
A Thesis

Entitled

Beamlet Transform Based Technique for Pavement Image

Processing and Classification

By

Liang Ying

 Submitted as partial fulfillment of the requirements for

The Master of Science Degree in Electrical Engineering

Advisor: Dr. Ezzatollah Salari

College of Graduate Studies

The University of Toledo

December 2009

iii

An Abstract of

Beamlet Transform Based Technique for Pavement Image Processing and Classification

Liang Ying

Submitted as partial fulfillment of the requirements for

The Master of Science Degree in

Electrical Engineering

The University of Toledo

December 2009

The goal of this thesis is to develop and implement an algorithm to automatically

detect and classify cracks from pavement images using digital image processing

techniques. The proposed method uses a pavement distress image enhancement algorithm

to correct the non-uniform background illumination by calculating the multiplicative

factors that eliminate the background lighting variations. To extract the linear features

such as surface cracks from the pavement images, the image is partitioned into small

windows and a beamlet transform based-algorithm is applied. The crack segments are

then linked together and classified into four types, vertical, horizontal, transversal, and

block types. Simulation results show the method is effective and robust in the extraction

of cracks on a variety of pavement images.

iv

Acknowledgements

I would like to thank Dr. Salari, my advisor, who gave me the opportunity to do

this research work at UT. I really appreciate the help and guidance provided by him, who

patiently answered my various questions about the work, carefully read the thesis,

corrected errors, pointed out weak points, and suggested additional topics. In addition, I

would like to thank Dr. Jamali and Dr. Miller for being my defense committee. I also

want to thank all my friends at UT, who gave me company as well as help both on my

study and on my life in US. Hope you all have a brighter future! Also, I want to dedicate

my gratitude to my family behind me. Though I didn‟t live with you in the past several

years, my heart is always there with you.

I would like to thank the Michigan Ohio University Transportation Center

(MIOH-UTC), U.S. Department of Transportation, for their support.

v

Table of Contents

Abstract.. iii

Acknowledgements ... iv

Table of Contents ... v

List of Tables .. vii

List of Figures ...viii

Chapter 1. Introduction .. 1

1.1. Background .. 1

1.2. Introduction of Pavement Image Processing ... 3

1.3. Outline of Thesis .. 5

Chapter 2. Literature Review ... 6

Chapter 3. Non-uniform Background Improvement ... 10

3.1 Introduction ... 10

3.2 Image Enhancement Algorithm .. 15

3.3 Enhanced Examples .. 19

3.4 Thresholding ... 23

Chapter 4. Crack Detection and Classification Based on Beamlet

Transform ... 25

vi

4.1 Beamlet Transform ... 25

4.2 Crack Extension Check ... 28

4.3 Crack Connectivity Check .. 30

4.4 Crack Classification Standard ... 33

Chapter 5. Test Results and Analysis .. 35

5.1 Experiment 1. Two Horizontal Cracks. .. 36

5.2 Experiment 2. A Block Type Crack. ... 38

5.3 Experiment 3. A Horizontal Crack and A Vertical Crack. ... 40

5.4 Experiment 4. A Vertical Crack. ... 42

5.5 Experiment 5. A Block Type Crack. ... 44

Chapter 6 Conclusion and Further Work ... 46

Reference .. 47

Appendix – Source Code for Matlab ... 50

vii

List of Tables

No. Description Page

4-1 Table needed to perform crack connectivity check 31

4-2 Features for different types of cracks 34

5-1 Classification of two horizontal cracks shown in figure 5-1 37

5-2 Classification of block type crack shown in figure 5-2 39

5-3 Classification of a horizontal and a vertical crack shown in

figure 5-3. 41

5-4 Classification of a vertical crack shown in figure 5-4 43

5-5 Classification of a block type crack shown in figure 5-5 45

viii

List of Figures

No. Description Page

1-1 Block diagram of pavement distress classification system 2

1-2 The automatic pavement inspection system 2

1-3 Steps of pavement image processing 3

1-4 Different types of cracks 5

3-1 Pavement image sample without cracks

(a) Pavement image 11

 (b) Average gray level plot in x direction 12

 (c) Average gray level plot in y direction 12

3-2 Pavement image sample with cracks

(a) Pavement image 13

 (b) Average gray level plot in x direction 14

 (c) Average gray level plot in y direction 14

3-3 Pavement image with horizontal cracks partitioned into small windows 16

3-4(a) Improved pavement image from figure 3-1.

(a) Improved image. 18

 (b) Average gray level plot in x direction 18

 (c) Average gray level plot in y direction 19

3-5 Compare of pavement image improvement after non-uniform 20

ix

enhancement. (a) original image

 (b) enhanced image 20

3-6 Compare of pavement image improvement from different window size.

(a) Original pavement image with shadow and cracks. 21

 (b) Improved image after eliminate the non-uniform background with

window size 16 by 16. 22

 (c) Improved image after eliminate the non-uniform background with

window size 4 by 4. 22

3-7 Histogram of figure 3-5 23

3-8 Binary crack image of figure 3-5 24

4-1 Beamlets at different scales 26

4-2 Beamlet transform is a weighted sum of pixel values along the shaded

line 28

4-3 Beamlet transform result of pavement crack image 3-8 30

4-4 Connectivity check result for figure 4-3 33

5-1 Pavement image for two horizontal cracks.

(a) Original image 36

 (b) Binary crack image after background enhancement and threshold 36

 (c) Crack image after beamlet transform and extension check 37

5-2 Pavement image for a block type crack.

(a) Original image 38

 (b) Binary crack image after background enhancement and threshold 38

 (c) Crack image after beamlet transform and extension check 39

x

5-3 Pavement image for a horizontal and a vertical crack.

(a) Original image 40

 (b) Binary crack image after background enhancement and threshold 40

 (c) Crack image after beamlet transform and extension check 41

5-4 Pavement image for a vertical crack. (a). Original image 42

 (b) Binary crack image after background enhancement and threshold 42

 (c) Crack image after beamlet transform and extension check 43

5-5 Pavement image for a horizontal and a block crack. (a). Original image 44

 (b) Binary crack image after background enhancement and threshold 44

 (c) Crack image after beamlet transform and extension check 45

1

Chapter 1

Introduction

1.1 Background

Statistics data published by the Federal Highway Administration indicate that

maintenance and rehabilitation of highway pavements in the United States require over

$17 billion a year [1]. Conventional visual and manual pavement distress analysis

approaches, where the inspectors traverse the roads and measure the distressed objects

when they are found, are very costly, time-consuming, dangerous, labor-intensive,

tedious, and subjective. They also have a high degree of variability which means they are

unable to provide meaningful quantitative information and almost always lead to

inconsistencies in distress detail over space and across evaluations [3].

