and the crack connection check is trivial, time-consuming, 

and error prone. A beamlet transform-based algorithm which can extract the linear 

feature of cracks is proposed in the following section.  

 

 

 

Fig. 3-8 Binary crack image of figure 3-5
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Chapter 4 

Crack Detection and Classification Based on Beamlet 

Transform 

 

The concept of beamlet transform was first introduced by David L. Donoho and X. 

M. Huo as a tool for multi-scale image analysis [18]. Traditional signal detection 

algorithms for pavement crack detection are generally based on pixel-level processing, 

and most of them have very poor SNR ratios. Beamlet transforms are proven to be 

insensitive to noise, computationally efficient, and able to detect features with high 

accuracy. Beamlets are a simple dyadically organized collection of all line segments at 

different locations, orientations, and scales. The beamlet transform is the collection of 

line integrals along the set of all beamlets. This method allows for the extraction of linear 

features such as edges in noisy pictures, where traditional methods may fail.  

 

4.1 Introduction of Beamlet Transform 

Images are viewed as the continuum square [0, 1]
2
 and the pixels as an array of 

1/n-by-1/n squares arranged in a grid in [0, 1]
2
. The following definitions are helpful for 

understanding the beamlet transform: 
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Definition 1 A dyadic square S is the collection of points {(x1, x2): [k1/2
j
, 

(k1+1)/2
j
] X [k2/2j, (k2+1)/2

j
]}, where jkk 2,0 21  for an integer j≥0. 

Definition 2 Consider two vertices v1, v2   [0, 1]
2
, within a dyadic square the line 

segment 
21vvb   is called a beam. There are O(n

4
) such beams if only beams connecting 

vertices (k1/n, k2/n) are considered.  

Definition 3 In order to reduce the cardinality, the concept of beamlet is 

introduced. Take the collection of all dyadic squares at scales 0 ≤ j ≤ J and fix resolution 

δ, the set of beamlets is the collection of all beams connecting vertices on the boundary of 

each dyadic square. There are O(n
2
log2n) beamlets [18]. Figure 4-1 shows beamlets at 

different scales. Fig. 4-1 gives some examples of beamlets at different scales.  

 

Fig 4-1 Beamlets at different scales 
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The beamlet transform is defined as the collection of line integrals along the set of 

all beamlets. Let ),( 21 xxf be a continuous function on 2-D space, where x1 and x2 are 

coordinates. The beamlet transform fT of function f  is defined as follows,  

dllxfbT
b

f ))(()(  , EBb      (4-1) 

where BE is the collection of all beamlets. 

For a digital image, the beamlet transform is a measure of the line integral in the 

discrete domain. As figure 5 shows, the beamlet transform for all the points along the 

beamlet b is defined as, 


2,1

2,1,21 21
),(

ii

iiiifxxf       (4-2) 

where 
21 ,iif is the gray level value of pixel (i1, i2), and 

21 ,ii is considered to be the 

weight function for each pixel. In this thesis, we use the following equation: 

L

ln
ii 
21 ,        (4-3) 

where L is the total length of the beam , and nl is the length of a segment in each 

square pixel on the beam. Obviously,  


n

nlL         (4-4) 

Figure 4-2 shows the beamlet transform as a weighted sum of pixel values along 

the shaded line that the beamlet traverses. The gray level of each pixel is taken as the 

function value f of the corresponding square.  
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Fig. 4-2 Beamlet transform is a weighted sum of pixel values along the shaded 

line 

 

4.2 Beamlet Transform Implementation for Crack Detection  

As explained in the previous section, there are O(n
2
log2n) beamlets if multi-

scaling is involved. In order to reduce the calculation. In this thesis, only single scaling is 

considered Thus there are O(n
2
) beamlets. The steps for performing beamlet transform 

are explained below.  

 

(1) Partition image into smaller windows 

As explained, the image needs to be partitioned into smaller rectangular windows. 

The large-sized window is robust to noise; however, it cannot provide detailed information. 
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Regardless of the window size, the total integration needed to be performed is O(n
2
); 

however, larger window size means longer beamlets, which increases the computational 

time. In this thesis, input images are with 256 by 256, and partitioned into windows sized 

with 16 by 16 for beamlet transform.  