With the development of technology of electronic sensors and computer systems,

various systems, named Pavement Imaging Systems (PIS), have been developed. They

are used for automated pavement data collection and distress detection.

Figure 1-1 and 1-2 show the global view of the pavement distress detection and

classification system. There are two major steps in automated pavement evaluation: the

distress data acquisition and the distress data analysis. The equipment needed for image

acquisition is comprised of cameras, lenses, and computer hardware for the digitization.

This step includes the recording of the pavement distress data by a moving vehicle. The

2

distress data analysis includes the digital image processing and the image interpretation

[2].

Fig. 1-1 Block diagram of pavement distress classification system [3]

Fig. 1-2 The automatic pavement inspection system [19]

3

1.2 Introduction of Pavement Image Processing

After pavement images have been obtained, the pavement images are processed to

extract the crack information. Figure 1-3 shows four steps that are needed for the

pavement distress detection.

Fig. 1-3 Steps of pavement image processing

 Image Enhancement

Pavement images are composed of background, noise, and cracks. The

noises on the image, objects on the road, the pavement patterns, and the non-

uniform background cause difficulties for crack detection and even fail the

threshold process. In order to recognize distress with fidelity on the road surfaces,

4

many algorithms have been developed to eliminate noises and normalize the

background.

 Thresholding

Thresholding is a technique used to separate objects from the background.

Since cracks are always darker than the surroundings, the threshold value should

be a relatively low value. Fuzzy thresholding is a thresholding technique that is

implemented by defining a fuzzy function and projects the pavement image into a

fuzzy crack domain between 0 and 1.

 Crack Connection

The binary images extracted from pavement images are usually noisy. The

cracks in the binary images are discontinuous. In order to get the dimensional

information of cracks, the discrete crack points need to be connected. Also, by

setting a threshold to the crack size, noises can be eliminated.

 Classification

According to length, width, and orientations, cracks are classified into four

categories, horizontal, vertical, diagonal, and block. The different types of

pavement distress are shown in figure 1-4.

5

(a). vertical cracks (b). horizontal cracks

 (c). diagonal cracks (d). block cracks

 Fig. 1-4 Different types of cracks

1.3 Outline of Thesis

The remainder of the thesis is organized as follows. Chapter 2 is literature review.

Chapter 3 proposes a non-uniform background improvement algorithm. In Chapter 4, a

beamlet transform based technique is introduced and the process for extension check is

explained. In Chapter 5, several test cases for different types of cracks are processed and

the results are presented. Finally, conclusions and future works are presented in Chapter 6.

6

Chapter 2

Literature Review

The need for a fast, objective, and relatively inexpensive automated road

inspection system is highly desirable. Video technologies and image processing

techniques used as tools for inspection, monitoring, and diagnosis have long been adopted

by various fields, most notably by medicine and remote sensing. However, its use in

transportation is still not widespread. The reason is that the amount of data to be

processed could be very large and repetitive, while the accuracy requirements may not be

as strict as in, say, medical diagnosis. Conventional visual and manual pavement distress

analysis approaches in which the inspectors traverse the roads and stop and measure the

distress objects are very costly, time-consuming, labor-intensive, and unstable. Therefore,

automated analysis and pattern recognition is highly desirable for pavement inspection. In

general, the desired approach is to capture pavement images using video cameras

mounted on a moving vehicle and then to use a computer to recognize and quantify the

pavement distresses from these video images.

There has been a significant amount of research during the past two decades in

developing automated pavement inspection. Xu and Huang developed a customized image

processing algorithm for pavement cracking inspection in which an image is divided into

small cells and a cell is classified as either crack or non-crack seeds based on its local

characteristics [1]. After verification, a cluster of seeds is identified as a real crack. Maser

7

[2] used histogram equalization to improve the contrast of the images, and proposed a

threshold-based segmentation. Li [3] used Sobel edge detectors and modified the

automatic threshold determination method suggested by Kittler and Illingworth, in order

to connect the crack segments to form a continuous cluster of object pixels. They relied on

the assumption, that noise clusters had a perimeter of less than twenty pixels.

Koutsopoulos et al. [4] proposed a lighting variations compensation method by

subtracting an average of a few non-distress images from the same series. For

segmentation, instead of using ordinary binary segmentation that assigns a value of one to

object pixels and a value of zero to background pixels, resulting in a binary image, a

different approach is suggested, and it assigns values from 0 to 3 to each pixel, based on

its probability of being an object pixel. Background pixels are drawn from the Gaussian

distribution. Object pixels are drawn from a similar distribution with a lower mean and a

higher variance. The threshold that meets various criteria can be obtained from these two

distributions. Chou et al. [5] used moment invariants from different types of distress to

obtain the features, and then used a back propagation neural network to classify the

features. Georgopoulos et al. [6] proposed a method in which the distress can be

represented by a set of vectors, approximating the cracks composing the distress. Then the

direction vectors are grouped into two categories, horizontal and vertical, and the cracks

are classified based on their presence.

Cheng et al. [7] proposed an approach based on fuzzy set theory. This method

compares the darkness of the pixels and their neighbors by deciding the brightness

membership function for gray levels in the difference image. Second, the fuzzified image

is mapped into the crack domain by finding the crack membership values of the pixels.

8

Third, the connectivity of the darker pixels is checked to eliminate the pixels lacking in

connectivity. Finally, an image projection algorithm is employed to classify the cracks.

The use of a discrete wavelet transform (DWT) has also been explored for crack

image analysis. Using a fast wavelet transform, a pavement image can be decomposed into

different frequency sub-bands. The magnitude of the wavelet coefficients represents the

level of distress [8-10]. Javidi et al. [11] defined two wavelets which are, respectively, the

partial derivatives along x and y of a two-dimensional smoothing cubic spline wavelet

function. By measuring the evolution across scales of the wavelet transform maxima, the

background noise can be separated from the important cracks. Then the crack map images

are projected into the Hough transform domain to quantify the number of dominant cracks

in a given image.

After cracks are segmented from the background, there is much work that needs to

be done in order to keep the crack connectivity and classify the cracks. For example, H. D.

Cheng and M. Miyojim [3] used a skeleton structure to check the connectivity of cracks.

However, checking and connecting cracks pixel by pixel is a time-consuming work,

especially with large size images.

In this thesis, an image enhancement algorithm is introduced, and then a method

based on the beamlet transform is proposed to extract and classify the crack features from

the images of the pavement. After cracks are segmented from the background, there is

much work that needs to be done in order to keep the crack connectivity and classify the

cracks. For example, Cheng, H. D., and Miyojim, M.[12] used a skeleton structure to

check the connectivity of cracks. However, checking and connecting cracks pixel by pixel

is a time-consuming work, especially with big size images.

9

First an image enhancement algorithm is introduced. The algorithm is developed

based on Cheng H. D.‟s proposed multiply factor method. Then the beamlet transform is

introduced. Beamlet transform is proposed by Donoho, D. L. and Huo, Xiaoming [18].

Note that, the wavelet transforms provide localized information at multi-resolution scales

for fixed regions of space; however, beamlets transform is specifically designed for

localized multi-scale dyadically-organized line segments. A method based on the beamlet

transform is proposed to extract and classify the crack features from the images of the

pavement. Beamlet transform, is efficient, robust to noise, and easier to extract linear

features for the cracks. The extracted pavement cracks are then classified into four types:

vertical, horizontal, transversal, and block.

10

Chapter 3

Non-uniform Background Improvement

An obstacle to automatic detection and pavement distress classification is that

road pavement images are usually obtained under non-uniform distributed lighting

conditions. In order to recognize distress patterns with fidelity on the road surfaces, it is

necessary to convert all source images to a standardized background lighting condition.

3.1 Introduction

In general, the product of illumination and surface reflectance determines the

pixel intensity values in an image. For the automatic pavement crack detection system,

due to non-uniform lighting conditions, and the pavement‟s reflectance, the background

usually has different intensities in different areas. Consider a pixel P in a pavement image.

Its intensity)(pI can be understood as composed of,

(1) High-amplitude, low-frequency non-uniform background component)(pI b ;

(2) High-amplitude, and high-frequency pavement distress or non-distress

irregularities component)(pI c , and;

(3). A random, low-to-medium amplitude, high-frequency noise component

)(pI n , caused by heterogeneous materials and granularity.

11

The formula is shown in equation 3-1.

)()()()(pIpIpIpI bnc (3-1)

Figure 3-1 shows a pavement image without cracks. Plot (b) and (c) are the

average gray level in the x and y directions of plot (a), respectively. It can be seen that in

the x direction, the gray level gradually increases from left to right, while in the y

direction, it decreases from top to bottom.

(a) Pavement image

12

(b) Average gray level plot in x direction

 (c) Average gray level plot in y direction

Fig. 3-1 Pavement image sample without cracks

The brightness information is the most important part of crack detection. To

extract the crack features, the pavement image needs to be thresholded. However, the

13

high-amplitude and non-uniform background component)(pI b may hide the distress

component)(pI c . The non-uniform background intensity effects must be eliminated so

that the background has a uniform average intensity, while cracks remain at lower

intensities.

Figure 3-2 (a) is a pavement image with a vertical crack. The average gray level

in the x direction changes at different locations, which means the background illuminant

changes gradually. In order to extract the distress information with fidelity from the

original images, it is necessary to convert the background component)(pI b into a

constant base intensity B,

BpI b)('
 (3-2)

where B is an arbitrary chosen gray-level value.

(a) Pavement image

14

(b) Average gray level plot in x direction

(c) Average gray level plot in y direction

Fig 3-2 Pavement image sample with vertical cracks

Crack area

15

3.2 Image Enhancement Algorithm

Most algorithms for removing the non-uniform background use statistical

properties of the pavement distress images. In 1998, Cheng, H. D. and Miyojim, M. [3]

proposed a multiply factor method. First of all, pavement image are divided into

rectangle windows, the mean value of each window is checked, and then a multiplier is

computed for each window which can transfer the mean value of each window to a target

value. This method is based on the assumption that the illumination of the pavement

image is smoothly changed. When there is a sudden drop, the window is considered to

have cracks, and the mean value of this window is replaced by the average of neighboring

windows. However, if there are cracks that cross more than one window, this algorithm

doesn‟t work. In this thesis, based on Cheng, H. D. and Miyojim, M.‟s work [3], a new

non-uniform background removal method is proposed below.

Pavement images are partitioned into smaller windows. Considering images

without cracks or noises, the intensity of the background is considered to be the mean

value of the intensity of each window. The background can be made uniform by adjusting

the mean value of each window to a target value B. However, for images that have cracks

or noises, it is necessary to remove the effect of the cracks and noises. The proposed

image improvement process for a non-uniform background includes the following steps:

1) Partition the image into rectangular windows. The size of the window can vary

with the size and type of the input images. For example, figure 3-2 (a) is 256 by

256, and it is partitioned into small windows, 16 by 16 each. As shown in figure

3-3.

16

2) For each window, calculate the mean (meanG), minimum (minG), and the

maximum (maxG) gray level.

3) For each window, set an upper limit (rh) and a lower limit (rl) for which the points

with gray levels outside the limits are considered as suspicious points for noise,

crack pixels, or other objects on the road. The range [lr , hr] is determined by

the following equations 3-3 and 3-4:

fGGGr meanmeanh *)(max (3-3)

fGGGr meanmeanl *)(min (3-4)

where f is the limiting factor. It can be varied for different images. From

experiments, we set the limiting factor to be 60%.

Fig 3-3 Pavement image with horizontal cracks partitioned into small windows

17

4) With the exemption of the suspicious points, recalculate the mean value of the

gray level meanG ' . Note that meanG ' is the updated mean value of each window,

without the factors of noises and crack pixels.

5) The amplitude correction factor is calculated as, meanGBf , where B is the

target background value, and in experiments, the mean value of the original

image is used as B. Then the modified picture is obtained by multiplying the

factor to each point of the original picture,

fII ' (3-5)

where, 'I is the improved image. The image after enhancement gives a uniform

background in both x and y directions. However, if there are many crack pixels

in a window, the intensity of the non-crack pixels may increase. Thus, for the

pixels whose intensity values are higher than B, their original values either

remain unchanged or are replaced by the value B.

In figure 3-4, the improved image of figure 3-2 is shown. Figure 3-4 (a) is the

improved pavement image, plots (b) and (c) show the average image intensity in the x

and y direction, respectively. From analyzing plots (b) and (c), it can be easily seen that

the illumination of image after improvement has a uniform distribution along both

directions.

18

 (a) Improved image

(b) Average gray level plot in x direction of the improved image

19

 (c) Average gray level plot in y direction of the improved image

Fig 3-4 Improved pavement image from figure 3-1.

3.3 Enhancement Examples

In this section, several examples of background enhancement are presented.

Figure 3-5 (a) shows a pavement image with a non-uniform background. The

intensity in the right bottom corner is much higher than that of the rest area of the image.

There are two horizontal cracks in the image. The results of non-uniform background

removal are shown in figure 3-5 (b).