 

(2) Build Beamlets Dictionary 

Beamlet Dictionary is a dyadically-organized library of line segments at a range 

of locations, orientations, and scales, which gives a multi-scale approximation to the 

collection of all line segments. 

For single scale beamlet transform, all the windows have the same dimension, 

thus the same beamlet structures, so that the dictionary need only be calculated once, and 

be used for all the windows. For each beamlet, the following information is recorded,  

a) The coordinators of the pixels that be considered to be on the beam. 

b) The corresponding length nl of each segment of the beam. 

c) The total length of the beamlet L  

d) From b) and c), the weights of the corresponding pixels are known.  

The beamlets dictionary is saved. When a pavement image is processed, the 

dictionary is repeatedly used for each small window. In this way, it is easy to implement 

the algorithm in parallel and speed up the transform.  

 

(3) Perform beamlet transform 

After the beamlet dictionary is build and saved, it can be reused for each small 

window.  For each window, the beamlet transform is applied and the beamlet which 
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provides the maximum value is selected if its value exceeds a threshold value (In this 

thesis, threshold T=1.0). The length of the beam determines the length of the cracks in the 

window. Keep the value for the block, and mark the corresponding beam. This is used for 

further analysis.  

 

Fig. 4-3 Beamlet transform result of pavement crack image 3-8.  

Perform beamlet transform as explained for the pavement crack image 3-8, the 

result is shown in figure 4-3.  

 

4.3 Crack Connectivity Check 

The connectivity check algorithm evaluates the extensibility of each crack pixel in 

the crack domain along all the eight directions, and also creates a link list for it. If the 

length is bigger than the threshold value, it is considered as a crack; otherwise, it is 

considered as a noise.  
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Here, a modified connectivity check algorithm is proposed. In previous sections, 

cracks have been detected using beamlet transform in each small block. The connectivity 

check can be performed even easier, and more efficiently.  

To perform the crack connectivity check, four tables are required. See table 4-1. 

For each window, the max Beamlet transform value is defined as the crack length. The 

length of the crack is calculated by adding the crack length in each block along with the 

crack extension.  

 

Table 4-1 Table needed to perform crack connectivity check 

Table Description Initialize Value 

Status matrix 

Record the check status of 

each block 

“unchecked” 

“unchecked”, “no crack”, or id 

Length Table 

Record the length of each 

branch. 

0 

Length of cracks 

Branch 

Candidate Table 

Record the start point of 

branch candidate 

Empty 

Each item includes start point 

coordinators, and mother 

branch number. 

 

After the tables are built, the cracks are checked for connectivity and the 

following steps are followed. In these steps, every time a block has been checked, the 

corresponding item in the status matrix is changed to “no crack”, or crack id. For 

example, for the 3
rd

 branch of crack 2, the id should be “2-3”.  
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1) Scan status matrix, block by block, and find the first block with a crack feature 

with “unchecked” status. Modify the status to the corresponding id number or “check” 

status, add the crack length in the block to the length table of the current branch, and then 

proceed to check all its eight neighboring blocks with “unchecked” status. 

2). If one and only one neighbor is a crack block, add the crack length to the 

corresponding item in the length table, move to the neighboring block, and continue the 

process.  

3). If there is more than one block detected with cracks, select one as the current 

branch extension direction and continue the extension check. Save all the others into the 

branch candidate table.  

4). If there is no unchecked crack block remaining in the neighboring blocks, it 

means the branch extension has reached its end. If the branch length is shorter than a 

threshold, then it is not a real branch and will be ignored.  

5). Find the next branch candidate from the branch candidate table, and continue 

the extension check until the table is empty. 

6). The length of a crack is the sum of the length of all the branches contributing 

to that crack. Finally, if the length of the crack is shorter than a threshold, it is not 

considered to be a real crack.  

The threshold used above for crack / branch length changes with the window size. 

From the experiment, the threshold T is calculated as,  

 ST 8.1        (4-5) 

where S is the size of the window.  
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Fig. 4-4 Connectivity check result for figure 4-3.  

 

4.4 Crack Classification Standard 

Generally, cracks in the pavement images possess linear features, embedded in 

noise, and are discontinuous. Additionally, the pavement images have specific patterns 

which make crack detection more difficult using traditional pixel based methods. The 

Beamlet transform will be a suitable algorithm for crack detection due to its robustness to 

line segment detection. 