20

(a) Original Image

(b) Improved image

Fig 3-5 Comparison of pavement image improvement after non-uniform enhancement

Figure 3-6 (a) shows an example of an image with a prominent shadow. The

results after non-uniform improvement with a window size of 16 x 16 and 4 x 4 are

21

shown in figure 3-6 (b) and (c), respectively. It is shown that the smaller window size

provides smoother results. However, this algorithm does not work for pavement defects

with large areas, e.g., a pot hole whose area covers the entire window. Thus, smaller

windows are more likely to cause errors.

From the examples, the proposed new algorithm is proved to be able to correct the

illumination of the background to make faithful thresholding of a wide variety of

pavement distress source images feasible. However, this algorithm cannot work for

pavement defects that cover a large area. For example, a pot hole whose area covers the

whole window can fail the algorithm. After removing the non-uniform background

information, the threshold method is applied to separate the background and the features.

With uniform background images, it makes it possible to use an identical threshold to

extract the crack images from original images.

 (a) Original pavement image with shadow and cracks.

22

 (b) Improved image after eliminating the non-uniform background with window size 16

by 16.

23

 (c) Improved image after eliminating the non-uniform background with window size 4

by 4.

Fig 3-6 Compare of pavement image improvement from different window size

3.4 Thresholding

Thresholding is the simplest method of image segmentation. From the pavement

gray scale image, thresholding can be used to create binary crack images. For pavement

images, since crack pixels are always darker than the nearby pixels, if a pixel has an

intensity value that is less than the threshold value, the corresponding pixel in the

resultant image is considered as a crack seed, otherwise, it is considered as background or

other non-crack information.

Fig. 3-7 Histogram of figure 3-5

min

Threshold

Mean

24

Figure 3-7 is the histogram of figure 3-5. The selection of threshold varies for

different pictures. For figure 3-5, the threshold is selected as,

%50min)(meanmeanT (3-6)

The thresholded result is shown in figure 3-8. In figure 3-8, there are many noise

points, and the cracks are discontinuous. With traditional pixel based algorithms, it is

hard to eliminate these noises and the crack connection check is trivial, time-consuming,

and error prone. A beamlet transform-based algorithm which can extract the linear

feature of cracks is proposed in the following section.

Fig. 3-8 Binary crack image of figure 3-5

25

Chapter 4

Crack Detection and Classification Based on Beamlet

Transform

The concept of beamlet transform was first introduced by David L. Donoho and X.

M. Huo as a tool for multi-scale image analysis [18]. Traditional signal detection

algorithms for pavement crack detection are generally based on pixel-level processing,

and most of them have very poor SNR ratios. Beamlet transforms are proven to be

insensitive to noise, computationally efficient, and able to detect features with high

accuracy. Beamlets are a simple dyadically organized collection of all line segments at

different locations, orientations, and scales. The beamlet transform is the collection of

line integrals along the set of all beamlets. This method allows for the extraction of linear

features such as edges in noisy pictures, where traditional methods may fail.

4.1 Introduction of Beamlet Transform

Images are viewed as the continuum square [0, 1]
2
 and the pixels as an array of

1/n-by-1/n squares arranged in a grid in [0, 1]
2
. The following definitions are helpful for

understanding the beamlet transform:

26

Definition 1 A dyadic square S is the collection of points {(x1, x2): [k1/2
j
,

(k1+1)/2
j
] X [k2/2j, (k2+1)/2

j
]}, where jkk 2,0 21 for an integer j≥0.

Definition 2 Consider two vertices v1, v2 [0, 1]
2
, within a dyadic square the line

segment
21vvb is called a beam. There are O(n

4
) such beams if only beams connecting

vertices (k1/n, k2/n) are considered.

Definition 3 In order to reduce the cardinality, the concept of beamlet is

introduced. Take the collection of all dyadic squares at scales 0 ≤ j ≤ J and fix resolution

δ, the set of beamlets is the collection of all beams connecting vertices on the boundary of

each dyadic square. There are O(n
2
log2n) beamlets [18]. Figure 4-1 shows beamlets at

different scales. Fig. 4-1 gives some examples of beamlets at different scales.

Fig 4-1 Beamlets at different scales

27

The beamlet transform is defined as the collection of line integrals along the set of

all beamlets. Let),(21 xxf be a continuous function on 2-D space, where x1 and x2 are

coordinates. The beamlet transform fT of function f is defined as follows,

dllxfbT
b

f))(()(, EBb (4-1)

where BE is the collection of all beamlets.

For a digital image, the beamlet transform is a measure of the line integral in the

discrete domain. As figure 5 shows, the beamlet transform for all the points along the

beamlet b is defined as,

2,1

2,1,21 21
),(

ii

iiiifxxf (4-2)

where
21 ,iif is the gray level value of pixel (i1, i2), and

21 ,ii is considered to be the

weight function for each pixel. In this thesis, we use the following equation:

L

ln
ii
21 , (4-3)

where L is the total length of the beam , and nl is the length of a segment in each

square pixel on the beam. Obviously,

n

nlL (4-4)

Figure 4-2 shows the beamlet transform as a weighted sum of pixel values along

the shaded line that the beamlet traverses. The gray level of each pixel is taken as the

function value f of the corresponding square.

28

Fig. 4-2 Beamlet transform is a weighted sum of pixel values along the shaded

line

4.2 Beamlet Transform Implementation for Crack Detection

As explained in the previous section, there are O(n
2
log2n) beamlets if multi-

scaling is involved. In order to reduce the calculation. In this thesis, only single scaling is

considered Thus there are O(n
2
) beamlets. The steps for performing beamlet transform

are explained below.

(1) Partition image into smaller windows

As explained, the image needs to be partitioned into smaller rectangular windows.

The large-sized window is robust to noise; however, it cannot provide detailed information.

29

Regardless of the window size, the total integration needed to be performed is O(n
2
);

however, larger window size means longer beamlets, which increases the computational

time. In this thesis, input images are with 256 by 256, and partitioned into windows sized

with 16 by 16 for beamlet transform.

(2) Build Beamlets Dictionary

Beamlet Dictionary is a dyadically-organized library of line segments at a range

of locations, orientations, and scales, which gives a multi-scale approximation to the

collection of all line segments.

For single scale beamlet transform, all the windows have the same dimension,

thus the same beamlet structures, so that the dictionary need only be calculated once, and

be used for all the windows. For each beamlet, the following information is recorded,

a) The coordinators of the pixels that be considered to be on the beam.

b) The corresponding length nl of each segment of the beam.

c) The total length of the beamlet L

d) From b) and c), the weights of the corresponding pixels are known.

The beamlets dictionary is saved. When a pavement image is processed, the

dictionary is repeatedly used for each small window. In this way, it is easy to implement

the algorithm in parallel and speed up the transform.

(3) Perform beamlet transform

After the beamlet dictionary is build and saved, it can be reused for each small

window. For each window, the beamlet transform is applied and the beamlet which

30

provides the maximum value is selected if its value exceeds a threshold value (In this

thesis, threshold T=1.0). The length of the beam determines the length of the cracks in the

window. Keep the value for the block, and mark the corresponding beam. This is used for

further analysis.

Fig. 4-3 Beamlet transform result of pavement crack image 3-8.

Perform beamlet transform as explained for the pavement crack image 3-8, the

result is shown in figure 4-3.

4.3 Crack Connectivity Check

The connectivity check algorithm evaluates the extensibility of each crack pixel in

the crack domain along all the eight directions, and also creates a link list for it. If the

length is bigger than the threshold value, it is considered as a crack; otherwise, it is

considered as a noise.

31

Here, a modified connectivity check algorithm is proposed. In previous sections,

cracks have been detected using beamlet transform in each small block. The connectivity

check can be performed even easier, and more efficiently.

To perform the crack connectivity check, four tables are required. See table 4-1.

For each window, the max Beamlet transform value is defined as the crack length. The

length of the crack is calculated by adding the crack length in each block along with the

crack extension.

Table 4-1 Table needed to perform crack connectivity check

Table Description Initialize Value

Status matrix

Record the check status of

each block

“unchecked”

“unchecked”, “no crack”, or id

Length Table

Record the length of each

branch.

0

Length of cracks

Branch

Candidate Table

Record the start point of

branch candidate

Empty

Each item includes start point

coordinators, and mother

branch number.

After the tables are built, the cracks are checked for connectivity and the

following steps are followed. In these steps, every time a block has been checked, the

corresponding item in the status matrix is changed to “no crack”, or crack id. For

example, for the 3
rd

 branch of crack 2, the id should be “2-3”.

32

1) Scan status matrix, block by block, and find the first block with a crack feature

with “unchecked” status. Modify the status to the corresponding id number or “check”

status, add the crack length in the block to the length table of the current branch, and then

proceed to check all its eight neighboring blocks with “unchecked” status.

2). If one and only one neighbor is a crack block, add the crack length to the

corresponding item in the length table, move to the neighboring block, and continue the

process.

3). If there is more than one block detected with cracks, select one as the current

branch extension direction and continue the extension check. Save all the others into the

branch candidate table.

4). If there is no unchecked crack block remaining in the neighboring blocks, it

means the branch extension has reached its end. If the branch length is shorter than a

threshold, then it is not a real branch and will be ignored.

5). Find the next branch candidate from the branch candidate table, and continue

the extension check until the table is empty.

6). The length of a crack is the sum of the length of all the branches contributing

to that crack. Finally, if the length of the crack is shorter than a threshold, it is not

considered to be a real crack.

The threshold used above for crack / branch length changes with the window size.

From the experiment, the threshold T is calculated as,

 ST 8.1 (4-5)

where S is the size of the window.

33

Fig. 4-4 Connectivity check result for figure 4-3.

4.4 Crack Classification Standard

Generally, cracks in the pavement images possess linear features, embedded in

noise, and are discontinuous. Additionally, the pavement images have specific patterns

which make crack detection more difficult using traditional pixel based methods. The

Beamlet transform will be a suitable algorithm for crack detection due to its robustness to

line segment detection.

Following the above crack extension procedure, cracks are extracted and their

projection in horizontal and vertical directions can be measured. This will in turn provide

the information necessary for crack classification. Cracks are classified into four types:

vertical, horizontal, transverse, and block types. The type of a crack is determined by its

angle with the horizontal axis (Ω) and the number of branches in the crack, as

34

summarized in Table 1. Note that the angle Ω is calculated according to the start and end

points of each crack. If branches exist, the crack is considered as block type irrespective

of the angle of the cracks. For each window, the maximum beamlet transform value is

defined as the crack length in the block. The total crack length is defined as the sum of all

the blocks along the crack.

Table 4-2 Features for different types of cracks

Direction Ω Branches?

Vertical Ω >= 60
o
 No

Horizontal Ω <= 30
 o

 No

Transverse 60
o
 >Ω>30

o
 No

Block - Yes

35

Chapter 5

Test Results and Analysis

In this chapter, several pavement images with different types of cracks are

processed with the proposed algorithm and the results are shown. According to the

process that has been explained in the previous chapters, they are processed by non-

uniform background improvement, thresholding, beamlet transform, and connectivity

check.

The proposed algorithm has been implemented and its performance and simulation

results are presented. Following shows different types of pavement cracks and the

corresponding results from the Beamlet transform. Note that, example 1 is an image

containing two horizontal cracks. Example 2 is a block crack which has four branches.

Example 3 is composed of one horizontal and one vertical crack. Example 4 shows an

image with a vertical crack. In example 5, it shows a block crack with two branches.

In each experiment, the original image, binary crack image, and the crack image

after beamlet transform and extension check are presented. For each test, the classification

result of the cracks is recorded in a table.

36

5.1 Experiment 1. Two Horizontal Cracks

(a) Original image

(b) Binary crack image after background enhancement and threshold

37

(c) Crack image after beamlet transform and extension check

Fig 5-1 Pavement image for two horizontal cracks

Table 5-1 Classification of two horizontal cracks shown in figure 5-1

Crack No. Ω Branches? Length Type

1 21
o
 No 39.47 Horizontal

2 6
o
 No 360.31 Horizontal

38

5.2 Experiment 2. A Block Type Crack

(a) Original image

(b) Binary crack image after background enhancement and threshold

39

\

(c) Crack image after beamlet transform and extension check

Fig 5-2 Pavement image for a block type crack

Table 5-2 Classification of block type cracks shown in figure 5-2

Crack No. Ω Branches? Length Type

1 - 4 993 Block

40

5.3 Experiment 3. A Horizontal and A Vertical Crack

(a) Original image

(b) Binary crack image after background enhancement and threshold

41

(c) Crack image after beamlet transform and extension check

Fig 5-3 Pavement image for a horizontal crack and a vertical crack

Table 5-3 Classification of a horizontal and a vertical crack shown in figure 5-3

Crack No. Ω Branches? Length Type

1 9
o
 No 308.07 Horizontal

2 67
o
 No 108.10 Vertical

42

5.4 Experiment 4. A Vertical Crack

(a) Original image

(b) Binary crack image after background enhancement and threshold

43

\

(c). Crack image after beamlet transform and extension check

Fig 5-4 Pavement image for a vertical crack

Table 5-4 Classification of a vertical crack shown in figure 5-4

Crack No. Ω Branches? Length Type

71
o
 No 341.15 Vertical 71

o

44

5.5 Experiment 5. A Block Type Crack

(a) Original image

(b) Binary crack image after background enhancement and threshold

45

\

(c) Result image

Fig 5-5 Crack image after beamlet transform and extension check

Table 5-5 Classification of a block type crack shown in figure 5-5

Crack No. Ω Branches? Length Type

1 - 2 425.73 Block

46

Chapter 6

Conclusion and Further Work

This thesis presents a beamlet transform based technique to extract the linear

crack features from pavement images. Beamlet transform provides an effective method

for the extraction of curvilinear features such as cracks in pavement images. Initially, an

enhancement method is applied to reduce the effects of non-uniform background and

undesired objects to facilitate the application of beamlet transform. Then, an identical

threshold is applied and a binary crack image is obtained. By dividing the image into

small windows and applying beamlet transform in each of them, the linear feature of a

crack is extracted. Finally, the crack connection check is performed and is classified into

horizontal, vertical, diagonal, or block types.