Following the above crack extension procedure, cracks are extracted and their 

projection in horizontal and vertical directions can be measured. This will in turn provide 

the information necessary for crack classification. Cracks are classified into four types: 

vertical, horizontal, transverse, and block types. The type of a crack is determined by its 

angle with the horizontal axis (Ω) and the number of branches in the crack, as 
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summarized in Table 1. Note that the angle Ω is calculated according to the start and end 

points of each crack. If branches exist, the crack is considered as block type irrespective 

of the angle of the cracks. For each window, the maximum beamlet transform value is 

defined as the crack length in the block. The total crack length is defined as the sum of all 

the blocks along the crack.  

 

Table 4-2 Features for different types of cracks 

Direction Ω Branches? 

Vertical Ω >= 60
o
 No 

Horizontal Ω <= 30
 o

 No 

Transverse 60
o
 >Ω>30

o
 No 

Block - Yes 
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Chapter 5 

Test Results and Analysis 
 

In this chapter, several pavement images with different types of cracks are 

processed with the proposed algorithm and the results are shown. According to the 

process that has been explained in the previous chapters, they are processed by non-

uniform background improvement, thresholding, beamlet transform, and connectivity 

check.  

The proposed algorithm has been implemented and its performance and simulation 

results are presented. Following shows different types of pavement cracks and the 

corresponding results from the Beamlet transform. Note that, example 1 is an image 

containing two horizontal cracks. Example 2 is a block crack which has four branches. 

Example 3 is composed of one horizontal and one vertical crack. Example 4 shows an 

image with a vertical crack. In example 5, it shows a block crack with two branches.  

In each experiment, the original image, binary crack image, and the crack image 

after beamlet transform and extension check are presented. For each test, the classification 

result of the cracks is recorded in a table.  
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5.1 Experiment 1. Two Horizontal Cracks 

 

(a) Original image 

 

(b) Binary crack image after background enhancement and threshold 
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(c) Crack image after beamlet transform and extension check 

Fig 5-1 Pavement image for two horizontal cracks  

 

Table 5-1 Classification of two horizontal cracks shown in figure 5-1 

Crack No. Ω Branches? Length Type 

1 21
o
 No 39.47 Horizontal 

2 6
o
 No 360.31 Horizontal 
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5.2 Experiment 2. A Block Type Crack 

 

(a) Original image 

 

(b) Binary crack image after background enhancement and threshold 
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\  

(c) Crack image after beamlet transform and extension check 

Fig 5-2 Pavement image for a block type crack 

 

Table 5-2 Classification of block type cracks shown in figure 5-2 

Crack No. Ω Branches? Length Type 

1 - 4 993 Block 
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5.3 Experiment 3. A Horizontal and A Vertical Crack 

 

(a) Original image 

 

(b) Binary crack image after background enhancement and threshold 
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(c) Crack image after beamlet transform and extension check 

Fig 5-3 Pavement image for a horizontal crack and a vertical crack 

 

Table 5-3 Classification of a horizontal and a vertical crack shown in figure 5-3 

Crack No. Ω Branches? Length Type 

1 9
o
 No 308.07 Horizontal 

2 67
o
 No 108.10 Vertical 

 

 



42 

 

5.4 Experiment 4. A Vertical Crack 

 

(a) Original image 

 

(b) Binary crack image after background enhancement and threshold 
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(c). Crack image after beamlet transform and extension check 

Fig 5-4 Pavement image for a vertical crack  

 

Table 5-4 Classification of a vertical crack shown in figure 5-4 

Crack No. Ω Branches? Length Type 

71
o
 No 341.15 Vertical 71

o
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5.5 Experiment 5. A Block Type Crack 

 

(a) Original image 

 

(b) Binary crack image after background enhancement and threshold 
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(c) Result image 

Fig 5-5 Crack image after beamlet transform and extension check 

 

Table 5-5 Classification of a block type crack shown in figure 5-5 

Crack No. Ω Branches? Length Type 

1 - 2 425.73 Block 
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Chapter 6 

Conclusion and Further Work 

 

This thesis presents a beamlet transform based technique to extract the linear 

crack features from pavement images. Beamlet transform provides an effective method 

for the extraction of curvilinear features such as cracks in pavement images. Initially, an 

enhancement method is applied to reduce the effects of non-uniform background and 

undesired objects to facilitate the application of beamlet transform. Then, an identical 

threshold is applied and a binary crack image is obtained. By dividing the image into 

small windows and applying beamlet transform in each of them, the linear feature of a 

crack is extracted. Finally, the crack connection check is performed and is classified into 

horizontal, vertical, diagonal, or block types.  