Experimental results provided in chapter 5 have demonstrated that the proposed

beamlet transform based method is very effective with the presence of noise in pavement

images. It can be applied on noisy pavement images and classify different types of

cracks with a high rate of detection and very low rate of false detection. It could be a

viable alternative to common pixel-based approaches for crack extraction.

The current algorithm can be improved by introduce the multi-scale pyramid

analysis that can represent branches of cracks more efficiently. However, since the

beamlet transform is used to extract linear features, it cannot be used to detect the defects

with large area, such as pot holes.

47

Reference

[1] Tsao, S., Kehtarnavaz, N., Chan, P., and Lytton, R., “Image-based expert-system

approach to distress detection on CRC pavement.” J. Transp. Eng., 120(1), 1994, pp. 52–

64.

[2]. A. Georgopoulos, A. Loizos and A. Flouda, “Digital image processing as a tool for

pavement distress evaluation”, Journal of Photogrammetry and Remote Sensing, 50(1),

1995, pp 23-33.

[3]. H.D. Cheng, M. Miyojim, “Automatic Pavement Distress Detection System”,

Journal of Information Sciences, 108 1998, pp. 219-240.

[4]. Maser, K. R., "Computational techniques for automating visual inspection." Working

Paper, 1987. Department of Civil Engineering, MIT, Cambridge, Mass.

[5]. Li L, Chan P, Rao A, Lytton R L., “Flexible pavement distress evaluation using

image analysis”, Proceedings of the Second International Conference on Applications of

Advanced Technologies in Transportation Engineer, 18-21, August 1991, pp. 473-477.

[6]. J. Kittler, and J. Illingwort, „Minimum error thresholding‟, Pattern Recognition, vol.

19, 1986, issue 1, pp. 41-47.

[7]. H. N. Koutsopoulos and A. B. Downey, „Primitive-based classification of pavement

cracking images‟, Journal of Transportation Engineering, vol. 19, 1993, issue 3, pp. 402

418.

[8]. JaChing Chou, O'Neill, W. A., and Cheng, H.D., “Pavement distress classification

using neural networks”, Systems, Man, and Cybernetics, 1994, IEEE international

48

Conference, vol. 1, pp. 397-401.

[9]. A. Georgopoulos, A. Loizos, and A. Flouda, “Digital image processing as a tool for

pavement distress evaluation”, ISPRS Journal of Photogrammetry and Remote Sensing,

50(1), 1995, pp. 23-33.

[10]. Hosin “David” Lee, Jungyong “Joe” Kim, “Development of a Menual Crack

Quantification and Automated Crack Measurement System”, Project TR-457, Public

Policy Center, Civil and Enviromental Engineering, University of Iowa, 2005.

[11]. Hosin “David” Lee, Jungyong “Joe” Kim, “Development of a Crack Type Index”,

Tranportation Research Record: Journal of the Transportation Research Board, No.

1940, 2005, pp. 99–109.

[12]. H. D. Cheng, J. R. Chen, C. Glazier, and Y. G. Hu, „„Novel approach to pavement

distress detection based on fuzzy set theory.‟‟, J. Comput. Civ. Eng., 13(4), 1999, pp.

270–280.

[13]. Jian Zhou, Peisen S. Huang, Fu-Pen Chiang, „Wavelet-based pavement distress

detection and evaluation‟, Optical Engineering, 45(2), 2006, pp. 1-10.

[14]. Kelvin C. P. Wang, Qiang Li, and Weiguo Gong, “Wavelet-Based Pavement

Distress Image Edge Detection with À Trous Algorithm”, Transportation Research

Record, Journal of the Transportation Research Board, No. 2024, 2007, pp. 73-81.

[15]. Jian Zhou, Peisen Huang, Fu-Pen Chiang, “Wavelet-Based Pavement Distress

Classification”, Transportation Research Record: Journal of the Transportation

Research Board, vol. 1940, 2005, pp 89-98.

[16]. Bahram Javidi, Jack Stephens, Sherif Kishk, Thomas Naughton, John McDonald,

Atef Issac, “Pilot for Automated Detection and Classification of Road Surface

49

Degradation Features”, JHR 03-293, Nov. 2003.

[17]. S.Kother Mohideen, S. Arumuga Perumal, and M.Mohamed Sathik, “Image De-

noising Using Discrete Wavelet Transform”, International Journal of Computer Science

and Network Security, vol. 8, No. 1, 2008, pp 213-216.

[18]. David L. Donoho, and Xiaoming, Huo, “Image Beamlet and Multiscale Image

Analysis”, International Journal of Computer Science and Network Security, vol. 8, No.

1, 2008, pp 213-216.

[19]. M. Gunaratne, Alex Mraz, Ivan Sokolic, “Study of the Feasibility of video logging

with pavement condition evaluation”, the Florida Department of Transportation, Report

No. BC-965.

50

Appendix – Source Code for Matlab

%% Image Enhancement -- factor method

% input – I, matrix of original image

% output – Ip2, matrix of improved image

function Ip2 = imenhance(I);

[sx sy] = size(I);

%% Enhancement -- factor method

mi = min(min(I));

me = mean2(I);

ma = max(max(I));

sz = 4; % window size is set to 16

kx = sx / sz;

ky = sy / sz;

In = zeros(sz,sz);

for i = 1:kx

 for j = 1:ky

 % sent value to small matrix In

 for m = 1:sz

 for n = 1:sz

 In(m,n) = I((i-1)*sz+m, (j-1)*sz+n);

 end

 end

 % Adjust the backgroud to me

 Io = afactor(In, me, ma, 0.3);

 for m = 1:sz

 for n = 1:sz

 Ip2((i-1)*sz+m, (j-1)*sz+n) = Io(m,n);

 end

 end

 end

end

figure,imshow(Ip2,[]);

title('uniform background image');

%%

51

% In - input matrix; b - target backgroud value; r - +-

range with mean

% Io - output matrix

function Io = afactor(In, b, maxv, r);

[sx sy] = size(In);

me = mean2(In); %input mean

mi = min(min(In));

ma = max(max(In));

lb = me - (me - mi) * r

ub = me + (ma - me) * r

cnt = 0;

s = 0;

for i = 1:sx

 for j = 1:sy

 if(In(i,j)>=lb && In(i,j)<=ub)

 cnt = cnt + 1;

 s(cnt) = In(i,j);

 end

 end

end

m = mean(s);

fa = b / m;

hb = b + (maxv - b) * 0.5;

for i = 1:sx

 for j = 1:sy

 if(fa>=1 && In(i,j)>b)

 if(In(i,j)>hb)

 Io(i,j) = me;

 else

 Io(i,j) = In(i,j);

 end

 else

 Io(i,j) = In(i,j) * fa;

 end

 end

end

52

bsx = zeros(nx+ny,cnt);

bsy = zeros(nx+ny,cnt);

for i = 1:cnt % For each beams

 x1 = Bm(1,i);

 y1 = Bm(2,i);

 x2 = Bm(3,i);

 y2 = Bm(4,i);

 L(i) = sqrt((Bm(1,i)-Bm(3,i))^2 + (Bm(2,i)-Bm(4,i))^2);

 % Solve the linear equation y=a*x+b

 if(x1==x2) % horizontal

 ym = min(y1, y2);

 for j=1:ny-1

 bsx(j,i) = x1;

 bsy(j,i) = ym + j -1;

 len = 1;

 end

 elseif(y1==y2) % vertical

 xm = min(x1, x2);

 for j=1:nx-1

 bsx(j,i) = xm + j -1;

 bsy(j,i) = y1;

 len = 1;

 end

 else % Others

 a = (y1-y2)/(x1-x2);

 b = y1 - a * x1;

 xm = min(x1, x2);

 xma = max(x1, x2);

 nnx = xma - xm + 1;

 ym = min(y1, y2);

 yma = max(y1, y2);

 nny = yma - ym + 1;

 for j = 1:nnx

 xc = xm + j - 1;

 yc = a * xc + b;

 bxt(j) = xc;

 byt(j) = yc;

 end

 for j = nnx+1:nnx+nny

 yc = ym + j - nnx - 1;

 xc = (yc - b) / a;

 bxt(j) = xc;

 byt(j) = yc;

 end

 % Sort them, and put into new array bxt2, byt2

53

 bxt2 = zeros(1,nx+ny);

 byt2 = zeros(1,nx+ny);

 for j = 1:nx+ny

 bxm = max(bxt);

 if(bxm == 0) % empty

 break;

 end

 for k = 1:(nx+ny) % Take this point out

% if(bxt(k) == bxm)

 if(abs(bxt(k)-bxm)<1.0e-3)

 bxt2(j) = bxt(k);

 byt2(j) = byt(k);

 bxt(k) = 0; % Clear the get out point

 byt(k) = 0;

 end

 end

 end

 ct = j;

 [sz1,sz2] = size(bxt2);

 %Get bsx, bsy, and len

 L(i) = 0;

 for j = 1:sz2-1

 bsx(j,i) = db2int(min(bxt2(j),bxt2(j+1)));

 bsy(j,i) = db2int(min(byt2(j),byt2(j+1)));

 len = sqrt((bxt2(j)-bxt2(j+1))^2 + (byt2(j)-

byt2(j+1))^2);

 L(i) = L(i) + len;

 end

 end

end

%% round off function

% input – bd

% output – b

function b = db2int(bd)

for b=0:10000

 if((b+1)>bd && (b<=bd))

 break;

 end

end

%% bt2 -- beamlet transform of beam start from (bx1, by1)

to (bx2, by2)

% I -- input matrix (square)

function [T, M, tmp] = bt2(I, bsx, bsy, len, L, th);

54

[nx, ny] = size(I);

M = zeros(nx,ny);

[bx, by] = size(bsx);

T = zeros(1, by);

Tm = 0;

tmp = 0;

for i = 1:by % check each beam

 for j = 1:bx

 x = bsx(j,i);

 y = bsy(j,i);

 if(x==0 || y==0)

 break;

 end

 if(I(x,y)>0.2)

 T(i) = T(i) + len(j,i)/sqrt(L(i));

 end

% T(i) = T(i) + I(x,y)*len(j,i)/sqrt(L(i));

 end

 if(T(i)>Tm)

 Tm = T(i);

 im = i;

 tmp = L(i);

 end

end

if(Tm > th)

 i = im;

 for j=1:bx

 x = bsx(j,i);

 y = bsy(j,i);

 if(x==0 || y == 0)

 break;

 end

 M(x,y) = 1;

 end

else

 tmp = 0;

end

55

%% search neighborhood for crack blocks

%input: ct - crack table, record the length; ic, jc –

coordinators;

%input: bc-branch counter; lac–table, record lable for crack

id;

%input:, lab–table, record lable for branch id;

%input: tmpm-record the start point of each branch;

%input: lfr – crack length from root;

%input: minLen – crack length threshold;

%input: bcb – branch counter backup

% output: ic, jc – coordinators, bc – branch counter;

% output: tmpm – record the start point of each branch;

% output: lCrack – the length of the found crack

% output: lac - table, record lable for crack id;

% output: Sta–status matrix, lBroot–flag, find a root.

function [ic, jc, bc, tmpm, lCrack, lac, Sta, lBroot] =

sneighb(ct, ic, jc, Sta, m, n, Lenth, bc, tmpm, lac, lab,

lfr, minLen, bcb);

[sx sy] = size(Sta);

iclist = [ic-1, ic, ic+1];

jclist = [jc-1, jc, jc+1];

lCrack = 0;

cnt = 1;

ict = ic; jct = jc;

tmpm = tmpm;

lBroot = 0;

bcb = bcb;

for im = ic-1:ic+1

 for jm = jc-1:jc+1

 if(im >0 && im < sx+1 && jm >0 && jm < sy+1 &&

Sta(im,jm)==0 && lac(im,jm) == 0)

 Sta(im,jm)=1;

 if(Lenth(im,jm)>0) % add it to the ct list

 lCrack = 1;

 if(cnt == 1) % the first one, take as the

current branch

 ict = im; jct = jm; % temp saved %

we will move to this point

 ct(m,n) = ct(m,n) + Lenth(im,jm);

56

 lac(im,jm) = m;

 else % add a branch candidate

 if(lfr<minLen) bcb = bc; end

 tmpm(bc,1) = im; tmpm(bc,2) = jm;

tmpm(bc, 3) = n;

 lroot = 1; % reset

 lBroot = 1;

 bc = bc + 1;

 lac(im,jm) = m;

% lab(im,jm) = bc;

 end

 cnt = cnt + 1; % branch

 end

 end

 end

end

ic = ict; jc = jct;