Experimental results provided in chapter 5 have demonstrated that the proposed 

beamlet transform based method is very effective with the presence of noise in pavement 

images.  It can be applied on noisy pavement images and classify different types of 

cracks with a high rate of detection and very low rate of false detection.  It could be a 

viable alternative to common pixel-based approaches for crack extraction.  

The current algorithm can be improved by introduce the multi-scale pyramid 

analysis that can represent branches of cracks more efficiently. However, since the 

beamlet transform is used to extract linear features, it cannot be used to detect the defects 

with large area, such as pot holes.  
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Appendix – Source Code for Matlab 

 

%% Image Enhancement -- factor method  

% input – I, matrix of original image 

% output – Ip2, matrix of improved image  

function Ip2 = imenhance(I); 

[sx sy] = size(I); 

%% Enhancement -- factor method  

mi = min(min(I)); 

me = mean2(I); 

ma = max(max(I)); 

  

sz = 4;        % window size is set to 16 

kx = sx / sz;     

ky = sy / sz; 

In = zeros(sz,sz); 

for i = 1:kx 

    for j = 1:ky 

        % sent value to small matrix In 

        for m = 1:sz 

            for n = 1:sz 

                In(m,n) = I((i-1)*sz+m, (j-1)*sz+n); 

            end 

        end 

        % Adjust the backgroud to me 

        Io = afactor(In, me, ma, 0.3); 

        for m = 1:sz 

            for n = 1:sz 

                Ip2((i-1)*sz+m, (j-1)*sz+n) = Io(m,n); 

            end 

        end 

    end 

end 

figure,imshow(Ip2,[]); 

title('uniform background image'); 

 

 

 
%%  
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% In - input matrix; b - target backgroud value; r - +- 

range with mean 

% Io - output matrix 

function Io = afactor(In, b, maxv, r); 

  

[sx sy] = size(In); 

  

me = mean2(In);    %input mean 

mi = min(min(In)); 

ma = max(max(In)); 

  

lb = me - (me - mi) * r  

ub = me + (ma - me) * r 

  

cnt = 0; 

s = 0; 

  

for i = 1:sx 

    for j = 1:sy 

        if(In(i,j)>=lb && In(i,j)<=ub) 

            cnt = cnt + 1; 

            s(cnt) = In(i,j); 

        end 

    end 

end 

  

m = mean(s);   

  

fa = b / m; 

  

hb = b + (maxv - b) * 0.5; 

  

for i = 1:sx 

    for j = 1:sy 

        if(fa>=1 && In(i,j)>b) 

            if(In(i,j)>hb) 

                Io(i,j) = me; 

            else 

                Io(i,j) = In(i,j); 

            end 

        else 

            Io(i,j) = In(i,j) * fa; 

        end 

    end 

end 
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bsx = zeros(nx+ny,cnt); 

bsy = zeros(nx+ny,cnt); 

  

for i = 1:cnt  % For each beams 

    x1 = Bm(1,i); 

    y1 = Bm(2,i); 

    x2 = Bm(3,i); 

    y2 = Bm(4,i); 

    L(i) = sqrt((Bm(1,i)-Bm(3,i))^2 + (Bm(2,i)-Bm(4,i))^2); 

     

    % Solve the linear equation y=a*x+b 

    if(x1==x2)  % horizontal 

        ym = min(y1, y2); 

        for j=1:ny-1 

            bsx(j,i) = x1; 

            bsy(j,i) = ym + j -1; 

            len = 1; 

        end 

    elseif(y1==y2)  % vertical 

        xm = min(x1, x2); 

        for j=1:nx-1 

            bsx(j,i) = xm + j -1; 

            bsy(j,i) = y1; 

            len = 1; 

        end 

    else % Others 

        a = (y1-y2)/(x1-x2); 

        b = y1 - a * x1; 

        xm = min(x1, x2); 

        xma = max(x1, x2); 

        nnx = xma - xm + 1; 

        ym = min(y1, y2); 

        yma = max(y1, y2); 

        nny = yma - ym + 1; 

        for j = 1:nnx 

            xc = xm + j - 1; 

            yc = a * xc + b; 

            bxt(j) = xc; 

            byt(j) = yc; 

        end 

        for j = nnx+1:nnx+nny 

            yc = ym + j - nnx - 1; 

            xc = (yc - b) / a; 

            bxt(j) = xc; 

            byt(j) = yc; 

        end 

        % Sort them, and put into new array bxt2, byt2 
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        bxt2 = zeros(1,nx+ny); 

        byt2 = zeros(1,nx+ny); 

        for j = 1:nx+ny 

            bxm = max(bxt); 

            if(bxm == 0)   % empty 

                break; 

            end 

            for k = 1:(nx+ny)  % Take this point out 

%                if(bxt(k) == bxm) 

                if(abs(bxt(k)-bxm)<1.0e-3) 

                    bxt2(j) = bxt(k); 

                    byt2(j) = byt(k); 

                    bxt(k) = 0;  % Clear the get out point 

                    byt(k) = 0; 

                end 

            end 

        end 

        ct = j; 

        [sz1,sz2] = size(bxt2); 

        %Get bsx, bsy, and len 

        L(i) = 0; 

        for j = 1:sz2-1 

            bsx(j,i) = db2int(min(bxt2(j),bxt2(j+1))); 

            bsy(j,i) = db2int(min(byt2(j),byt2(j+1))); 

            len = sqrt((bxt2(j)-bxt2(j+1))^2 + (byt2(j)-

byt2(j+1))^2); 

            L(i) = L(i) + len; 

        end 

    end 

end 

  

%% round off function 

% input – bd 

% output – b  

function b = db2int(bd) 

  

for b=0:10000 

    if((b+1)>bd && (b<=bd)) 

        break; 

    end 

end 

 

 
%% bt2 -- beamlet transform of beam start from (bx1, by1) 

to (bx2, by2) 

% I -- input matrix (square) 

function [T, M, tmp] = bt2(I, bsx, bsy, len, L, th); 



54 

 

  

[nx, ny] = size(I); 

M = zeros(nx,ny); 

  

[bx, by] = size(bsx); 

T = zeros(1, by); 

Tm = 0; 

tmp = 0; 

  

for i = 1:by  % check each beam 

    for j = 1:bx 

        x = bsx(j,i); 

        y = bsy(j,i); 

        if(x==0 || y==0) 

            break; 

        end 

        if(I(x,y)>0.2) 

            T(i) = T(i) + len(j,i)/sqrt(L(i)); 

        end 

%        T(i) = T(i) + I(x,y)*len(j,i)/sqrt(L(i)); 

    end 

    if(T(i)>Tm) 

        Tm = T(i); 

        im = i; 

        tmp = L(i); 

    end 

end 

if(Tm > th) 

    i = im; 

    for j=1:bx 

        x = bsx(j,i); 

        y = bsy(j,i); 

        if(x==0 || y == 0) 

            break; 

        end 

        M(x,y) = 1; 

    end 

else 

    tmp = 0; 

end 

 

 
 

 

 

 

 



55 

 

 

 

 

 

 

 

%% search neighborhood for crack blocks  

%input: ct - crack table, record the length; ic, jc – 

coordinators; 

%input: bc-branch counter; lac–table, record lable for crack 

id; 

%input:, lab–table, record lable for branch id;  

%input: tmpm-record the start point of each branch; 

%input: lfr – crack length from root;  

%input: minLen – crack length threshold;  

%input: bcb – branch counter backup 

% output: ic, jc – coordinators, bc – branch counter; 

% output: tmpm – record the start point of each branch;  

% output: lCrack – the length of the found crack  

% output: lac - table, record lable for crack id; 

% output: Sta–status matrix, lBroot–flag, find a root. 

 
function [ic, jc, bc, tmpm, lCrack, lac, Sta, lBroot] = 

sneighb(ct, ic, jc, Sta, m, n, Lenth, bc, tmpm, lac, lab, 

lfr, minLen, bcb); 

  

[sx sy] = size(Sta); 

iclist = [ic-1, ic, ic+1]; 

jclist = [jc-1, jc, jc+1]; 

lCrack = 0; 

cnt = 1; 

ict = ic; jct = jc; 

tmpm = tmpm; 

lBroot = 0;  

bcb = bcb; 

for im = ic-1:ic+1 

    for jm = jc-1:jc+1 

        if(im >0 && im < sx+1 && jm >0 && jm < sy+1 && 

Sta(im,jm)==0 && lac(im,jm) == 0)   