%% threshold to get binary crack image

% input: x – input image; pb – factor for threshold

% output – ttt,
function J = thr2(I, pb)

[sx sy] = size(I);
J = zeros(sx,sy);

mi = min(min(I));
ma = max(max(I));
me = mean2(I);

tb = me - (me - mi)*pb
%tc = double(me - (me - mi)*pc);

for x=1:sx
 for y=1:sy
 if(I(x,y)>=tb) %cracks
 J(x,y) = 0.0;
 else
 J(x,y) = 1.0;
 end
 end
end

57

%%

%% Main Function

%%

% read input images and transfer to gray image

a = imread('8.jpg');

I = rgb2gray(a);

[sx sy] = size(I);

b = imresize(a, 256/sx);

I = rgb2gray(b);

figure,imshow(I,[]);

title('Original Image');

sx = 256; sy = 256;

Ip = imenhance(I);

% update mi, me, ma

mi = min(min(Ip));

me = mean2(Ip);

ma = max(max(Ip));

thb = 1.0; % threshold for beamlet transform

thc = 0.4; % threshold for crack image

% hard thresholding

J0 = thr2(Ip, thc);

figure,imshow(J0,[]);

title('Crack Image');

%level 4

le = 4;

sxc = sx / (2^le);

syc = sy / (2^le);

for j=1:2^le

 for m=1:sxc

 for n=1:syc

 Jt(m,n) = J0((i-1)*sxc+m, (j-1)*syc+n);

 end

 end

 %

 if(le==1)

 [T, M, tmp] = bt2(Jt, bsx1, bsy1, len1,

L1,th);

 elseif(le==2)

 [T, M, tmp] = bt2(Jt, bsx2, bsy2, len2,

L2,th);

 elseif(le==3)

58

 [T, M, tmp] = bt2(Jt, bsx3, bsy3, len3,

L3,th);

 elseif(le==4)

 [T, M, tmp] = bt2(Jt, bsx4, bsy4, len4,

L4,thb);

 elseif(le==5)

 [T, M, tmp] = bt2(Jt, bsx5, bsy5, len5,

L5,th);

 elseif(le==6)

 [T, M, tmp] = bt2(Jt, bsx6, bsy6, len6,

L6,th);

 elseif(le==7)

 [T, M, tmp] = bt2(Jt, bsx7, bsy7, len7,

L7,th);

 end

 lev(i,j,le) = max(max(T)); % save the max

value in lev

 max(max(T))

 for m=1:sxc

 for n=1:syc

 if(le==1)

 M1((i-1)*sxc+m, (j-1)*syc+n) =

M(m,n);

 elseif(le==2)

 M2((i-1)*sxc+m, (j-1)*syc+n) =

M(m,n);

 elseif(le==3)

 M3((i-1)*sxc+m, (j-1)*syc+n) =

M(m,n);

 elseif(le==4)

 M4((i-1)*sxc+m, (j-1)*syc+n) =

M(m,n);

% if(m==1 || m==sxc || n==1 ||

n==syc)

% M4((i-1)*sxc+m, (j-1)*syc+n) =

0.5;

% end

 elseif(le==5)

 M5((i-1)*sxc+m, (j-1)*syc+n) =

M(m,n);

 elseif(le==6)

 M6((i-1)*sxc+m, (j-1)*syc+n) =

M(m,n);

 elseif(le==7)

 M7((i-1)*sxc+m, (j-1)*syc+n) =

M(m,n);

 end

59

 end

 end

 Lenth(i,j) = tmp;

 end

 end

 figure,imshow(M4,[]);

 title('binary image 4');

end

%% Connection Check

% scan block by block

Sta = zeros(2^le, 2^le); % status matrix: 0-

unchecked/initialize value;

lac = zeros(2^le, 2^le); % lable for crack id

lab = zeros(2^le, 2^le); % lable for branch id

m = 0; % count for crack number, start from 1

ct = zeros(16,100);

minLen = 30.0;

for i = 1:2^le

 for j = 1:2^le

 % scan for a block with crack

 if (Sta(i,j)==0 && Lenth(i,j)>0) % new crack

block found

 m = m + 1;

 n = 1; % count for branch number, start from

1, reset to 1 after finish check every crack

 bc = 1; bcb = bc; % initialize branch

counter

 Sta(i,j) = 1;

 lac(i,j) = m; lab(i,j) = n;

 tmpm(1, 1) = i; tmpm(1,2) = j; tmpm(1, 3) =

1; % tmpm record the start point of each branch; sp of

crack is sp of the 1st branch of the crack

 lfr = 0; %Initialize

 % search the neighbor of it

 ic = i; jc = j;

 while bc>0 % search every branch

 ct(m,n) = ct(m,n) + Lenth(ic,jc); % crack

table, record the length

 for cnt = 1:255

 [ic, jc, bc, tmpm, lCrack, lac, Sta,

lBroot] = sneighb(ct, ic, jc, Sta, m, n, Lenth, bc, tmpm,

lac, lab, lfr, minLen, bcb);

 lab(ic, jc) = n;

 if(lCrack==0) break; end % no further

crack (extension of this branch is over), break

60

 if(lBroot == 1) lfr = 0; end % Reset

 ct(m,n) = ct(m,n) + Lenth(ic,jc);

 lfr = lfr + Lenth(ic,jc); % length

from root

 if (lfr>minLen) bcb = bc; end

 end

 if(m==1 && n ==5)

 tt = ct(m,n)

 [ic,jc]

 end

 if(lfr<minLen && ct(m,n)>minLen) % less

than threshold, this is not a branch, continue another way

 bc = bc - 1;

 if(bc == 0) break; end

 ic = tmpm(bc, 1); jc = tmpm(bc,2); %

Get the last record branch, search from there

 lfr = 0; % reset

 if (bc<bcb) n = n + 1; bcb = bc; end

 lab(ic,jc) = n;

 elseif(ct(m,n)<minLen) % not a branch,

jump to previous branch

 lab(ic,jc) = tmpm(bc, 3);

 [ic,jc]

 bc = bc - 1;

 if(bc == 0) break; end

 ic = tmpm(bc, 1); jc = tmpm(bc,2); %

take new brach candidate out

 ct(m,n) = 0;

 lab(ic,jc) = n;

 [ic,jc,n,bc]

 else % this branch search over

 bc = bc - 1;

 if(bc == 0) break; end

 bcb = bc;

 ic = tmpm(bc, 1); jc = tmpm(bc,2); %

take new brach candidate out

 n = n+1;

 lab(ic,jc) = n;

 end

 Sta(ic,jc) = 1;

 end % End while loop, go to find next crack

 %calculate the total length of crack

 end

 Sta(i,j)=1;

 end

end