            Sta(im,jm)=1; 

            if(Lenth(im,jm)>0)      % add it to the ct list 

                lCrack = 1; 

                if(cnt == 1) % the first one, take as the 

current branch 

                    ict = im;  jct = jm;   % temp saved % 

we will move to this point 

                    ct(m,n) = ct(m,n) + Lenth(im,jm); 



56 

 

                    lac(im,jm) = m; 

                else % add a branch candidate 

                    if(lfr<minLen) bcb = bc; end 

                    tmpm(bc,1) = im; tmpm(bc,2) = jm; 

tmpm(bc, 3) = n; 

                    lroot = 1; % reset 

                    lBroot = 1;  

                    bc = bc + 1; 

                    lac(im,jm) = m; 

%                   lab(im,jm) = bc; 

                end 

                cnt = cnt + 1;  % branch 

            end 

        end 

    end 

end 

  

ic = ict;  jc = jct; 

 

 

 

 

 

%% threshold to get binary crack image 

% input: x – input image; pb – factor for threshold 

% output – ttt,  
function J = thr2(I, pb) 

  
[sx sy] = size(I); 
J = zeros(sx,sy); 

  
mi = min(min(I)); 
ma = max(max(I)); 
me = mean2(I); 

  
tb = me - (me - mi)*pb 
%tc = double(me - (me - mi)*pc); 

  
for x=1:sx 
    for y=1:sy 
        if(I(x,y)>=tb)  %cracks 
            J(x,y) = 0.0; 
        else 
            J(x,y) = 1.0; 
        end 
    end 
end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Main Function 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% read input images and transfer to gray image 

a = imread('8.jpg'); 

I = rgb2gray(a); 

[sx sy] = size(I); 

b = imresize(a, 256/sx); 

I = rgb2gray(b); 

figure,imshow(I,[]); 

title('Original Image'); 

  

sx = 256; sy = 256; 

  

Ip = imenhance(I); 

  

% update mi, me, ma 

mi = min(min(Ip)); 

me = mean2(Ip); 

ma = max(max(Ip)); 

  

thb = 1.0;  % threshold for beamlet transform 

thc = 0.4;  % threshold for crack image 

 

% hard thresholding 

J0 = thr2(Ip, thc); 

figure,imshow(J0,[]); 

title('Crack Image'); 

  

%level 4 

le = 4; 

sxc = sx / (2^le); 

syc = sy / (2^le); 

for j=1:2^le 

     for m=1:sxc 

                for n=1:syc 

                    Jt(m,n) = J0((i-1)*sxc+m, (j-1)*syc+n); 

                end 

            end 

            % 

            if(le==1) 

                [T, M, tmp] = bt2(Jt, bsx1, bsy1, len1, 

L1,th); 

            elseif(le==2) 

                [T, M, tmp] = bt2(Jt, bsx2, bsy2, len2, 

L2,th); 

            elseif(le==3) 



58 

 

                [T, M, tmp] = bt2(Jt, bsx3, bsy3, len3, 

L3,th); 

            elseif(le==4) 

                [T, M, tmp] = bt2(Jt, bsx4, bsy4, len4, 

L4,thb); 

            elseif(le==5) 

                [T, M, tmp] = bt2(Jt, bsx5, bsy5, len5, 

L5,th); 

            elseif(le==6) 

                [T, M, tmp] = bt2(Jt, bsx6, bsy6, len6, 

L6,th); 

            elseif(le==7) 

                [T, M, tmp] = bt2(Jt, bsx7, bsy7, len7, 

L7,th); 

            end 

            lev(i,j,le) = max(max(T));   % save the max 

value in lev 

            max(max(T)) 

            for m=1:sxc 

                for n=1:syc 

                    if(le==1) 

                        M1((i-1)*sxc+m, (j-1)*syc+n) = 

M(m,n); 

                    elseif(le==2) 

                        M2((i-1)*sxc+m, (j-1)*syc+n) = 

M(m,n); 

                    elseif(le==3) 

                        M3((i-1)*sxc+m, (j-1)*syc+n) = 

M(m,n); 

                    elseif(le==4) 

                        M4((i-1)*sxc+m, (j-1)*syc+n) = 

M(m,n); 

%                        if(m==1 || m==sxc || n==1 || 

n==syc) 

%                            M4((i-1)*sxc+m, (j-1)*syc+n) = 

0.5; 

%                        end 

                    elseif(le==5) 

                        M5((i-1)*sxc+m, (j-1)*syc+n) = 

M(m,n); 

                    elseif(le==6) 

                        M6((i-1)*sxc+m, (j-1)*syc+n) = 

M(m,n); 

                    elseif(le==7) 

                        M7((i-1)*sxc+m, (j-1)*syc+n) = 

M(m,n); 

                    end 



59 

 

                end 

            end 

            Lenth(i,j) = tmp; 

        end 

    end 

        figure,imshow(M4,[]); 

        title('binary image 4'); 

end 

 

%% Connection Check   

% scan block by block 

Sta = zeros(2^le, 2^le);        % status matrix: 0- 

unchecked/initialize value; 

lac = zeros(2^le, 2^le);        % lable for crack id 

lab = zeros(2^le, 2^le);        % lable for branch id 

  

m = 0;      % count for crack number, start from 1 

ct = zeros(16,100); 

minLen = 30.0; 

for i = 1:2^le   

    for j = 1:2^le 

        % scan for a block with crack 

        if (Sta(i,j)==0 && Lenth(i,j)>0)   % new crack 

block found 

            m = m + 1; 

            n = 1;  % count for branch number, start from 

1, reset to 1 after finish check every crack 

            bc = 1;    bcb = bc; % initialize branch 

counter 

            Sta(i,j) = 1; 

            lac(i,j) = m;   lab(i,j) = n;  

            tmpm(1, 1) = i;  tmpm(1,2) = j;   tmpm(1, 3) = 

1; % tmpm record the start point of each branch; sp of 

crack is sp of the 1st branch of the crack 

            lfr = 0;  %Initialize 

            % search the neighbor of it 

            ic = i; jc = j;  

            while bc>0     % search every branch 

                ct(m,n) = ct(m,n) + Lenth(ic,jc);   % crack 

table, record the length 

                for cnt = 1:255 

                    [ic, jc, bc, tmpm, lCrack, lac, Sta, 

lBroot] = sneighb(ct, ic, jc, Sta, m, n, Lenth, bc, tmpm, 

lac, lab, lfr, minLen, bcb); 

                    lab(ic, jc) = n;  

                    if(lCrack==0) break;  end % no further 

crack (extension of this branch is over), break 
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                    if(lBroot == 1) lfr = 0; end    % Reset 

                    ct(m,n) = ct(m,n) + Lenth(ic,jc); 

                    lfr = lfr + Lenth(ic,jc);  % length 

from root 

                    if (lfr>minLen)     bcb = bc; end 

                end 

                if(m==1 && n ==5) 

                    tt = ct(m,n) 

                    [ic,jc] 

                end 

                if(lfr<minLen && ct(m,n)>minLen)  % less 

than threshold, this is not a branch, continue another way 

                    bc = bc - 1; 

                    if(bc == 0) break; end 

                    ic = tmpm(bc, 1); jc = tmpm(bc,2);  % 

Get the last record branch, search from there 

                    lfr = 0;   % reset 

                    if (bc<bcb)  n = n + 1; bcb = bc; end 

                    lab(ic,jc) = n; 

                elseif(ct(m,n)<minLen)  % not a branch, 

jump to previous branch 

                    lab(ic,jc) = tmpm(bc, 3); 

                    [ic,jc] 

                    bc = bc - 1; 

                    if(bc == 0) break; end 

                    ic = tmpm(bc, 1); jc = tmpm(bc,2);  % 

take new brach candidate out 

                    ct(m,n) = 0; 

                    lab(ic,jc) = n; 

                    [ic,jc,n,bc] 

                else    % this branch search over 

                    bc = bc - 1; 

                    if(bc == 0) break; end 

                    bcb = bc; 

                    ic = tmpm(bc, 1); jc = tmpm(bc,2);  % 

take new brach candidate out 

                    n = n+1; 

                    lab(ic,jc) = n; 

                end   

                Sta(ic,jc) = 1; 

            end  % End while loop, go to find next crack 

            %calculate the total length of crack 

        end 

        Sta(i,j)=1; 

    end 

end 

  


